

Analytic Bounded Point Evaluation Over Crescent Regions

Kifah Y. Al-Hami

Department of Mathematics, University of Bahrain, P.O. Box 32038 Sukhair, Bahrain

Key words: Crescent region, $L^{p}(G)$, $L^{\infty}(G)$, abpe(G)

Corresponding Author: Kifah Y. Al-Hami Department of Mathematics, University of Bahrain, P.O. Box 32038 Sukhair, Bahrain

Page No.: 40-42 Volume: 13, Issue 3, 2019 ISSN: 1994-5388 Journal of Modern Mathematics and Statistics Copy Right: Medwell Publications

INTRODUCTION

Recall that G is a crescent region if $G = W/\overline{V}$ where, V and W are Jordan regions such that $V \subseteq W$ and $\overline{V} \cap \partial W$ is a single point (the multiple boundary point of G). Now let, $\partial_o G$ be the inner boundary of the region G (that is ∂V) and let $\partial_{\infty} G$ be the outer boundary of G (that is ∂W). For any crescent G, we let V_G denote the boundary component of C/\overline{G} and we let mbp(G) denote the multiple boundary point of G. Throughout the work that follows we let G be a crescent region such that $\partial_{\infty} G = \partial D$ and mbp(G) = 1. This assumption on $\partial_{\infty} G$ simplifies our main result, even though our main result carry through for general crescents. By a Mobuis transformations of the disk, we may assume that $0 \in V_G$.

A complex number z is called a bounded point evaluation for $P^t(\mu)$ if there is a constant M such that $|p(z)| \le M.||p||L^t(\mu)$ for all polynomials p; the collection of all such points is denoted bpe($P^t(\mu)$). If $z \in C$ and there are positive constants M and r such that $|p(w)| \le M. ||p||L^t(\mu)$ whenever p is a polynomial and |w-z| < r, then, we call z an analytic bounded point evaluation for $P^t(\mu)$; the set of all points z of this type is denoted by $abpe(P^t(\mu))$. Notice that **Abstract:** In this study, I will prove that if $0\in abpe(P^t(\mu))$, then under certain conditions over the region G, we conclude that $0\in abpe(P^t(\mu \mid_{G(\Delta(\alpha; \delta))}))$ for some $\delta>0$.

abpe(P^t(μ)) is an open subset of bpe(P^t(μ)) and by the maximum modulus theorem, each component of abpe(P^t(μ)) is simply connected. If $z \in abpe(P^t(\mu))$, then by the Hahn-Banach and Riesz representation theorems, there exists K_z in $L^s(\mu)$ such that (1/s+1/t = 1) such that $p(z) = \int p(\zeta)K_z(\zeta)d(\zeta)$ for each poly-nomial p. For f in P^t(μ), define \hat{f} on bpe(P^t(μ)) by $f^{\Lambda}(z) = \int f(\zeta)K_z(\zeta)d(\zeta)$. Observe that $\hat{f} = f$ a.e. μ on bpe(P^t(μ)) and in fact $z \rightarrow \hat{f}(z)$ is analytic on $abpe(P^t(\mu))$. The set $abpe(P^t(\mu))$ support (μ) can be thought of as a set of over-convergence for P^t(μ). I will start rst by stating two important results that appears by Al-Hami (2015) and Akeroyd and Alhami (2002), (respectively) and needed for the proof of Theorem 3.

Theorem 1: Let μ be a finite, positive Borel measure with compact support in C such that $D\subseteq abpe(P^t(\mu))$. If K is a compact subset of D, then $D\subseteq abpe(P^t(\mu|(_{C_{K}})))$.

Theorem 2: Let μ be any finite, positive Borel measure with compact support in C and choose λ in C/support(μ). Then $\lambda \in abpe(P^t(\mu))$ if and only if $1/z - \lambda \notin P^t(\mu)$.

MAIN RESULTS

Theorem 3: Let μ be a finite, positive Borel measure with support in \overline{D} such that $\partial \mu = \omega dA$ (dA denotes area measure on C) where $\omega L^{\infty}(dA)$. If $0 \in abpe(P^{t}(\mu))$ and $1 \le t < \infty$, then for any point α in ∂ D and 0 < r < 1, $0 \in abpe(P^{t}\mu|_{\overline{D}/_{A(\alpha;r)}} + |s/_{\gamma_{r}})$ where $\Delta(\alpha; r) := \{z: |z-\alpha| < r\}, \Gamma_{r} :=$ $\partial \Delta(\alpha; r) \gamma_{r} := \Gamma_{r} \cap \overline{D}$ and s denotes normalized arclength measure on Γ_{r} .

Proof: Choose α in ∂D and 0 < r < 1. Let $\Delta(\alpha; r) := \{z: |z-\alpha| < r\}$, let $\Gamma_r := \partial \Delta(\alpha; r)$ and let $K_r = (\overline{D}/\Delta(\alpha; r)) \cup \Gamma_r$. Let η denote the sweep of $\mu|_{D\cap\Delta(\alpha; r)} + \delta \alpha$ to Γ_r and let $v = \mu|_{\overline{(D}/\Delta(\alpha; r))} + \eta$; observe that $\|p\|_{L^1(\mu)} \le \|p\|_{L^1(v)} \|p\|$ for any p in P and so $0 \in abpe(P^t(v))$. Let $R^t(K_r, v)$ denote the closure of $Rat(K_r)$ in $L^t(v)$.

Claim: $0\in abpe(\mathbb{R}^{t}(\mathbb{K}_{r}, v))$. Let P denote the collection of poly-nomials and let $\mathbb{R} = \{p(1/z-\alpha): p\in P \text{ and } p(0) = 0\}$. Now, $v|_{\Gamma_{r}} \ge \omega(., \Delta(\alpha; r), \alpha)$ harmonic measure on $\partial \Delta(\alpha; r)$ evaluated at α which is normalized arclength measure s on Γ_{r} . Indeed, $v|\Gamma_{r}$ is boundedly equivalent to s, since, $d\mu = \omega dA$ ($\omega \in L^{\infty}(dA)$) and so, we assume, for our purposes, that $v|\Gamma_{r} \equiv s$. Suppose $\{p_{n}\}\subseteq P, \{q_{n}\}\subseteq R$ and $\|p_{n}+q_{n}\|_{L^{(v)}} \to 0$ as $n \to \infty$.

Case 1: The $1 < t < \infty$; from a theorem of M. Riesz it follows that $||p_n||_{L^1(v)|\Gamma_1} \to 0$ and $||q_n||_{L^1(v)|\Gamma_1} \to 0$ as $n \to \infty$. Via. the Mobius transformation $S(z) = r/z - \alpha$ and the fact that $v|_{\Gamma_1} \equiv \omega(., \Delta; r, \alpha)$ a n d $dv|_{D/\overline{\Delta(\alpha; r)}} = \omega dA|_{D/\overline{\Delta(\alpha; r)}}$ where $e \omega \in L^{\infty}(dA)$, one can conclude that: $||q_n||_{L^1(v)} \to 0$ as $n \to \infty$ and there is a neighborhood W_1 of 0 such that $||q_n||_{\overline{W_1}} \to 0$ as $n \to \infty$. It follows that $||q_n||_{L^1(v)} = ||(p_n + q_n) - q||p_n + q_n||_{L^1(v)} + ||q_n||_{L^1(v)} + ||q_n||_{L^1(v)} \to 0$ as $n \to \infty$.

Therefore, since, $0\in abpe(P^t(v))$, there exists a neighborhood W_2 of 0 such that $\|p_n\|_{\overline{W_2}} \to 0$ as $n \to \infty$; let $W = W_1 \cap W_2$. We now have that $\|p_n + q_n\|_{\overline{W}} \to 0$ as $n \to \infty$ and so, our claim holds for $1 < t < \infty$.

Case 2; t = 1: As before, we have that $\|p_n + q_n\|_{L^1(v|\Gamma_r)} \to 0$ as $n \to \infty$. Applying the Cauchy integral to $p_n + q_n$ over Γ_r with evaluation at ζ in $C \setminus \overline{\Delta(\alpha, r)}$, we get that: $q_n \to 0$ uniformly on compact subsets of $C \setminus \overline{\Delta(\alpha, r)}$ and indeed $\|q_n\|_{L^1(\mu|D/\overline{\Delta(\alpha; r)})} \to 0$ as $n \to \infty$, since, $d\mu = \omega dA$ and $\omega \in L^{\infty}(dA)$. It follows from and our assumption about the convergence of $\|p_n + q_n\|_{L^1(v)}$ to zero that $\|p_n\|_{L^1(\mu|D\setminus\overline{\Delta(\alpha; r)})} \to 0$ as $n \to \infty$. Again applying the Cauchy integral to $p_n + q_n$ over Γ_r but this time with evaluation at ζ in $\Delta(\alpha, r)$, we get that $p_n \to 0$ uniformly on compact subsets of $\Delta(\alpha, r)$ and indeed $\|p_n\|_{L^1(\mu|\Delta(\alpha; r))} \to 0$ as $n \to \infty$, since, $d\mu = \omega dA$ and $\omega \in L^{\infty}(dA)$. An earlier observation we now conclude that $\|P_n\|_{L^t(\mu)} \to \infty$ as $n \to \infty$. Since, $0 \in abpe(P^t(\mu))$, it follows that $p_n \to 0$ uniformly in some neighborhood of 0. This along gives us that $0 \in abpe(R^t(K_r, v))$. Evidently, our claim holds for $1 = t < \infty$. Now by Theorem 1, we may assume that $0 \notin support(v)$. So, by our claim, $1/z \notin R^t(K_r, v)$ and hence, there exists g in $L^s(v)$ (1/s+1/t = 1) such that $g \perp R^t(K_r, v)$ and yet $\lceil g(z)/z \, dv(z) \neq 0$.

Let, T be the Mobius transformation $T(z) = 1/r(z-\alpha)$ (Observe that $T(\Delta(a, \alpha)) = D$) and define τ and h by τ : = voT⁻¹ and h: = oT⁻¹. Now $h \in L^{s}(\tau)$ and $g \perp R^{t}(T(K_{r}), \tau)$, yet $\int h(z)/z + \alpha/r \ d(\tau \neq 0)$. So, the Cauchy transform

$$\hat{h}(\zeta) := \int \frac{h(z)}{z \text{-} \zeta} d\tau(z)$$

(which is defined and analytic off the support of tau) is identically zero in D and in the unbounded component of C/T(k_r) and yet is nonzero in a neighborhood of - α /r. Let $\gamma = T(\Gamma_r/\gamma_r)$ and notice that if $e^{i\phi} \in \gamma$ and R>1, then $Re^{i\phi}$ is in the unbounded component of C/T(K_r). Therefore, if $e^{i\phi} \in \gamma$, 0< ρ <1 and ρ is sufficiently near 1, then (for $\zeta = \rho e^{i\phi}$):

$$\begin{split} 0 &= \int \! \left(\frac{1}{z \text{-} \zeta} - \frac{1}{z \text{-} 1/\overline{\zeta}} \right) \! h(z) d\tau(z) = \int_{\mathsf{T}(\overline{D} \setminus \overline{A(\alpha,\tau)})} \! \left(\frac{1}{z \text{-} \zeta} - \frac{1}{z \text{-} 1/\overline{\zeta}} \right) \\ &\quad h(z) d\tau(z) \text{+} \int \! P_{\zeta}(z) \overline{z} h(z) d\tau(z) \end{split}$$

Now:

$$\int_{T(\overline{D}\setminus\overline{\Delta(\alpha,\tau)})} \left(\frac{1}{z-\zeta} - \frac{1}{z-1/\overline{\zeta}}\right) h(z) d\tau(z) \to 0$$

as $\rho \rightarrow 1$. Since, $\tau | \partial_{D=m}$ by (H, first corollary, page 38), we therefore have that $0 = \lim_{\rho \rightarrow 1} \int P_{\zeta}(z) \overline{z}h(z) dm(z) = e^{-i\varphi} \cdot h(e^{i\varphi})$ a.e.m on γ . So, h = 0 a.e. τ on γ and hence, g = 0 a.e. ν on Γ_r / γ_r . It follows that $1/z \notin P^t(\mu|_{\overline{D}\setminus\overline{\Delta(\alpha,\tau)}} + s|_{\gamma r}$ and so by Theorem 2, $0 \in abpe(P^t(\mu|_{\overline{D}\setminus\overline{\Delta(\alpha,\tau)}}))$. The proof is now complete. This coming result is not totally new but the approach is quite different.

Corollary 4: Let G be a crescent such that $\partial_{\infty}G = \partial D$, 1 = mbp(G) and $0 \notin \overline{G}$. Define μ on G by $d\mu = |f|^t dA|_G$ and f is never zero in G. if $0 \in abpe(P^t(\mu))$, $1 \le t < \infty$, then for each α in ∂D with $\alpha \ne 1$, there exists $\delta > 0$ such that $0 \in abpe(P^t(\mu|_{G \setminus \Delta(\alpha, \delta)}))$

Proof: Choose α in ∂D where $\alpha \neq 1$. Choose r>0 such that $r < \text{dist}(\alpha, \partial_{o}G)$, let $\Delta(\alpha; r) = \{z: |z-\alpha| < r\}$ let $\Gamma_r = \partial \Delta(\alpha; r)$ and let $\gamma_r = \Gamma_r \cap \overline{D}$. Now, Γ_r meets ∂D at two distinct points-call these points a and b. Since, $f \in H^{\infty}(G)$, f has nontangential limits a.e.m on ∂D and so, we may assume (with a slight alteration in r if needed) that f has nonzero nontangential limits at both a and b. Choose $\epsilon > 0$, so that,

 $\begin{array}{l} \displaystyle \in < r/30 \mbox{ and } r + \in < \mbox{dist}(\alpha, \partial_o G). \mbox{ Let } \{z \in D: r - \in < |z - \alpha| < r + \in \} \\ \mbox{ and let } F = \{z \in E: \mbox{dist}(z; \{a, b\}) < 4:\mbox{dist}(z; \partial D)\}. \mbox{ Now by } \\ \mbox{ our construction of } F \mbox{ and the fact that } f \mbox{ has nonzero } \\ \mbox{ nontangential limits at both a and b, there is a positive } \\ \mbox{ constant } c_1 \mbox{ such that } |f(z)|^t \geq c1 \mbox{ whenever } z \in F. \\ \mbox{ Furthermore, there is another constant } c_2 \mbox{ such that } \Delta 2: = \\ \{\xi: |\xi - z| < c_2 |(z - a)(z - b)|\} \subseteq F \mbox{ whenever } z \in \gamma_r \cap D. \mbox{ So, for any } \\ \mbox{ polynomial } p: \end{array}$

$$\begin{split} &\int_{\gamma r} \left| p(z) \right|^{t} \left| (z\text{-}a)(z\text{-}b) \right|^{2} ds(z) = \int_{\gamma r} \left| \frac{1}{\pi \left| c_{2}(z\text{-}a)(z\text{-}b) \right|^{2}} \right. \\ &\int \Delta_{z} p(\xi) dA(\xi) \left|^{t} \left| (z\text{-}a)(z\text{-}b) \right|^{2} ds(z) \leq \int_{\gamma r} \frac{1}{\pi (c_{2})^{2}} \int_{\Delta z} \left| p(\xi) \right|^{t} (1) \\ &dA(\xi) ds(z) \leq \frac{s(\gamma_{r})}{\pi (c_{2})^{2}} \int_{F} \left| p \right|^{t} dA \leq c \int_{F} \left| p \right|^{t} du \end{split}$$

Since, $0 \in abpe(P^{t}(\mu))$, we have by Theorem 3 that $0 \in abpe(P^{t}(v))$ where $v = \mu |_{\overline{(G \setminus A(\alpha;r))}} + s | \gamma_{r}$. Hence, there exist positive constants ρ , M and N such that:

and

$$\begin{split} &| \, p(z) \, | \, (z\text{-}a)(z\text{-}b))^{\frac{2}{t}} \leq M . \, \| \, p.((z\text{-}a)(z\text{-}b)^{\frac{2}{t}} \, \|_{L^{1}(v)} \leq N \\ & \{ \int_{\overline{G} \setminus \overline{\Delta(\alpha, r)}} | \, p \, |^{t} \, d\mu + \int_{\gamma r} | \, p \, |^{t} \, (z\text{-}a)(z\text{-}b) \, |^{2} \, ds \} \end{split}$$

 $|(z-a)|(z-b)| \ge c_3 > 0$

(2)

whenever $p \in P$ and $z \in \Delta(0; \rho)$. Therefore, by Eq. 1 and 2, we conclude that $|p(z)| \operatorname{Const.} \{ \int_{\overline{G} \setminus \overline{\Delta(\alpha; r)}} |p|^t d\mu + \int_F |p|^t d\mu \}$ for every p in P and hence there exists $\delta > 0$ (we may choose $\delta = r \cdot \epsilon$) such that $0 \in \operatorname{abpe}(P^t(d\mu|_{G \setminus d(\alpha; \delta)}))$.

REFERENCES

- Akeroyd, J. and K. Alhami, 2002. Overconvergence and cyclic vectors in Bergman spaces. J. Operator Theory, 47: 63-77.
- Al-Hami, K., 2015. Singular inner function and analytic bounded point evaluation. Int. J. Pure Applied Math., 105: 427-430.