

Analytic Bounded Point Evaluation Over Crescent Regions

Kifah Y. Al-Hami
Department of Mathematics, University of Bahrain, P.O. Box 32038 Sukhair, Bahrain

Key words: Crescent region, $L^{p}(G), L^{\infty}(G)$, abpe(G)

Corresponding Author:

Kifah Y. Al-Hami
Department of Mathematics, University of Bahrain, P.O. Box 32038 Sukhair, Bahrain

Page No.: 40-42
Volume: 13, Issue 3, 2019
ISSN: 1994-5388
Journal of Modern Mathematics and Statistics
Copy Right: Medwell Publications

Abstract

In this study, I will prove that if $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$, then under certain conditions over the region G , we conclude that $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{P}^{\prime}}\left(\left.\mu\right|_{\mathrm{G} \triangle(a ; \delta)}\right)\right)$ for some $\delta>0$.

INTRODUCTION

Recall that G is a crescent region if $\mathrm{G}=\mathrm{W} / \overline{\mathrm{V}}$ where, V and W are Jordan regions such that $\mathrm{V} \subseteq \mathrm{W}$ and $\overline{\mathrm{V}} \cap \partial \mathrm{W}$ is a single point (the multiple boundary point of G). Now let, $\partial_{0} \mathrm{G}$ be the inner boundary of the region G (that is $\partial \mathrm{V}$) and let $\partial_{\infty} \mathrm{G}$ be the outer boundary of G (that is $\partial \mathrm{W}$). For any crescent G , we let V_{G} denote the boundary component of $\mathrm{C} / \overline{\mathrm{G}}$ and we let $\mathrm{mbp}(\mathrm{G})$ denote the multiple boundary point of G. Throughout the work that follows we let G be a crescent region such that $\partial_{\alpha} G=\partial \mathrm{D}$ and $\mathrm{mbp}(\mathrm{G})=1$. This assumption on $\partial_{\infty} G$ simplifies our main result, even though our main result carry through for general crescents. By a Mobuis transformations of the disk, we may assume that $0 \in \mathrm{~V}_{\mathrm{G}}$.

A complex number z is called a bounded point evaluation for $\mathrm{P}^{1}(\mu)$ if there is a constant M such that $|\mathrm{p}(\mathrm{z})| \leq \mathrm{M} .\left||\mathrm{p}| \mathrm{L}^{1}(\mu)\right.$ for all polynomials p ; the collection of all such points is denoted $\operatorname{bpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$. If $\mathrm{z} \in \mathrm{C}$ and there are positive constants M and r such that $|\mathrm{p}(\mathrm{w})| \leq \mathrm{M} .\|p\| \mathrm{L}^{\prime}(\mu)$ whenever p is a polynomial and $|\mathrm{W}-\mathrm{z}|<\mathrm{r}$, then, we call z an analytic bounded point evaluation for $\mathrm{P}^{\prime}(\mu)$; the set of all points z of this type is denoted by abpe($\left.\mathrm{P}^{1}(\mu)\right)$. Notice that
abpe($\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$ is an open subset of $\operatorname{bpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$ and by the maximum modulus theorem, each component of abpe $\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$ is simply connected. If $z \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$, then by the Hahn-Banach and Riesz representation theorems, there exists K_{2} in $\mathrm{L}^{s}(\mu)$ such that $(1 / \mathrm{s}+1 / \mathrm{t}=1)$ such that $p(z)=\int p(\zeta) K_{z}(\zeta) d(\zeta)$ for each poly-nomial p. For f in $P^{\prime}(\mu)$, define \hat{f} on $\operatorname{bpe}\left(P^{1}(\mu)\right)$ by $f \wedge(z)=\int f(\zeta) K_{z}(\zeta) d(\zeta)$. Observe that $\hat{\mathrm{f}}=\mathrm{f}$ a.e. μ on $\operatorname{bpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$ and in fact $\mathrm{z} \rightarrow$ $\hat{f}(z)$ is analytic on $\operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$. The set abpe $\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$ support (μ) can be thought of as a set of over-convergence for $\mathrm{P}^{\mathrm{t}}(\mu)$. I will start rst by stating two important results that appears by Al-Hami (2015) and Akeroyd and Alhami (2002), (respectively) and needed for the proof of Theorem 3.

Theorem 1: Let μ be a finite, positive Borel measure with compact support in C such that $\mathrm{D} \subseteq \mathrm{abpe}\left(\mathrm{P}^{\mathrm{P}}(\mu)\right)$. If K is a compact subset of D , then D \subseteq abpe $\left(P^{1}(\mu \mid(\right.$ скк $\left.))\right)$.

Theorem 2: Let μ be any finite, positive Borel measure with compact support in C and choose λ in C/support(μ). Then $\lambda \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$ if and only if $1 / \mathrm{z}-\lambda \notin \mathrm{P}^{\mathrm{t}}(\mu)$.

MAIN RESULTS

Theorem 3: Let μ be a finite, positive Borel measure with support in $\overline{\mathrm{D}}$ such that $\partial \mu=\omega \mathrm{dA}$ (dA denotes area measure on C) where $\omega \mathrm{L}^{\infty}(\mathrm{dA})$. If $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$ and $1 \leq t<\infty$, then for any point α in $\partial \mathrm{D}$ and $0<r<1$, $0 \in \operatorname{abpe}\left(\left.\mathrm{P}^{\mathrm{t}} \mu\right|_{\overline{\mathrm{D}} / \overline{\Delta(\alpha ; i)}}+\mid \mathrm{s} / \gamma_{\mathrm{r}}\right)$ where $\Delta(\alpha ; \mathrm{r}):=\{\mathrm{z}:|\mathrm{z}-\alpha|<\mathrm{r}\}, \Gamma_{\mathrm{r}}:=$ $\partial \Delta(\alpha ; r) \gamma_{\mathrm{r}}:=\Gamma_{\mathrm{r}} \cap \overline{\mathrm{D}}$ and s denotes normalized arclength measure on Γ_{r}.

Proof: Choose α in $\partial \mathrm{D}$ and $0<\mathrm{r}<1$. Let $\Delta(\alpha ; \mathrm{r}):=\{\mathrm{z}:|\mathrm{z}-\alpha|$ $<\mathrm{r}\}$, let $\Gamma_{\mathrm{r}}:=\partial \Delta(\alpha ; \mathrm{r})$ and let $\mathrm{K}_{\mathrm{r}}=(\overline{\mathrm{D}} / \Delta(\alpha ; \mathrm{r})) \cup \Gamma_{\mathrm{r}}$. Let η denote the sweep of $\left.\mu\right|_{\mathrm{D} \cap \Delta(\alpha ; \mathrm{r})}+\delta \alpha$ to Γ_{r} and let $\mathrm{v}=\left.\mu\right|_{(\overline{\mathrm{D}} / \Delta(a ; r)))}+\eta$; observe that $\|\mathrm{p}\|_{\mathrm{L}^{(}(\mu)} \leq\|\mathrm{p}\|_{\mathrm{L}^{\mathrm{L}^{(v)}}}\|\mathrm{p}\|$ for any p in P and so $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mathrm{v})\right)$. Let $\mathrm{R}^{\mathrm{t}}\left(\mathrm{K}_{\mathrm{r}}, \mathrm{v}\right)$ denote the closure of $\operatorname{Rat}\left(\mathrm{K}_{\mathrm{r}}\right)$ in $\mathrm{L}^{\mathrm{t}}(\mathrm{v})$.

Claim: $0 \in \operatorname{abpe}\left(\mathrm{R}^{\mathrm{t}}\left(\mathrm{K}_{\mathrm{r}}, \mathrm{v}\right)\right)$. Let P denote the collection of poly-nomials and let $\mathrm{R}=\{\mathrm{p}(1 / \mathrm{z}-\alpha)$: $\mathrm{p} \in \mathrm{P}$ and $\mathrm{p}(0)=0\}$. Now, $\left.v\right|_{\Gamma_{r}} \geq \omega(., \Delta(\alpha ; r), \alpha)$ harmonic measure on $\partial \Delta(\alpha ; r)$ evaluated at α which is normalized arclength measure s on Γ_{r}. Indeed, $\mathrm{v} \mid \Gamma_{\mathrm{r}}$ is boundedly equivalent to s , since, $\mathrm{d} \mu=$ $\omega \mathrm{dA}\left(\omega \in \mathrm{L}^{\circ}(\mathrm{dA})\right)$ and so, we assume, for our purposes, that $\mathrm{v} \mid \Gamma_{\mathrm{r}} \equiv$ s. Suppose $\left\{\mathrm{p}_{\mathrm{n}}\right\} \subseteq \mathrm{P},\left\{\mathrm{q}_{\mathrm{n}}\right\} \subseteq \mathrm{R}$ and $\left\|\mathrm{p}_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}\right\|_{\mathrm{L}}^{\mathrm{t}} \mathrm{tv}^{\mathrm{v}} \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\|p_{n}+q_{n}\right\|_{\left.L^{\prime}(v) \Gamma_{r}\right)} \rightarrow 0$ as $n \rightarrow \infty$.

Case 1: The $1<\mathrm{t}<\infty$; from a theorem of M . Riesz it follows that $\left\|p_{\mathrm{n}}\right\|_{\left.\mathrm{L}^{(}(\mathrm{v}) \Gamma_{r_{r}}\right)} \rightarrow 0$ and $\left\|\mathrm{q}_{\mathrm{n}}\right\|_{\mathrm{L}^{L^{\prime}(v) \Gamma_{+}}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. Via. the Mobius transformation $\mathrm{S}(\mathrm{z})=\mathrm{r} / \mathrm{z}-\alpha$ and the fact that $\left.\mathrm{v}\right|_{\mathrm{r}_{\mathrm{r}}} \equiv \omega(., \Delta ; \mathrm{r}, \alpha)$ and $\left.\mathrm{dv}\right|_{\mathrm{D} / \overline{\Delta(\alpha ; r)}}=\left.\omega \mathrm{dA}\right|_{\mathrm{D} / \overline{\Delta(\alpha ; r)}} \quad$ where $\omega \in \mathrm{L}^{\infty}(\mathrm{dA})$, one can conclude that: $\left\|\mathrm{q}_{\mathrm{n}}\right\|_{\mathrm{L}^{\prime}(v)} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ and there is a neighborhood W_{1} of 0 such that $\left\|q_{n}\right\|_{\overline{w_{1}}} \rightarrow 0$ as $n \rightarrow \infty$. It follows that $\left\|q_{n}\right\|_{L^{\prime}(v)}=\left\|\left(p_{n}+q_{n}\right)-q\right\| p_{n}+q_{n} \|_{L^{\prime}(v)}+$ $\left\|q_{\mathrm{n}}\right\| \mathrm{L}^{\mathrm{t}}(\mathrm{v}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

Therefore, since, $0 \in a b p e\left(P^{t}(v)\right)$, there exists a neighborhood W_{2} of 0 such that $\left\|\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{w}_{2}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$; let $\mathrm{W}=\mathrm{W}_{1} \cap \mathrm{~W}_{2}$. We now have that $\left\|\mathrm{p}_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}\right\|_{\overline{\mathrm{w}}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ and so, our claim holds for $1<\mathrm{t}<\infty$.

Case 2; $\mathbf{t}=1$: As before, we have that $\left\|\mathrm{p}_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}\right\|_{\mathrm{L}^{\mathrm{L}\left(v \Gamma_{\mathrm{r}}\right)}} \rightarrow 0$ as $n \rightarrow \infty$. Applying the Cauchy integral to $p_{n}+q_{n}$ over Γ_{r} with evaluation at ζ in $C \backslash \overline{\Delta(\alpha, r)}$, we get that: $\mathrm{q}_{\mathrm{n}} \rightarrow 0$ uniformly on compact subsets of $\mathrm{C} \backslash \overline{\Delta(\alpha, \mathrm{r})}$ and indeed $\left\|q_{n}\right\|_{L^{\prime}(\mu \mathrm{D} \overline{\mathrm{D}(\alpha ; i)})} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$, since, $\mathrm{d} \mu=\omega \mathrm{dA}$ and $\omega \in L^{\infty}(d A)$. It follows from and our assumption about the convergence of $\left\|p_{n}+q_{n}\right\|_{L^{\prime}(v)}$ to zero that $\left.\left\|p_{n}\right\|_{L^{\prime}(\mu \mid \bar{D} \overline{\Delta(\alpha ; r)}}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. Again applying the Cauchy integral to $\mathrm{p}_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}$ over Γ_{r} but this time with evaluation at ζ in $\Delta(\alpha, r)$, we get that $\mathrm{p}_{\mathrm{n}} \rightarrow 0$ uniformly on compact subsets of $\Delta(\alpha, \mathrm{r})$ and indeed $\left\|p_{n}\right\|_{L^{(}\left(\mu_{l(\alpha, r))}\right.} \rightarrow 0$ as $n \rightarrow \infty$, since, $d \mu=\omega d A$ and $\omega \in L^{\infty}(d A)$. An earlier observation we now conclude that
$\left\|p_{\mathrm{n}}\right\|_{\mathrm{L}^{\prime}(\mu)} \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$. Since, $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$, it follows that $\mathrm{p}_{\mathrm{n}} \rightarrow 0$ uniformly in some neighborhood of 0 . This along gives us that $0 \in \operatorname{abpe}\left(\mathrm{R}^{\mathrm{t}}\left(\mathrm{K}_{\mathrm{r}}, \mathrm{v}\right)\right)$. Evidently, our claim holds for $1=\mathrm{t}<\infty$. Now by Theorem 1, we may assume that $0 \notin$ /support(v). So, by our claim, $1 / \mathrm{z} \notin \mathrm{R}^{\mathrm{t}}\left(\mathrm{K}_{\mathrm{r}}, \mathrm{v}\right)$ and hence, there exists g in $L^{s}(v)(1 / s+1 / t=1)$ such that $g \perp R^{t}\left(K_{r}, v\right)$ and yet $\int \mathrm{g}(\mathrm{z}) / \mathrm{zdv}(\mathrm{z}) \neq 0$.

Let, T be the Mobius transformation $\mathrm{T}(\mathrm{z})=1 / \mathrm{r}(\mathrm{z}-\alpha)$ (Observe that $\mathrm{T}(\Delta(\mathrm{a}, \alpha))=\mathrm{D}$) and define τ and h by τ : = voT ${ }^{-1}$ and h : $=\mathrm{oT}^{-1}$. Now $h \in \mathrm{~L}^{\mathrm{s}}(\tau)$ and $\mathrm{g} \perp \mathrm{R}^{\mathrm{t}}\left(\mathrm{T}\left(\mathrm{K}_{\mathrm{r}}\right)\right.$, $\left.\tau\right)$, yet $\int h(z) / z+\alpha / r d(\tau \neq 0)$. So, the Cauchy transform

$$
\hat{\mathrm{h}}(\zeta):=\int \frac{\mathrm{h}(\mathrm{z})}{\mathrm{z}-\zeta} \mathrm{d} \tau(\mathrm{z})
$$

(which is defined and analytic off the support of tau) is identically zero in D and in the unbounded component of $\mathrm{C} / \mathrm{T}\left(\mathrm{k}_{\mathrm{r}}\right)$ and yet is nonzero in a neighborhood of $-\alpha / \mathrm{r}$. Let $\gamma=\mathrm{T}\left(\Gamma_{\mathrm{r}} / \gamma_{\mathrm{r}}\right)$ and notice that if $\mathrm{e}^{\mathrm{i} \varphi} \in \gamma$ and $\mathrm{R}>1$, then $\mathrm{Re}^{\mathrm{i} \varphi}$ is in the unbounded component of $\mathrm{C} / \mathrm{T}\left(\mathrm{K}_{\mathrm{r}}\right)$. Therefore, if $\mathrm{e}^{\mathrm{i} \varphi} \in \gamma, 0<\rho<1$ and ρ is sufficiently near 1 , then (for $\zeta=$ $\left.\rho e^{i \varphi}\right)$:

$$
\begin{gathered}
0=\int\left(\frac{1}{\mathrm{z}-\zeta}-\frac{1}{\mathrm{z}-1 / \bar{\zeta}}\right) \mathrm{h}(\mathrm{z}) \mathrm{d} \tau(\mathrm{z})=\int_{\mathrm{T}(\overline{\mathrm{D}} \overline{\Delta(\alpha, r))}}\left(\frac{1}{\mathrm{z}-\zeta}-\frac{1}{\mathrm{z}-1 / \bar{\zeta}}\right) \\
\mathrm{h}(\mathrm{z}) \mathrm{d} \tau(\mathrm{z})+\int_{\mathrm{P}_{\zeta}(\mathrm{z}) \overline{\mathrm{z}} \mathrm{~h}(\mathrm{z}) \mathrm{d} \tau(\mathrm{z})}
\end{gathered}
$$

Now:

$$
\int_{\mathrm{T}(\overline{\mathrm{D}} \overline{\Delta(\alpha, \mathrm{r}))}}\left(\frac{1}{\mathrm{z}-\zeta}-\frac{1}{\mathrm{z}-1 / \bar{\zeta}}\right) \mathrm{h}(\mathrm{z}) \mathrm{d} \tau(\mathrm{z}) \rightarrow 0
$$

as $\rho \rightarrow 1$. Since, $\tau \mid \partial_{D=m}$ by (H, first corollary, page 38), we therefore have that $0=\lim _{\rho-1} \int \mathrm{P}_{\zeta}(\mathrm{z}) \overline{\mathrm{zh}}(\mathrm{z}) \mathrm{dm}(\mathrm{z})=\mathrm{e}^{-\mathrm{iq}} \cdot \mathrm{h}\left(\mathrm{e}^{\mathrm{i} \varphi}\right)$ a.e.m on γ. So, $\mathrm{h}=0$ a.e τ on γ and hence, $\mathrm{g}=0$ a.e. v on $\Gamma_{\mathrm{r}} / \gamma_{\mathrm{r}}$. It follows that $1 / \mathrm{z} \notin \mathrm{P}^{\mathrm{t}}\left(\left.\mu\right|_{\overline{\mathrm{D}} \overline{\Delta(\alpha, r)}}+\left.\mathrm{S}\right|_{\mid, r}\right.$ and so by Theorem 2, $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}\left(\left.\mu\right|_{\left.\overline{\mathrm{D}} \overline{\left.\left.\Delta(\alpha,)^{2}\right)+s r_{r}\right)}\right)}\right.\right.$. The proof is now complete. This coming result is not totally new but the approach is quite different.

Corollary 4: Let G be a crescent such that $\partial_{\infty} G=\partial \mathrm{D}, 1=$ $\operatorname{mbp}(\mathrm{G})$ and $0 \notin \overline{\mathrm{G}}$. Define μ on G by $\mathrm{d} \mu=\left.|\mathrm{f}|^{\mathrm{t}} \mathrm{dA}\right|_{\mathrm{G}}$ and f is never zero in G. if $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right), 1 \leq \mathrm{t}<\infty$, then for each α in $\partial \mathrm{D}$ with $\alpha \neq 1$, there exists $\delta>0$ such that $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}\left(\left.\mu\right|_{\mathrm{G} \backslash(\alpha, \delta)}\right)\right)$

Proof: Choose α in $\partial \mathrm{D}$ where $\alpha \neq 1$. Choose $\mathrm{r}>0$ such that $\mathrm{r}<\operatorname{dist}\left(\alpha, \partial_{0} \mathrm{G}\right)$, let $\Delta(\alpha ; \mathrm{r})=\{\mathrm{z}:|\mathrm{z}-\alpha|<\mathrm{r}\}$ let $\Gamma_{\mathrm{r}}=\partial \Delta(\alpha ; \mathrm{r})$ and let $\gamma_{\mathrm{r}}=\Gamma_{\mathrm{r}} \cap \overline{\mathrm{D}}$. Now, Γ_{r} meets $\partial \mathrm{D}$ at two distinct points-call these points a and b. Since, $f \in H^{\circ}(G)$, f has nontangential limits a.e.m on $\partial \mathrm{D}$ and so, we may assume (with a slight alteration in r if needed) that f has nonzero nontangential limits at both a and b . Choose $\in>0$, so that,
$\epsilon<r / 30$ and $r+\epsilon<\operatorname{dist}\left(\alpha, \partial_{0} G\right)$. Let $\{\mathbf{z} \in \mathrm{D}: \mathrm{r}-\epsilon<|\mathrm{z}-\alpha|<\mathrm{r}+\epsilon\}$ and let $F=\{\mathrm{z} \in \mathrm{E}$: $\operatorname{dist}(\mathrm{z} ;\{\mathrm{a}, \mathrm{b}\})<4: \operatorname{dist}(\mathrm{z} ; \partial \mathrm{D})\}$. Now by our construction of F and the fact that f has nonzero nontangential limits at both a and b, there is a positive constant $\quad \mathrm{c}_{1}$ such that $|\mathrm{f}(\mathrm{z})|^{\mathrm{t}} \geq \mathrm{c} 1$ whenever $\mathrm{z} \in \mathrm{F}$. Furthermore, there is another constant C_{2} such that $\Delta 2$: $=$ $\left\{\xi:|\xi-\mathrm{z}|<\mathrm{c}_{2}|(\mathrm{z}-\mathrm{a})(\mathrm{z}-\mathrm{b})|\right\} \subseteq \mathrm{F}$ whenever $\mathrm{z} \in \gamma_{\mathrm{r}} \cap \mathrm{D}$. So, for any polynomial p:

$$
\begin{align*}
& \int_{\gamma r}|\mathrm{p}(\mathrm{z})|^{\mathrm{t}}|(\mathrm{z}-\mathrm{a})(\mathrm{z}-\mathrm{b})|^{2} \mathrm{ds}(\mathrm{z})=\int_{\gamma r} \left\lvert\, \frac{1}{\pi\left|c_{2}(\mathrm{z}-\mathrm{a})(\mathrm{z}-\mathrm{b})\right|^{2}}\right. \\
& \left.\int_{\mathrm{z}} \mathrm{p}(\xi) \mathrm{dA}(\xi)\right|^{\mathrm{t}}|(\mathrm{z}-\mathrm{a})(\mathrm{z}-\mathrm{b})|^{2} \mathrm{ds}(\mathrm{z}) \leq \int_{\gamma r} \frac{1}{\pi\left(\mathrm{c}_{2}\right)^{2}} \int_{\Delta \mathrm{z}}|\mathrm{p}(\xi)|^{\mathrm{t}} \tag{1}\\
& \mathrm{dA}(\xi) \mathrm{ds}(\mathrm{z}) \leq \frac{\mathrm{s}\left(\gamma_{\mathrm{r}}\right)}{\pi\left(\mathrm{c}_{2}\right)^{2}} \int_{\mathrm{F}}|\mathrm{p}|^{\mathrm{t}} \mathrm{dA} \leq \mathrm{c} \int_{\mathrm{F}}|\mathrm{p}|^{\mathrm{t}} \mathrm{du}
\end{align*}
$$

Since, $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mu)\right)$, we have by Theorem 3 that $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}(\mathrm{v})\right)$ where $\mathrm{v}=\left.\mu\right|_{(\bar{G} \overline{\Delta(a(a r))}}+\mathrm{s} \mid \gamma_{\mathrm{r}}$. Hence, there exist positive constants ρ, M and N such that:

$$
\begin{equation*}
|(\mathrm{z}-\mathrm{a})|(\mathrm{z}-\mathrm{b}) \mid \geq \mathrm{c}_{3}>0 \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
& |p(z)|(z-a)(z-b))^{\frac{2}{t}} \leq M \cdot \| p \cdot\left((z-a)(z-b)^{\frac{2}{t}} \|_{L^{t}(v)} \leq N\right. \\
& \quad\left\{\int_{\bar{G} \backslash \overline{\Delta(a, r)}}|p|^{t} d \mu+\left.\int_{r r}|p|^{t}(z-a)(z-b)\right|^{2} d s\right\}
\end{aligned}
$$

whenever $p \in P$ and $z \in \Delta(0 ; \rho)$. Therefore, by Eq. 1 and 2, we conclude that $|\mathrm{p}(\mathrm{z})|$ Const. $\left\{\int_{\overline{\mathrm{G}} \overline{\Delta(\alpha ; r)}}|\mathrm{p}|^{t} \mathrm{~d} \mu+\int_{\mathrm{F}}|\mathrm{p}|^{\mathrm{t}} \mathrm{d} \mu\right\}$ for every p in P and hence there exists $\delta>0$ (we may choose $\delta=r-\epsilon)$ such that $0 \in \operatorname{abpe}\left(\mathrm{P}^{\mathrm{t}}\left(\left.\mathrm{d} \mu\right|_{G \Delta(a ; \delta)}\right)\right)$.

REFERENCES

Akeroyd, J. and K. Alhami, 2002. Overconvergence and cyclic vectors in Bergman spaces. J. Operator Theory, 47: 63-77.
Al-Hami, K., 2015. Singular inner function and analytic bounded point evaluation. Int. J. Pure Applied Math., 105: 427-430.

