

Lower Order Perturbations of Critical Fractional Laplacian Equations*

Khalid Funoukh Al Oweidi
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

Key words: Fractional laplacian, critical problems, nontrivial solutions, conditions, existence, complements

Corresponding Author:

Khalid Funoukh Al Oweidi
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

Page No.: 47-54
Volume: 14, Issue 3, 2020
ISSN: 1994-5388
Journal Modern Mathematic Statistic
Copy Right: Medwell Publications

Abstract: We give sufficient conditions for the existence of nontrivial solutions to a class of critical nonlocal problems of the Brezis-Nirenberg type. Our result extends some results in the literature for the local case to the nonlocal setting. It also complements the known results for the nonlocal case.

INTRODUCTION

Nonlinear elliptic equations involving critical Sobolev exponents have been extensively studied in the literature, beginning with the following celebrated result of Brezis and Nirenberg ${ }^{[1]}$.

Theorem 1.1: Let Ω be a smooth bounded domain in \mathbb{R}^{n}, $\mathrm{n} \geq 3$ and consider the problem:

$$
\left\{\begin{array}{cc}
-\Delta u=\lambda u+|u|^{2^{*-2}} u & \text { in } \Omega \tag{1}\\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where, $\lambda>0$ is a parameter and $2^{*}=2 n /(n-2)$ is the critical Sobolev exponent. Let $\lambda_{1}>0$ be the first dirichlet eigenvalue of $-\Delta$ in Ω.

- If $\mathrm{n} \geq 4$, then problem (1.1) has a solution for all $\lambda \in\left(0, \lambda_{1}\right)$
- If $n=3$, then there exists $\lambda_{*} \in\left[0, \lambda_{1}\right]$ such that problem Eq. 1 has a solution for all $\lambda \in\left(\lambda_{*}, \lambda_{1}\right)$
- If $\mathrm{n}=3$ and $\Omega=\mathrm{B}_{1}(0)$ is the unit ball, then $\lambda_{*}=\lambda_{1} / 4$ and problem Eq. 1 has no solution for $\lambda \leq \lambda_{1} / 4$

Following ${ }^{[1]}$, Gazzola and Ruf ${ }^{[2]}$ considered the more general problem:

$$
\left\{\begin{array}{cc}
-\Delta \mathrm{u}=\mathrm{g}(\mathrm{x}, \mathrm{u})+|\mathrm{u}|^{2^{*}-2} \mathrm{u} & \text { in } \Omega \tag{2}\\
\mathrm{u}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where, g is a Caratheodory function on $\Omega \times \mathbb{R}$ with sub critical growth:

$$
\operatorname{lime}_{|t|_{\rightarrow+\infty}} \frac{g(x, t)}{|t|^{2^{2-1}}}=0
$$

uniformly a.e., on Ω. Let $0<\lambda_{1}<\lambda_{2} \leq, \ldots, \rightarrow+\infty$ be the sequence of Dirichet eigenvalues of $-\Delta$ in Ω, repeated according to multiplicity. The following extensions of Theorem 1.1 were obtained by Gazzola and Ruf ${ }^{[2]}$.

Theorem 1.2: Assume the following conditions on g; for all $\epsilon>0$, there exists $a_{\epsilon} \in L^{2 n(n+2)}(\Omega)$ such that $\mid g(x$, $\mathrm{t})\left.\left|\leq \mathrm{a}_{\epsilon}(\mathrm{x})+\epsilon\right| t\right|^{2^{*-1}}$ for a.a. $\mathrm{x} \in \Omega$ and all $\mathrm{t} \in \mathbb{R} . \mathrm{G}(\mathrm{x}, \mathrm{t}):=\int_{0}^{\mathrm{t}} \mathrm{g}(\mathrm{x}$,
$\tau) \mathrm{d} \tau \geq 0$ for a.ax $\in \Omega$ and all $t \in \mathbb{R}$; there exist $\mathrm{k} \in \mathbb{N}, \delta, \sigma>0$ and $\mu \in\left(\lambda_{k}, \lambda_{k+1}\right)$ such that $1 / 2\left(\lambda_{k}+\sigma\right) t^{2} \leq G(x, t) \leq 1 / 2 \mu t^{2}$ for a.a. $\mathrm{x} \in \Omega$ and $|\mathrm{t}| \leq \delta ; \mathrm{G}(\mathrm{x}, \mathrm{t}) \geq 1 / 2\left(\lambda_{\mathrm{k}}+\sigma\right) \mathrm{t}^{2}-\frac{1}{2^{*}} \mathrm{t}^{2^{*}}$ for a.a $\mathrm{x} \in \Omega$ and all $t \in \mathbb{R}$; if $\mathrm{n}=3$, there exists a nonempty open subest Ω_{0} of Ω such that:

$$
\operatorname{lime}_{\mathrm{t} \rightarrow+\infty} \frac{\mathrm{G}(\mathrm{x}, \mathrm{t})}{\mathrm{t}^{4}}=+\infty
$$

uniformly a.e. on Ω_{0}. Then problem (2) has a nontrivial solution.

Theorem 1.3: Assume conditions (1), (2) and there exists $\delta>0, \mathrm{k} \in \mathbb{N}$ and $\mu \in\left(\lambda_{\mathrm{k}}, \lambda_{\mathrm{k}+1}\right)$ such that $1 / 2 \lambda_{\mathrm{k}} \mathrm{t}^{2} \leq 1 / 2 \mu \mathrm{t}^{2}$ for a.a. $x \in \Omega$ and $|t| \leq \delta$; there exists $\sigma \in\left(0,1 / 2^{*}\right)$ such that $G(x$, $t) \geq 1 / 2 \mu t^{2}-\left(1 / 2^{*}-\sigma\right)|t|^{2^{*}}$ for a.a. $x \in \Omega$ and all $t \in \mathbb{R}$; there exists a nonempty open subset Ω_{0} of Ω such that:

$$
\operatorname{lime}_{t \rightarrow+\infty} \frac{G(x, t)}{t^{\ln ^{2}\left(n^{2}-4\right)}}=+\infty
$$

uniformly a.e. on Ω_{0}. Then, problem (1.2) has a nontrivial solution. Other extensions and generalizations can be found, e.g., by Capozzi et al. ${ }^{[3]}$, Cerami et al. ${ }^{[4]}$ and Tarantello ${ }^{[5] .}$ More recently, Servadei and Valdinoci ${ }^{[6,7]}$ considered the nonlocal critical problem:

$$
\left\{\begin{array}{cc}
(-\Delta)^{s} \mathrm{u}=\lambda \mathrm{u}+|\mathrm{u}|^{2_{s}^{*}-2} \mathrm{u} & \text { in } \Omega \tag{3}\\
\mathrm{u}=0 & \text { in } \mathbb{R}^{\mathrm{n}} \backslash \Omega
\end{array}\right.
$$

where, $\mathrm{s} \in(0,1), \Omega$ is a bounded domain in $\mathbb{R}^{\mathrm{n}}, \mathrm{n}>2 \mathrm{~s}$ with Lipschitz boundary, $\lambda>0$ is a parameter and $2^{*}{ }_{s}=2 n /(n 2 s)$ is the fractional critical Sobolev exponent. Here $(\Delta)^{s}$ is the fractional Laplacian operator, defined, up to a normalization factor, on smooth functions by:

$$
(-\Delta)^{s} u(x)=2 \lim _{\varepsilon} \int_{\mathbb{R}^{R} B_{\mathrm{B}}(x)} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y, \quad x \in \mathbb{R}^{n}
$$

Let us recall the definition of a weak solution of problem Eq. 3. Let:

$$
H^{s}\left(\mathbb{R}^{\mathrm{n}}\right)=\left\{u \in \mathrm{~L}^{2}\left(\mathbb{R}^{\mathrm{n}}\right): \int_{\mathbb{R}^{\mathrm{n}}} \frac{(\mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{y}))^{2}}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} \mathrm{dx} d y<+\infty\right\}
$$

be the usual fractional Sobolev space endowed with the Gagliardo norm

$$
\|u\|_{\mathbb{H}^{(}\left(\mathbb{R}^{2}\right)}:=\left(\|u\|_{L^{2}\left(\mathbb{R}^{(R)}\right)}^{2}+\int_{\mathbb{R}^{n}} \frac{(\mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{y}))^{2}}{|\mathrm{x}-\mathrm{y}|^{n+25}} d x d y\right)^{1 / 2}
$$

and let:

$$
\mathrm{H}_{0}^{\mathrm{s}}(\Omega)=\left\{\mathrm{u} \in \mathrm{H}^{\mathrm{s}}\left(\mathbb{R}^{\mathrm{n}}\right): \mathrm{u}=0 \text { a.e. in } \mathbb{R}^{\mathrm{R}} \backslash \Omega\right\}
$$

Then, $\mathrm{H}_{0}^{\mathrm{s}}(\Omega)$ is a closed linear subspace of $\mathrm{H}^{\mathrm{s}}\left(\mathbb{R}^{\mathrm{n}}\right)$, equivalently renormed by the Gagliardo seminorm:

$$
[u]_{s}:=\left(\int_{\mathbb{R}^{n}} \frac{(u(x)-u(y))^{2}}{|x-y|^{n+2 s}} d x d y\right)^{1 / 2}
$$

and the imbedding $\mathrm{H}_{0}^{\mathrm{s}}(\Omega) \leftrightarrows \mathrm{L}^{\tau}(\Omega)$ is continuous for $\mathrm{r} \in\left[1,2_{\mathrm{s}}^{*}\right]$ and compact for $\mathrm{r} \in\left[1,2_{\mathrm{s}}^{*}\right]^{[8]}$. A weak solution of problem Eq. 3 is a function $\mathrm{u} \in \mathrm{H}_{0}^{\mathrm{s}}(\Omega)$ satisfying:

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{n+2 s}} d x d y= \tag{4}\\
& \int_{\Omega}\left(\lambda u(x)+|u(x)|^{2^{*}-2} u(x)\right) v(x) d x
\end{align*}
$$

Let $0<\lambda_{1}<\lambda_{2} \leq, \ldots, \rightarrow+\infty$ denote the sequence of eigenvalues of the nonlocal eigenvalue problem:

$$
\left(\begin{array}{cl}
(-\Delta)^{s} \mathrm{u}=\lambda \mathrm{u} & \text { in } \Omega \\
\mathrm{u}=0 & \text { in } \mathbb{R}^{\mathrm{R}} \backslash \Omega
\end{array}\right.
$$

repeated according to multiplicity (Proposition) ${ }^{[9]}$. Servadei and Valdinoci ${ }^{[6,7]}$ obtained the following results.

Theorem 1.4: If $n \geq 4 s$, then problem (3) has a nontrivial weak solution for each $\lambda>0$ that is not an eigenvalue of (4).

Theorem 1.5: If $2 s<n<4 s$, then there exists $\lambda s>0$ such that problem Eq. 3 has a nontrivial weak solution for each $\lambda>\lambda s$ that is not an eigenvalue of Eq. 4. By Servadei and Valdinoci ${ }^{[10]}$, they also considered the more general problem:

$$
\left\{\begin{array}{cc}
(-\Delta)^{s} u=\lambda u+|u|_{s^{2}-2} u+f(x, u) & \text { in } \Omega \tag{5}\\
u=0 & \text { in } \mathbb{R}^{\mathrm{R}} \backslash \Omega
\end{array}\right.
$$

where, f is a Caratheodory function on $\Omega \times \mathrm{R}$ and obtained the following result.

Theorem 1.6: Assume the following conditions:

- For all $M>0$, $\sup \{|f(x, t)|: x \in \Omega,|t| \leq M\}<+\infty$
- $\lim _{|t| \rightarrow+\infty} \frac{f(x, t)}{t}=0$ uniformly a.e. on Ω
- $\lim _{|t|^{\rightarrow+\infty}} \frac{f(x, t)}{|t|^{2 s_{s}^{2}-1}}=0$ uniformly a.e. on Ω

If $\mathrm{n} \geq 4 \mathrm{~s}$, then problem Eq. 5 has a nontrivial weak solution for all $\lambda \in\left(0, \lambda_{1}\right)$. In the present paper we consider the problem:

$$
\left\{\begin{array}{cc}
(-\Delta)^{\mathrm{s}} \mathrm{u}=\mathrm{g}(\mathrm{x}, \mathrm{u})+|\mathrm{u}|^{2_{s}^{2}-2} \mathrm{u} & \text { in } \Omega \tag{6}\\
\mathrm{u}=0 & \text { in } \mathbb{R}^{n} \backslash \Omega
\end{array}\right.
$$

where $\mathrm{s} \in(0,1), \Omega$ is a bounded domain in $\mathbb{R}^{\mathrm{n}}, \mathrm{n}>2 \mathrm{~s}$ with Lipschitz boundary and g is a Caratheodory function on $\Omega \times \mathbb{R}$. Our main result is the following theorem.

Theorem 1.7: Assume the following conditions:

- H_{1} there exist $\mathrm{p} \in\left[1,2_{\mathrm{s}}^{*}\right)$ and $\mathrm{C}>0$ such that $\lg (\mathrm{x}$, $t) \mid \leq C\left(|t|^{p-1}+1\right)$ for a.a. $x \in \Omega$ and all $t \in \mathbb{R}$
- $\mathrm{H}_{2} \mathrm{G}(\mathrm{x}, \mathrm{t}) \int_{0}^{\mathrm{t}} \mathrm{g}(\mathrm{x}, \tau) \mathrm{d} \tau \geq 0$ fora.a. $\mathrm{x} \in \Omega$ and all $\mathrm{t} \in \Omega$ and all $t \in \mathbb{R}$
- H_{3} there exist $\mathrm{k} \in \mathbb{N}, \delta, \sigma>0$ and $\mu \in\left(\lambda_{\mathrm{k}}, \lambda_{\mathrm{k}+1}\right)$ such that $1 / 2\left(\lambda_{k}+\sigma\right) t^{2} \leq G(x, t) \leq / 2 \mu t^{2}$ for a.a. $x \in \Omega$ and $|t| \leq \delta$
- $\left.{\underset{t}{ }, \mathbb{R}}_{\mathrm{H}_{4}} \mathrm{G}(\mathrm{x}, \mathrm{t}) \geq 1 / 2\left(\lambda_{\mathrm{k}}+\sigma\right) \mathrm{t}^{2}-\frac{1}{2_{\mathrm{s}}^{*}} \right\rvert\, \mathrm{t}^{2^{*}}$. for a.a. $\mathrm{x} \in \Omega$ and all $t \in \mathbb{R}$
- H_{5} there exists a nonempty open subset Ω_{0} of Ω such that $\lim _{|t| \rightarrow+\infty} \frac{G(x, t)}{t^{(n+25)(n-2 s)}}=+\infty$ uniformly a.e. on Ω_{0}

Then problem Eq. 6 has a nontrivial weak solution. Theorem 1.7 extends the results of Gazzola and Ruf ${ }^{[2]}$ to the nonlocal case and complements the results of Servadei and Valdinoci ${ }^{[6,7,10]}$. This theorem will be proved after some preliminaries in the next section.

PRELIMINARIES

A function $u \in H_{0}^{s}(\Omega)$ is a weak solution of problem Eq. 6 if:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \frac{(\mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{y})(\mathrm{u}(\mathrm{x})-\mathrm{u})(\mathrm{y}))}{|\mathrm{x}-\mathrm{y}|^{+25}} \mathrm{dx} \mathrm{dy}= \\
& \int_{\Omega}\left(\mathrm{g}(\mathrm{x}, \mathrm{u})+|\mathrm{u}(\mathrm{x})|^{2^{2}-2} \mathrm{u}(\mathrm{x})\right) \cup(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

for all $u \in H_{0}^{s}(\Omega)$. Weak solutions coincide with critical points of the C^{1}-functional:

$$
\begin{aligned}
& \mathrm{E}(\mathrm{u})=\frac{1}{2} \int_{\mathbb{R}^{\mathrm{R}}} \frac{(\mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{y}))^{2}}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} \mathrm{dx} d y- \\
& \int_{\Omega}\left(\mathrm{G}(\mathrm{x}, \mathrm{u})+\frac{1}{2_{\mathrm{s}}^{*}}|\mathrm{u}|^{2_{s}^{*}}\right) \mathrm{dx}, \mathrm{u} \in \mathrm{H}_{0}^{\mathrm{s}}(\Omega)
\end{aligned}
$$

Recall that E satisfies the Palais-Smale compactness condition at the level $c \in \mathbb{R}$ or the (PS) condition for short, if every sequence $\left(\mathrm{u}_{\mathrm{j}}\right) \subset \mathrm{H}_{0}^{\mathrm{s}}(\Omega)$ such that $\mathrm{E}\left(\mathrm{u}_{\mathrm{j}}\right) \rightarrow \mathrm{C}$ and $\mathrm{E}^{\prime}\left(\mathrm{u}_{\mathrm{j}}\right) \rightarrow 0$, called a $(\mathrm{PS})_{\mathrm{c}}$ sequence has a convergent subsequence. Let:

$$
\begin{equation*}
\mathrm{S}=\inf _{\mathrm{u} \in \mathrm{H}_{0}^{\mathrm{s}}(\Omega) \backslash\{0\}} \frac{\int_{\mathbb{R}^{\mathrm{n}}} \frac{(\mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{y}))^{2}}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} \mathrm{dx} \mathrm{dy}}{\left(\int_{\Omega}|\mathrm{u}|^{2_{s}^{2}} \mathrm{dx}\right)^{2 / 2_{s}^{*}}} \tag{7}
\end{equation*}
$$

be the best constant for the fractional Sobolev imbedding $\mathrm{H}_{0}^{\mathrm{s}}(\Omega) \rightarrow \mathrm{L}^{2_{s}^{s}}(\Omega)$. Proof of theorem 1.7 will be based on the following proposition.

Proposition 2.1: If $0<\mathrm{c}<\mathrm{s} / \mathrm{n} \mathrm{S}^{\mathrm{n} / 2 \mathrm{~s}}$, then every (PS) ${ }_{c}$ sequence has a subsequence that converges weakly to a nontrivial critical point of E .

Proof: Let $\left(\mathrm{u}_{\mathrm{j}}\right)$ be a (PS $)_{\mathrm{c}}$ sequence. Then:

$$
\begin{align*}
& E\left(u_{j}\right)=\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{\left(u_{j}(x)-u_{j}(y)\right)^{2}}{|x-y|^{n+2 s}} d x d y- \tag{8}\\
& \int_{\Omega}\left(G\left(x, u_{j}\right)+\frac{1}{2_{s}^{*}}\left|u_{j}\right|^{2_{s}^{*}}\right) d x=c+o(1)
\end{align*}
$$

and

$$
\begin{align*}
& E\left(u_{j}\right) u_{j}=\int_{\mathbb{R}^{R^{2}}} \frac{\left(u_{\mathrm{j}}(\mathrm{x})-\mathrm{u}_{\mathrm{j}}(\mathrm{y})\right)^{2}}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} \mathrm{dx} \mathrm{dy}- \tag{9}\\
& \int_{\Omega}\left(\mathrm{u}_{\mathrm{j}} \mathrm{~g}\left(\mathrm{x}, \mathrm{u}_{\mathrm{j}}\right)+\left|\mathrm{u}_{\mathrm{j}}\right|^{2_{\mathrm{s}}^{*}}\right) \mathrm{dx}=\mathrm{o}(1)\left\|\mathrm{u}_{\mathrm{j}}\right\|
\end{align*}
$$

Dividing Eq. 9 by 2 and subtracting from Eq. 8 gives:

$$
\int_{\Omega}\left[\frac{1}{2} \mathrm{u}_{\mathrm{j}} \mathrm{~g}\left(\mathrm{x}, \mathrm{u}_{\mathrm{j}}\right)-\mathrm{G}\left(\mathrm{x}, \mathrm{u}_{\mathrm{j}}\right)+\frac{\mathrm{s}}{\mathrm{n}}\left|\mathrm{u}_{\mathrm{j}}\right|^{2_{5}^{2}}\right] \mathrm{dx}=\mathrm{o}(1)\left\|\mathrm{u}_{\mathrm{i}} \mid\right\|+\mathrm{O}(1)
$$

which together with $\left(\mathrm{H}_{1}\right)$ and the Holder and Young's inequalities gives:

$$
\int_{\Omega} \mid \mathrm{u}_{\mathrm{j}}^{2_{5}^{2_{3}^{2}}} \mathrm{dx} \leq \mathrm{o}(1)\left\|\mathrm{u}_{\mathrm{j}}\right\|+\mathrm{O}(1)
$$

This together with $\left(\mathrm{H}_{1}\right)$ and Eq. 8 implies that $\left(\mathrm{u}_{\mathrm{j}}\right)$ is bounded in $\mathrm{H}_{0}^{s}(\Omega)$. So, a renamed subsequence converges to some u weakly in $H_{0}^{s}(\Omega)$ strongly in $L^{q}(\Omega)$ for all $\mathrm{q} \in\left[1,2_{\mathrm{s}}^{*}\right]$ and a.e. in Ω. Then, u is a critical point of E by the weak continuity of E '. Suppose $u=0$. Since, $\left(u_{j}\right)$ is bounded in $\mathrm{H}_{0}^{s}(\Omega)$ and converges to 0 in $\mathrm{L}^{\mathrm{p}}(\Omega)$, Eq. 9, $\left(\mathrm{H}_{1}\right)$, and Eq. 7 give:

$$
\left.\begin{array}{l}
O(1)=\int_{\mathbb{R}^{n}} \frac{\left(u_{j}(x)-u_{j}(y)\right)^{2}}{|x-y|^{n+2 s}} d x d y- \\
\int_{\Omega}\left|u_{j}\right|^{2^{*}} d x \geq\left\|u_{j}\right\|^{2}\left(1-\frac{\left\|u_{j}\right\|^{2 s^{*}-2}}{s^{2 / 5} / 2}\right.
\end{array}\right)
$$

If $\left\|u_{j}\right\| \rightarrow 0$, then $E\left(u_{j}\right) \rightarrow 0$, contradicting $\mathrm{c}>0$, so, this implies:

$$
\left\|u_{j}\right\|^{2} \geq S^{n / 2 s}+o(1)
$$

for a renamed subsequence. Dividing Eq. 9 by 2*s and subtracting from Eq. 8 then gives:

$$
c=\frac{s}{n} \int_{\mathbb{R}^{n}} \frac{\left(u_{j}(x)-u_{j}(y)\right)^{2}}{|x-y|^{n+2 s}} d x d y+o(1) \geq \frac{s}{n} S^{n / 2 s}+o(1)
$$

contradicting $\mathrm{c}<\frac{\mathrm{s}}{\mathrm{n}} \mathrm{S}^{\mathrm{n} / 2 \mathrm{~s}}$. To produce (PS) ${ }_{\mathrm{c}}$ sequences with $0<\mathrm{x}<\mathrm{s} / \mathrm{n}^{\mathrm{n} / 2 \mathrm{~s}}$, we will use the following linking theorem of Rabinowitz ${ }^{[11,12]}$.

Theorem 2.2: Let E be a C^{1} functional on a Banach space V and let $\mathrm{V}=\mathrm{V}^{-} \oplus \mathrm{V}^{+}$be a direct sum decomposition with $\operatorname{dim} \mathrm{V}^{-}<\infty$. Assume that there exist $\mathrm{R}>\rho>0$ and $\mathrm{w}_{0} \in \mathrm{~V}^{+}$ with $\left\|\mathrm{w}_{0}\right\|=1$ such that:

$$
\max _{\mathrm{u} \in \mathcal{O}_{\mathrm{Q}}} \mathrm{E}(\mathrm{u})<\inf _{\mathrm{u} \in \in \mathrm{~B}_{\cap} \cap \mathrm{v}^{+}} \mathrm{E}(\mathrm{u})
$$

where:

$$
\mathrm{Q}=\left\{\mathrm{u}+\mathrm{two}: \mathrm{v} \in \mathrm{~V}^{-},\|\mathrm{v}\| \leq \mathrm{R}, \mathrm{t} \in[0, \mathrm{R}]\right\}
$$

Let $\Gamma=\left\{\mathrm{h} \in \mathrm{C}(\mathrm{Q}, \mathrm{V}):\left.\mathrm{h}\right|_{\partial \mathrm{Q}}=\mathrm{id}\right\}$ and set:

$$
\mathrm{c}:=\inf _{\mathrm{h} \in \Gamma} \max _{\mathrm{u} \in \mathrm{~h}(\mathrm{Q})} \mathrm{E}(\mathrm{u})
$$

Then:

$$
\inf _{\mathrm{u} \in \partial \mathrm{~B}_{\rho} \cap \mathrm{V}^{+}} \mathrm{E}(\mathrm{u}) \leq \mathrm{c} \leq \max _{\mathrm{u} \in \mathrm{Q}} \mathrm{E}(\mathrm{u})
$$

and E has a $(P S)_{c}$ sequence.
Proof of Theorem 1.7: In this section we prove Theorem 1.7. Let e_{1}, \ldots, e_{k} be L2-orthonormal eigenfunc-tions for $\lambda_{1}, \ldots, \lambda_{\mathrm{k}}$, let $\mathrm{H}^{-}=\operatorname{span}\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}\right\}$ and let $\mathrm{H}^{+}=\left(\mathrm{H}^{-}\right)^{\perp}$. Without loss of generality we may assume that $0 \in \Omega_{0}$. For $m \in \mathbb{N}$, so, large that $B 4 / m:=\left\{x \in \mathbb{R}^{n}:|x|<4 / m\right\} \subset \Omega_{0}$, let:

$$
\zeta_{\mathrm{m}}(\mathrm{x})=\left\{\begin{array}{cc}
0, & \mathrm{x} \in \mathrm{~B}_{1 / \mathrm{m}} \\
\mathrm{~m}|\mathrm{x}|-1, & \mathrm{x} \in \mathrm{~A}_{\mathrm{m}}=\mathrm{B}_{2 / \mathrm{m}} \mid \mathrm{B}_{1 / \mathrm{m}} \\
1, & \mathrm{x} \in \Omega \backslash \mathrm{~B}_{2 / \mathrm{m}}
\end{array}\right.
$$

It is easily seen that:

$$
\begin{equation*}
\left|\zeta_{\mathrm{m}}(\mathrm{x})-\zeta_{\mathrm{m}}(\mathrm{y})\right||\leq \mathrm{m}| \mathrm{x}-\mathrm{y} \mid \forall \mathrm{x}, \mathrm{y} \in \Omega \tag{10}
\end{equation*}
$$

Let $\mathrm{e}_{\mathrm{j}}^{\mathrm{m}}=\zeta_{\mathrm{m}} \mathrm{e}_{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{k}$ and let $\mathrm{H}_{\mathrm{m}}^{-}=\operatorname{span}\left\{\mathrm{e}_{1}^{\mathrm{m}}, \ldots, \mathrm{e}_{\mathrm{k}}^{\mathrm{m}}\right\}$

Lemma 3.1: Let $\mathrm{f} \in \mathrm{L}^{\infty}(\Omega)$ and let $\mathrm{u} \in \mathrm{H}_{0}^{\mathrm{s}}(\Omega)$ be a weak solution of $(-\Delta)^{\mathrm{s}} \mathrm{u}=\mathrm{f}$ in Ω. Then:

$$
\left\|\zeta_{\mathrm{m}} \mathrm{u}\right\|^{2} \leq\|u\|^{2}+\frac{\mathrm{C}|\mathrm{f}|_{\infty}^{2}}{\mathrm{~m}^{\mathrm{n}-2 s}}
$$

where, $\mathrm{C}=\mathrm{C}(\mathrm{n}, \Omega, \mathrm{s})>0$. To prove this lemma we will need the following estimates from ${ }^{[13]}$.

Lemma 3.2; ([6], Lemma 2.3): Let $\mathrm{f} \in \mathrm{L}^{\mathrm{q}}(\Omega), 1<\mathrm{q} \leq \infty$ and let $\mathrm{u} \in \mathrm{H}_{0}^{\mathrm{s}}(\Omega)$ be a weak solution of $(-\Delta)^{\mathrm{s}} \mathrm{u}=\mathrm{f}$ in Ω. Then $|\mathrm{u}|_{\mathrm{r}} \leq \mathrm{C}|\mathrm{f}|_{\mathrm{q}}$ where:

$$
\mathrm{r}=\left\{\begin{array}{cc}
\mathrm{nq} /(\mathrm{n}-2 \mathrm{sq}), & 1<\mathrm{q}<\mathrm{n} / 2 \mathrm{~s} \\
\infty, & \mathrm{n} / 2 \mathrm{~s}<\mathrm{q} \leq \infty
\end{array}\right.
$$

and $\mathrm{C}=\mathrm{C}(\mathrm{n}, \Omega, \mathrm{s}, \mathrm{q})>0$. In particular, if $\mathrm{f} \in \mathrm{L}^{\infty}(\Omega)$, then $|\mathrm{u}|_{\infty}$ $=\mathrm{C}|\mathrm{f}|_{\infty}$.

Lemma 3.3 (Lemma 2.5) ${ }^{[13]}$: Let $\mathrm{f} \in \mathrm{L}^{\mathrm{q}}(\Omega), \mathrm{n} / 2 \mathrm{~s}<\mathrm{q} \leq \infty$ and let $\mathrm{u} \in \mathrm{H}_{0}^{\mathrm{s}}(\Omega)$ be a weak solution of $(-\Delta)^{\mathrm{s}} \mathrm{u}=\mathrm{f}$ in Ω. Then:

$$
\|\varphi u\|^{2} \leq \mathrm{C}|\mathrm{f}|_{\mathrm{q}}^{2}\left(|\varphi|_{2 q^{+}}^{2}+\|\varphi\|^{2}\right) \forall \varphi \in \mathrm{L}^{2 q^{\prime}}(\Omega) \cap \mathrm{H}_{0}^{\mathrm{s}}(\Omega)
$$

where, $\mathrm{C}=\mathrm{C}(\mathrm{n}, \Omega, \mathrm{s}, \mathrm{q})>0$ and $\mathrm{q}=\mathrm{q} /(\mathrm{q}-1)$.
Proof of Lemma 3.1: We have:

$$
\begin{aligned}
& \left\|\zeta_{\mathrm{m}} u\right\|^{2} \leq \int_{\mathrm{A} 1} \frac{(\mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{y}))^{2}}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} \mathrm{dx} d y+ \\
& \int_{\mathrm{A} 2} \frac{\left|\zeta_{\mathrm{m}}(\mathrm{x}) \mathrm{u}(\mathrm{x})-\zeta_{\mathrm{m}}(\mathrm{y}) \mathrm{u}(\mathrm{y})\right|^{2}}{|\mathrm{x}-\mathrm{y}|^{+2 s}} \mathrm{dx} \mathrm{dy}+ \\
& 2 \int_{\mathrm{A} 3} \frac{\left(\zeta_{\mathrm{m}}(\mathrm{x}) \mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{y})\right)^{2}}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} \mathrm{dx} d y=: \mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
\end{aligned}
$$

where, $\mathrm{A}_{1}=\mathrm{B}_{2 / \mathrm{m}}^{\mathrm{c}} \times \mathrm{B}_{2 / \mathrm{m}}^{\mathrm{c}}, \mathrm{A}_{2}=\mathrm{B}_{3 / \mathrm{m}} \times \mathrm{B}_{3 / \mathrm{m}}$ and $\mathrm{A}_{3}=\mathrm{B}_{2 / \mathrm{m}} \times \mathrm{B}_{3 / \mathrm{m}}^{\mathrm{c}}$ we have $\mathrm{I}_{1} \leq\|\mathrm{u}\|^{2}$. To estimate I_{2}, let:

$$
\varphi_{\mathrm{m}}(\mathrm{x})=\left\{\begin{array}{cc}
\zeta_{\mathrm{m}}(\mathrm{x}), & \mathrm{x} \in \mathrm{~B}_{3 / \mathrm{m}} \\
4-\mathrm{m}|\mathrm{x}|, & \mathrm{x} \in \mathrm{~B}_{4 / \mathrm{m}} \backslash \mathrm{~B}_{3 / \mathrm{m}} \\
0, & \mathrm{x} \in \mathrm{~B}_{4 / \mathrm{m}}^{\mathrm{c}}
\end{array}\right.
$$

Applying Lemma 3.3 to φ_{m} with $\mathrm{q}=\infty$:

$$
\mathrm{I}_{2} \leq\left\|\varphi_{\mathrm{m}} \mathrm{u}\right\|^{2} \leq \mathrm{C}|\mathrm{f}|_{\infty}^{2}\left(\left|\varphi_{\mathrm{m}}\right|_{2}^{2}+\left\|\varphi_{\mathrm{m}}\right\|^{2}\right)
$$

where, $\mathrm{C}=\mathrm{C}(\mathrm{n}, \Omega, \mathrm{s})>0$. Since, $\varphi_{\mathrm{m}}(\mathrm{x})=\varphi_{1}(\mathrm{mx})$:

$$
\left|\varphi_{\mathrm{m}}\right|_{2}^{2}=\int_{\mathbb{R}} \varphi_{\mathrm{m}}(\mathrm{x})^{2} \mathrm{dx}=\int_{\mathbb{R}^{\mathbb{R}}} \varphi_{1}(\mathrm{mx})^{2} \mathrm{dx}=\frac{\left|\varphi_{1}\right|_{2}^{2}}{\mathrm{~m}^{2}}
$$

and:

$$
\begin{aligned}
& \left\|\varphi_{m}\right\|^{2}=\int_{\mathbb{R}^{2}} \frac{\left|\varphi_{m}(x)-\varphi_{m}(y)\right|^{2}}{|x-y|^{+25}} d x d y= \\
& \int_{\mathbb{R}^{n}} \frac{\left|\varphi_{1}(m x)-\varphi_{1}(m y)\right|^{2}}{|x-y|^{1+2 s}} d x d y=\frac{\|\left.\varphi_{1}\right|^{2}}{m^{2-25}}
\end{aligned}
$$

So:

$$
\mathrm{I}_{2} \leq \frac{\mathrm{C}|\mathrm{f}|_{\infty}^{2}}{\mathrm{~m}^{\mathrm{n}-25}}
$$

For $(x, y) \in A_{3},|x-y| \geq|y|-|x|>|y|-2 / m \geq|y|-(2 / 3)|y|=|y| / 3$, so:

$$
\mathrm{I}_{3} \leq \mathrm{C}|\mathrm{u}|_{\infty}^{2} \int_{\mathrm{A}_{3}} \frac{1}{|\mathrm{y}|^{n+2 s}} \mathrm{dx} d y \leq \frac{\mathrm{C}|\mathrm{f}|_{\infty}^{2}}{\mathrm{~m}^{\mathrm{n}-2 s}}
$$

by Lemma 3.2. The desired conclusion follows.
Lemma 3.4: We have $\mathrm{e}_{\mathrm{j}}^{\mathrm{m}} \rightarrow \mathrm{e}_{\mathrm{j}}$ in $\mathrm{H}_{0}^{\mathrm{s}}(\Omega)$ as $\mathrm{m} \rightarrow \infty$ and:

$$
\begin{equation*}
\max _{\left\{u \in H_{m}: \int_{\Omega} \mathbf{u}^{2} d x=1\right\}}\|u\|^{2} \leq \lambda_{k}+\frac{C}{m^{n-2 s}} \tag{11}
\end{equation*}
$$

for some constant $\mathrm{C}>0$.

Proof: We have:

$$
\begin{align*}
& \left\|e_{j}^{m}-e_{j}\right\|^{2}=\int_{\mathbb{R}^{n}} \frac{\left[\begin{array}{l}
\left(\zeta_{m}(x) e_{j}(x)-e_{j}(x)\right)- \\
\left(\zeta_{m}(y) e_{j}(y)-e_{j}(y)\right)
\end{array}\right]^{2}}{|x-y|^{n+2 s}} d x d y= \\
& \int_{\mathbb{R}^{n}} \frac{\left|\begin{array}{l}
e_{j}(x)\left[\zeta_{m}(x)-\zeta_{m}(y)\right]+\left.\right|^{2} \\
{\left[\zeta_{m}(y)-1\right]\left[e_{j}(x) e_{j}(y)\right]}
\end{array}\right|}{|x-y|^{n+2 s}} d x d y \leq \tag{12}\\
& 2 \int_{\mathbb{R}^{n}} \frac{e_{j}(x)^{2}\left[\zeta_{m}(x)-\zeta_{m}(y)\right]^{2}}{|x-y|^{n+2 s}} d x d y+ \\
& \int_{\mathbb{R}^{2}} \frac{\left[\zeta_{m}(y)-1\right]^{2}\left[e_{j}(x)-e_{j}(y)\right]^{2}}{|x-y|^{n+2 s}} d x d y \leq 2\left(\left|e_{j}\right|_{\infty}^{2} I_{1}+I_{2}\right)
\end{align*}
$$

Where:

$$
\begin{aligned}
& I_{1}=\int_{\mathbb{R}^{n}} \frac{\left[\zeta_{\mathrm{m}}(x)-\zeta_{\mathrm{m}}(\mathrm{y})\right]^{2}}{|\mathrm{x}-\mathrm{y}|^{\mathrm{n}+2 s}} d x d y \\
& I_{2} \int_{\mathbb{R}^{\mathrm{n}}} \frac{\left[\zeta_{\mathrm{m}}(\mathrm{y})-1\right]^{2}\left[\mathrm{e}_{\mathrm{j}}(\mathrm{x})-\mathrm{e}_{\mathrm{j}}(\mathrm{y})\right]^{2}}{|\mathrm{x}-\mathrm{y}|^{\mathrm{n}+2 s}} d x d y
\end{aligned}
$$

We will show that I_{1} and I_{2} go to 0 as $\mathrm{m} \rightarrow \infty$. Since, ζ_{m} $=1$ in $B_{2 / \mathrm{m}}^{\mathrm{c}}$:

$$
\begin{aligned}
& I_{1}=\int_{B_{2 / \mathrm{m}} \times \mathrm{B}_{2 / \mathrm{m}}} \frac{\left[\zeta_{\mathrm{m}}(\mathrm{x})-\zeta_{\mathrm{m}}(\mathrm{y})\right]^{2}}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} d x d y+2 I_{1}= \\
& \int_{\mathrm{B}_{2 / \mathrm{m}} \times \mathrm{B}_{2 / \mathrm{m}}^{\mathrm{s}}} \frac{\left[1-\zeta_{\mathrm{m}}(\mathrm{x})\right]^{2}}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} \mathrm{dx} d y=: \mathrm{I}_{3}+2 \mathrm{I}_{4}
\end{aligned}
$$

Write:

$$
\begin{aligned}
& \int_{B_{2 / \mathrm{m}} \times \mathrm{B}_{2 / \mathrm{m}}^{\varepsilon_{2}}} \frac{\left[1-\zeta_{\mathrm{m}}(x)\right]^{2}}{|x-y|^{n+2 s}} d x d y+ \\
& \int_{\mathrm{B}_{2 / \mathrm{m}} \times\left(\mathrm{B}_{/ \mathrm{m}}\left(\mathbb{B}_{2 / \mathrm{m}}\right)\right.} \frac{\left[1-\zeta_{\mathrm{m}}(x)\right]^{2}}{|x-y|^{n+2 s}} d x d y=: I_{5}+I_{6}
\end{aligned}
$$

Clearly, I_{3} and I_{6} are less than or equal to:

$$
\int_{\mathrm{B}_{2 / \mathrm{m}} \times \mathrm{B} 3_{\mathrm{m}}} \frac{\left[\zeta_{\mathrm{m}}(\mathrm{x})-\zeta_{\mathrm{m}}(\mathrm{y})\right]^{2}}{|\mathrm{x}-\mathrm{y}|^{\mathrm{n} 2 \mathrm{ts}}} d x d y=: \mathrm{I}_{7}
$$

so, $I_{1}=2 I_{5}+3 I_{7}$. To estimate I_{5} and I_{7}, we change variables from (x, y) to (x, ζ) where, $\zeta=\mathrm{x}-\mathrm{y}$. For (x, y) $\in \mathrm{B}_{2 / \mathrm{m}} \times \mathrm{B}_{3 / \mathrm{m}}^{\mathrm{c}}$, $|\xi| \geq|y|-|x|>1 / m$ and hence:

$$
\begin{equation*}
I_{5} \leq \int_{B_{2 / m} \times E_{2 / m}^{c}} \frac{d x d y}{|x-y|^{n+2 s}} \leq \int_{B_{2 / m} \times B_{1 / m}^{c}} \frac{d x d y}{|\xi|^{n+2 s}} \leq \frac{C}{m^{n-2 s}} \tag{13}
\end{equation*}
$$

For (x, y) $\in \mathrm{B}_{2 / \mathrm{m}} \times \mathrm{B}_{3 / \mathrm{m}},|\xi| \leq|\mathrm{x}|+|\mathrm{y}|<5 / \mathrm{m}$ and hence (11) gives:

$$
I_{7} \leq m^{2} \int_{B_{2 / m} \times B_{3 / m}} \frac{d x d y}{|x-y|^{n-2(1-5)}} \leq m^{2} \int_{B_{2 / m} \times B_{3 m}} \frac{d x d y}{|\xi|^{n-2(1-5)}} \leq \frac{C}{m^{n-2 s}}
$$

Thus, $\mathrm{I}_{1} \leq \mathrm{C} / \mathrm{m}^{\mathrm{n}-2 \mathrm{~s}}$. Now we estimate I_{2}. We have:

$$
I_{2}=\int_{\mathbb{R}^{2} \times B_{2 / m}} \frac{\left[1-\zeta_{m}(y)\right]^{2}\left[e_{j}(x)-e_{j}(y)\right]^{2}}{|x-y|^{n+2 s}} d x d y \leq I_{8}+4\left|e_{j}\right|_{\infty}^{2} I_{9}
$$

Where:

$$
I_{8} \int_{B_{2 / m \times} \times B_{2 / m}} \frac{\left[e_{j}(x)-e_{j}(y)\right]^{2}}{|x-y|^{n+2 s}} d x d y,=I_{9} \int_{B_{S_{m / m} \times B_{2 / m}}} \frac{d x d y}{|x-y|^{n+2 s}}
$$

Since, $\mathrm{e}_{\mathrm{j}} \in \mathrm{H}_{0}^{\mathrm{s}}(\Omega)$ and $\left|\mathrm{B}_{3 / \mathrm{m}} \times \mathrm{B}_{2 / \mathrm{m}}\right| \rightarrow 0, \mathrm{I}_{8} \rightarrow 0$. As in Eq. 13, $\mathrm{I}_{9} \leq \mathrm{C} / \mathrm{m}^{\mathrm{n}-2 \mathrm{~s}}$. Thus, $\mathrm{I}_{2} \leq \mathrm{C} / \mathrm{m}^{\mathrm{n}-2 \mathrm{~s}}+\mathrm{o}(1)$. To prove Eq. 11, let $\mathrm{v}=\sum_{\mathrm{j}=1} \alpha_{\mathrm{j}} \mathrm{e}_{\mathrm{j}} \in \mathrm{H}^{-}$. By Lemma 3.1:

$$
\begin{equation*}
\left\|\zeta_{\mathrm{m}} v\right\|^{2} \leq\|\mathrm{v}\|^{2}+\frac{\mathrm{C}|\mathrm{f}|_{\infty}^{2}}{\mathrm{~m}^{\mathrm{n}-2 s}} \tag{14}
\end{equation*}
$$

Where:

$$
\mathrm{f}=(-\Delta)^{\mathrm{s}} v=\sum_{\mathrm{j}=1}^{\mathrm{k}} \lambda_{\mathrm{j}} \alpha_{\mathrm{j}} \mathrm{e}_{\mathrm{j}} \in \mathrm{H}^{-}
$$

Since, $\operatorname{dim} \mathrm{H}^{-}<\infty$:

$$
|\mathrm{f}|_{\infty}^{2} \leq \mathrm{c}_{1}|\mathrm{f}|_{2}^{2}=\mathrm{c}_{1} \sum_{\mathrm{j}=1}^{\mathrm{k}} \lambda_{\mathrm{j}}^{2} \alpha_{\mathrm{j}}^{2} \leq \mathrm{c}_{1} \lambda_{\mathrm{k}}^{2} \sum_{\mathrm{j}=1}^{\mathrm{k}} \alpha_{\mathrm{j}}^{2}=\mathrm{c}_{2}|v|_{2}^{2}
$$

for some constants $c_{1}, c_{2}>0$. Since, $\|v\|^{2} \leq \lambda_{k}|v|^{2}{ }_{2}$, this together with Eq. 14 gives:

$$
\begin{equation*}
\left\|\zeta_{\mathrm{m}} \mathrm{v}\right\|_{2}^{2} \leq\left(\lambda_{\mathrm{k}} \frac{\mathrm{C}}{\mathrm{~m}^{\mathrm{n}-2 \mathrm{~s}}}\right)|\mathrm{v}|_{2}^{2} \tag{15}
\end{equation*}
$$

On the other hand:

$$
\left\|\zeta_{\mathrm{m}} v\right\|_{2}^{2}=\int_{\Omega \backslash \mathrm{B}_{2} / \mathrm{m}} v^{2} \mathrm{dx}+\int_{\mathrm{B}_{2} / \mathrm{m}}\left(\zeta_{\mathrm{m}} v\right)^{2} \mathrm{dx} \geq \int_{\Omega} v^{2} \mathrm{dx}-\int_{\mathrm{B}_{2} / \mathrm{m}} v^{2} \mathrm{dx}
$$

and:

$$
\int_{B_{2} / \mathrm{m}} v^{2} d x \geq c_{3} \frac{|v|_{\infty}^{2}}{m^{\mathrm{n}}} \leq \mathrm{c}_{4} \frac{|v|_{2}^{2}}{\mathrm{~m}^{\mathrm{n}}}
$$

for some constants $\mathrm{c}_{3}, \mathrm{c}_{4}>0$, so:

$$
\begin{equation*}
\left\|\zeta_{\mathrm{m}} v\right\|_{2}^{2} \geq\left(1-\frac{c_{4}}{\mathrm{~m}^{\mathrm{n}}}\right)|v|_{2}^{2} \tag{16}
\end{equation*}
$$

Combining Eq. 15 and 16 gives:

$$
\left\|\zeta_{m} v\right\|^{2} \leq\left(\lambda_{k}+\frac{C}{m^{n-2 s}}\right)\left|\zeta_{m} \cup\right|_{2}^{2}
$$

Since, Eq. 11 follows from this.
Lemma 3.5: For all sciently large $m, \mathrm{H}_{0}^{\mathrm{s}}(\Omega)=\mathrm{H}_{\mathrm{m}}^{-} \oplus \mathrm{H}^{+}$.
Proof: Let $\mathrm{P}: \mathrm{H}_{0}^{\mathrm{s}}(\Omega) \rightarrow \mathrm{H}^{-}$be the orthogonal projection. First we show that $\mathrm{PH}_{\mathrm{m}}^{-}=\mathrm{H}^{-}$for all sufficiently large m . Since, $\mathrm{PH}_{\mathrm{m}}^{-} \subset \mathrm{H}^{-}$and $\operatorname{dim} \mathrm{H}^{-}=\mathrm{k}$, it suffices to show that $\mathrm{Pe}_{1}^{\mathrm{m}}, \ldots, \mathrm{Pe}_{\mathrm{k}}^{\mathrm{m}}$ are linearly independent. Suppose not. Then there exists $\alpha^{m}=\left(\alpha_{1}^{m}, \ldots, \alpha_{k}^{m}\right) \in S^{n-1}$ such that:

$$
\begin{equation*}
\sum_{j=1}^{k} \alpha_{j}^{2} \mathrm{Pe}_{\mathrm{j}}^{\mathrm{m}}=0 \tag{17}
\end{equation*}
$$

where, S^{n-1} is the unit sphere in \mathbb{R}^{n}. Passing to a subsequence, we may assume that $\alpha^{m} \rightarrow \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in S^{n-1}$. Since, $\mathrm{Pe}_{\mathrm{j}}^{\mathrm{m}} \rightarrow \mathrm{Pe}_{\mathrm{j}}=\mathrm{e}_{\mathrm{j}}$ by Lemma 3.4, then passing to the limit is Eq. 17 gives:

$$
\sum_{j=1}^{k} \alpha_{j} e_{j}=0
$$

Since, $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}$ are linearly independent, then $\alpha_{1}=\cdots=\alpha_{k}=0$, contradicting $\alpha \in \mathrm{S}^{\mathrm{n}-1}$. Given $u \in H_{0}^{s}(\Omega)$, write $u=v+w$ with $v \in \mathrm{H}^{-}$, $w \in \mathrm{H}^{+}$. Since, $\mathrm{PH}_{\mathrm{m}}^{-}=$
H^{-}, there exists $\mathrm{z} \in \mathrm{H}_{\mathrm{m}}^{-}$such that $\mathrm{Pz}=\mathrm{v}$. Then $\mathrm{u}=$ $z^{+}\left(v-z^{+} w\right)$ and $v-z^{+} w \in H^{+}$since, $P(v-z+w)=0$. Finally, suppose $u \in H_{m}^{-} \cap H^{+}$. Since, $u \in H_{m}^{-}$:

$$
\mathrm{u}=\sum_{\mathrm{j}=1}^{\mathrm{k}} \alpha_{\mathrm{j}} \mathrm{e}_{\mathrm{j}}^{\mathrm{m}}
$$

for some $\alpha_{1}, \ldots, a_{k} \in \mathbb{R}$. Since, $u \in H^{+}$:

$$
\mathrm{P}_{\mathrm{u}}=\sum_{\mathrm{j}=1}^{\mathrm{k}} \alpha_{\mathrm{j}} \mathrm{Pe}_{\mathrm{j}}^{\mathrm{m}}=0
$$

Since, $\mathrm{Pe}_{1}^{\mathrm{m}}, \ldots, \mathrm{Pe}_{\mathrm{k}}^{\mathrm{m}}$ are linearly independent for sufficiently large m , then $\alpha_{1}=\cdots=\alpha_{\mathrm{k}}=0$ and hence, $\mathrm{u}=0$. As by Rabinowitz ${ }^{[11]}$, set:

$$
\mathrm{U}_{\varepsilon}(\mathrm{x})=\frac{\mathrm{c}(\mathrm{n}, \mathrm{~s}) \varepsilon^{(\mathrm{n}-2 \mathrm{~s}) / 2}}{\left(\varepsilon^{2}+|\mathrm{x}|^{2}\right)^{(\mathrm{n}-25 / 2}}, \varepsilon>0
$$

where, $c(n, s)>0$ is such that:

$$
\left\|\mathrm{U}_{\varepsilon}\right\|^{2}=\left|\mathrm{U}_{\varepsilon}\right|_{2_{s}^{*}}^{2_{s}^{*}}=\mathrm{S}^{\mathrm{n} / 2 \mathrm{~s}}
$$

Then take a smooth function $\eta_{m}: \mathbb{R}^{n} \rightarrow[0,1]$ such that $\eta_{m}=1$ in $B_{1} /_{4 \mathrm{~m}}$ and $\eta=0$ outside $B_{1} / 2_{\mathrm{m}}$ and set $\mathrm{u}_{\varepsilon}^{\mathrm{m}}=\eta_{\mathrm{m}} \mathrm{U}_{\varepsilon}$. The following estimates were obtained Rabinowitz ${ }^{[11]}$:

$$
\begin{equation*}
\left\|u_{\varepsilon}^{m}\right\|^{2}=S^{n / 2 s}+O\left(\varepsilon^{n-2 s}\right), \quad\left|u_{\varepsilon}^{m}\right|_{2_{s}^{*}}^{2_{s}^{*}}=S^{n / 2 s}+O\left(\varepsilon^{n}\right) \tag{18}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$. We prove Theorem 1.7 by applying Theorem 2.2 using the direct sum decomposition $\mathrm{H}_{0}^{\mathrm{s}}(\Omega)=\mathrm{H}_{\mathrm{m}}^{-} \oplus \mathrm{H}^{+}$and taking $\mathrm{w}_{0}=\mathrm{u}_{\mathrm{\varepsilon}}^{\mathrm{m}}$. We will show that:

$$
\max _{\mathrm{u} \in \mathrm{O}_{\mathrm{R}}^{(x)}} \mathrm{E}(\mathrm{u}) \leq 0<\inf _{\mathrm{u} \in \mathrm{iB}_{\mathrm{B}} \cap \mathrm{H}^{+}} \mathrm{E}(\mathrm{u})
$$

if $\rho, \varepsilon>0$ are sufficiently small and $m, R>\rho$ are sufficiently large where:

$$
\mathrm{Q}_{\varepsilon}^{\mathrm{m}}=\left\{\mathrm{v}+\mathrm{tu}_{\varepsilon}^{\mathrm{m}}: \mathrm{v} \in \mathrm{H}_{\mathrm{m}}^{-},\|\mathrm{v}\| \leq \mathrm{R}, \mathrm{t} \in[0, \mathrm{R}]\right\}
$$

Let $\Gamma=\left\{\mathrm{h} \in \mathrm{C}\left(\mathrm{Q}_{\varepsilon}^{\mathrm{m}}, \mathrm{H}_{0}^{\mathrm{s}}(\Omega)\right):\left.\mathrm{h}\right|_{\mathrm{QQ}_{e}^{\mathrm{m}}}=\mathrm{id}\right\}$ and set:

$$
\mathrm{c}:=\inf _{\mathrm{h} \in \mathrm{\Gamma}} \max _{u \in h\left(\mathrm{o}_{\mathrm{c}}^{\mathrm{m}}\right)} \mathrm{E}(\mathrm{u})
$$

Then Theorem 2.2 gives a (PS) sequence with:

$$
\inf _{\mathrm{u} \in \mathrm{BB}_{\mathrm{B} \cap \mathrm{H}^{+}} \mathrm{E}} \mathrm{E}\left(\max _{\mathrm{u} \in \mathrm{Q}_{e}^{\mathrm{m}}} \mathrm{E}(\mathrm{u})\right.
$$

We will show that:

$$
\begin{equation*}
\max _{u \in Q_{e}^{m}} E(u)<\frac{S}{n} S^{n / 2 s} \tag{19}
\end{equation*}
$$

if ε is sufficiently small and apply Proposition 2.1 to obtain a nontrivial critical point of E.

Lemma 3.6: If $\rho>0$ is sufficiently small, then:

$$
\inf _{\mathrm{u} \in \mathrm{BB}_{\mathrm{B}} \cap \mathrm{HH}^{+}} \mathrm{E}(\mathrm{u})>0
$$

Proof: By $\left(H_{1}\right)$ and $\left(H_{3}\right), G(x, t) \leq 1 / 2 \mu t^{2}+c_{5}|t|^{p}$ for a.a. $x \in \Omega$ and all $t \in \mathbb{R}$ for some constant $\mathrm{c}_{5}>0$.

For $u \in \mathrm{H}^{+}$, this together with the fact that $\frac{\|u\|^{2}}{|\mathrm{u}|^{2}} \geq \lambda_{k+1}$ and the fractional Sobolev embedding theorem ${ }^{{ }^{2}{ }^{2} \text { gives: }}$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{u}) \geq \frac{1}{2}\|u\|^{2}-\int_{\Omega}\left(\frac{1}{2} \mu u^{2}+\mathrm{c}_{5}|\mathrm{u}|^{\mathrm{p}}+\frac{1}{2_{s}^{*}}|\mathrm{u}|^{2_{s}^{*}}\right) \mathrm{dx} \geq \\
& \frac{1}{2}\left(1-\frac{\mu}{\lambda_{\mathrm{k}+1}}\right)\|u\|^{2}-\mathrm{c}_{6}\left(\|u\|^{\mathrm{p}}+\|u\|^{2_{s}^{*}}\right)
\end{aligned}
$$

for some constant $c_{6}>0$. Since, $\mu<\lambda_{k+1}$ and $2<p<2^{*}$, the desired conclusion follows from this for sufficiently small ρ.

Lemma 3.7: If m and $R>\rho$ are sufficiently large and $\varepsilon>0$ is sufficiently small, then:

$$
\begin{equation*}
\max _{\mathrm{u} \in \mathrm{CO}_{\mathrm{e}}^{\mathrm{m}}} \mathrm{E}(\mathrm{u}) \leq 0 \tag{20}
\end{equation*}
$$

Proof: For $u \in H_{m}^{-}$with $\|v\| \leq R$ and $t \in[0, R]$:

$$
E\left(v+t u_{\varepsilon}^{m}\right)=E(v)+E\left(\mathrm{tu}_{\varepsilon}^{\mathrm{m}}\right)-4 t \int_{\mathrm{B}_{\mathrm{L} / \mathrm{m}} \times B_{1 / 2 \mathrm{~m}}} \frac{v(x) \mathrm{u}_{\varepsilon}^{\mathrm{m}}(\mathrm{y})}{|\mathrm{x}-\mathrm{y}|^{n+2 s}} d x d y(21)
$$

since, $v=0$ in $B_{1 / \mathrm{m}}$ and $\mathrm{u}_{\varepsilon}^{\mathrm{m}}=0$ outside $\mathrm{B}_{1 / 2 \mathrm{~m}}$. By Lemma 3.4 and $\left(\mathrm{H}_{4}\right)$:

$$
\begin{aligned}
& \mathrm{E}(\mathrm{v}) \leq \frac{1}{2}\left(\lambda_{\mathrm{k}}+\frac{\mathrm{C}}{\mathrm{~m}^{n-2 s}}\right) \int_{\Omega} v^{2} \mathrm{dx}-\frac{1}{2}\left(\lambda_{\mathrm{k}}+\sigma\right) \int_{\Omega} v^{2} \mathrm{dx}= \\
& -\frac{1}{2}\left(\sigma-\frac{\mathrm{C}}{\mathrm{~m}^{\mathrm{n}-2 s}}\right) \int_{\Omega} v^{2} \mathrm{dx} \leq-\frac{\sigma}{4} \int_{\Omega} v^{2} \mathrm{dx}
\end{aligned}
$$

for sufficiently large m . Since, $\mathrm{H}_{\mathrm{m}}^{-}$is finite dimensional, it follows from this that:

$$
\begin{equation*}
\mathrm{E}(\mathrm{v}) \leq-\mathrm{c}_{7}\|v\|^{2} \tag{22}
\end{equation*}
$$

for some constant $\mathrm{c}_{7}>0$ in particular, $\mathrm{E}(\mathrm{v}) \leq 0$. By $\left(\mathrm{H}_{2}\right)$ and Eq. 18 :

$$
\begin{equation*}
E\left(t_{\varepsilon}^{m}\right) \leq \frac{t^{2}}{2}\left\|u_{\varepsilon}^{m}\right\|^{2}-\left.\frac{t^{2} s}{2_{s}^{*}} u_{\varepsilon}^{m} u_{\varepsilon}^{2_{s}^{*}}\right|_{2_{s}^{*}} ^{*} \geq\left(\frac{\mathrm{t}^{2}}{2}-\frac{t^{2_{s}^{*}}}{2_{s}^{*}}\right) S^{n / 2 s}+c_{8} R^{2_{s}^{*}} \varepsilon^{n-2 s} \tag{23}
\end{equation*}
$$

for some constant $\mathrm{c}_{8}>0$. The last integral in Eq. 21 is bounded by:

$$
\mathrm{c}(\mathrm{n}, \mathrm{~s})|\mathrm{v}|_{\infty} \varepsilon^{(\mathrm{n}-2 \mathrm{~s}) / 2} \int_{\mathrm{B}_{\mathrm{I} / \mathrm{m}}^{\mathrm{c}} \times \mathrm{B}_{\mathrm{H} / 2 m}} \frac{\mathrm{dx} \mathrm{dy}}{|\mathrm{x}-\mathrm{y}|^{\mathrm{n}+2 \mathrm{~s}}\left(\varepsilon^{2}+|\mathrm{y}|^{2}\right)^{(n-2 s) / 2}}
$$

Changing variables from (x, y) $-(\zeta, \mathrm{y})$ where $\zeta=\mathrm{x}-\mathrm{y}$, $|\zeta| \geq|x|-|y|>1 / 2 \mathrm{~m}$ and hence, the integral on the right is bounded by:

$$
\int_{\mathrm{B}_{1 / 2 \mathrm{~m}}^{\mathrm{c}} \times \mathrm{B}_{1 / 2 \mathrm{~m}}} \frac{\mathrm{~d} \zeta \mathrm{dy}}{|\zeta|^{\mathrm{n}+2 \mathrm{~s}}|\mathrm{y}|^{\mathrm{n}-2 \mathrm{~s}}}
$$

and the scaling $(\zeta, \mathrm{y}) \mapsto(\mathrm{m} \zeta$, my) shows that this integral is independent of m. Since, $|v| \leq R$, it now follows that:

$$
\begin{equation*}
\left|\int_{\mathrm{B}_{\mathrm{i} / 2 \mathrm{~m}} \times \mathrm{B}_{1 / 2 \mathrm{~m}}} \frac{v(x) \mathrm{u}_{\varepsilon}^{m}(\mathrm{y})}{|\mathrm{x}-\mathrm{y}|^{\mathrm{n}+2 \mathrm{~s}}} \mathrm{dx} d y\right| \leq \mathrm{c}_{9} R \varepsilon^{(\mathrm{n}-2 \mathrm{~s}) / 2} \tag{24}
\end{equation*}
$$

for some constant $\mathrm{c}_{9}>0$. Combining Eq. 21-24 gives:

$$
\mathrm{E}\left(\mathrm{v}+\mathrm{tu}_{\varepsilon}^{\mathrm{m}}\right) \leq-\mathrm{c}_{7}\|\mathrm{v}\|^{2}+\left(\frac{\mathrm{t}^{2}}{2}-\frac{\mathrm{t}^{2}-}{2_{s}^{*}}\right) \mathrm{S}^{\mathrm{n} / 2 \mathrm{~s}}+\mathrm{C}_{8} \mathrm{R}^{2^{*}} \varepsilon^{\mathrm{n}-2 \mathrm{~s}}+\mathrm{c}_{10} \mathrm{R}^{2} \varepsilon^{(\mathrm{n}-2 \mathrm{~s}) / 2}
$$

where $\mathrm{c}_{10}=4 \mathrm{c}_{9}$. For $\mathrm{v}+\mathrm{tu}_{\varepsilon}^{\mathrm{m}} \in \partial \mathrm{Q}_{\varepsilon}^{\mathrm{m}} \backslash \mathrm{H}_{\mathrm{m}}^{-}$, either $\|\mathrm{v}\|=\mathrm{R}$ or $\mathrm{t}=$ R, so, it follows from this that there exists $R>\rho$ such that Eq. 20 holds for all sufficiently small ε. Turning to Eq. 19 by contradiction, suppose:

$$
\max _{\mathrm{u} \in \mathrm{Q}_{\mathrm{aj}}^{\mathrm{m}}} \mathrm{E}(\mathrm{u}) \geq \frac{\mathrm{s}}{\mathrm{n}} \mathrm{~S}^{\mathrm{n} / 2 \mathrm{~s}}
$$

for some sequence $\varepsilon_{\mathrm{j}} \backslash 0$. Since, $\mathrm{H}_{\mathrm{m}}^{-}$is finite dimensional, $\mathrm{Q}_{\varepsilon_{j}}^{\mathrm{m}}$ is compact and hence, the above maximum is attained at some point $u_{j}=v_{j}+t_{j} u_{\varepsilon_{j}}^{\mathrm{m}} \in Q_{\varepsilon_{j}}^{m}$. Then:

$$
\begin{align*}
& \frac{s}{n} S^{n / 2 s} \leq E\left(u_{j}\right)=E\left(v_{j}\right)+E\left(t_{j} u_{\varepsilon_{j}}^{m}\right)- \\
& 4 t_{j} \int_{B_{1 / 2 m} \times B_{1 / 2 m}} \frac{v(x) u_{\varepsilon_{j}}^{m}(y)}{|x-y|^{n+2 s}} d x d y \leq \frac{t_{j}^{2}}{2}\left\|u_{\varepsilon_{j}}^{m}\right\|^{2}-\frac{t_{j}^{2_{s}^{*}}}{2_{s}^{*}}\left|u_{\varepsilon_{j}}^{m}\right|_{2_{s}^{*}}^{2_{s}^{*}}- \tag{25}\\
& \int_{\Omega} G\left(x, t_{j} u_{\varepsilon_{j}}^{m}\right) d x+c_{11} \varepsilon_{j}^{(n-2 s) / 2}
\end{align*}
$$

for some constant $\mathrm{c}_{11}>0$ as in the proof of Lemma 3.7. The estimates in Eq. 18 give:

$$
\begin{equation*}
\frac{\mathrm{t}_{\mathrm{j}}^{2}}{2}\left\|\mathrm{u}_{\varepsilon_{j}}^{\mathrm{m}}\right\| \|^{2}-\frac{\mathrm{t}_{\mathrm{j}}^{2_{s}^{*}}}{2_{\mathrm{s}}^{*}} \left\lvert\, \mathrm{u}_{\varepsilon_{j}}^{\mathrm{m}} \mathrm{l}_{\mathrm{s}}^{2_{s}^{*}} \leq\left(\frac{\mathrm{t}_{\mathrm{j}}^{2}}{2}-\frac{\mathrm{t}_{\mathrm{j}}^{2_{\mathrm{s}}^{*}}}{2_{\mathrm{s}}^{*}}\right) \mathrm{S}^{\mathrm{n} / 2 \mathrm{~s}}+\mathrm{c}_{12} \varepsilon_{\mathrm{j}}^{\mathrm{n}-2 \mathrm{~s}}\right. \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\leq \max _{t \in[0, \infty)}\left(\frac{\mathrm{t}^{2}}{2}-\frac{\mathrm{t}^{2_{\mathrm{s}}^{*}}}{2_{\mathrm{s}}^{*}}\right) \mathrm{S}^{\mathrm{n} / 2 \mathrm{~s}}+\mathrm{c}_{12} \varepsilon_{\mathrm{j}}^{\mathrm{n}-2 \mathrm{~s}}=\frac{\mathrm{s}}{\mathrm{n}} \mathrm{~S}^{\mathrm{n} / 2 \mathrm{~s}}+\mathrm{c}_{12} \varepsilon_{\mathrm{j}}^{\mathrm{n}-2 \mathrm{~s}} \tag{27}
\end{equation*}
$$

for some constant $\mathrm{c}_{12}>0$, so, Eq. 25 gives:

$$
\begin{equation*}
\int_{\Omega} \mathrm{G}\left(\mathrm{x}, \mathrm{t}_{\mathrm{j}} \mathrm{u}_{\mathrm{s}_{\mathrm{j}}}^{\mathrm{m}}\right) \mathrm{dx} \leq \mathrm{c}_{13} \varepsilon_{\mathrm{j}}^{(\mathrm{n}-2 \mathrm{~s}) / 2} \tag{28}
\end{equation*}
$$

for some constant $\mathrm{c}_{13}>0$. Since, $\mathrm{t}_{\mathrm{j}} \in[0, \mathrm{R}], \mathrm{t}_{\mathrm{j}}$ converges to some $t_{0} \in[0, R]$ for a renamed subsequence. In Eq. 25 and $26\left(\mathrm{H}_{2}\right)$:

$$
\frac{\mathrm{s}}{\mathrm{n}} \mathrm{~S}^{\mathrm{n} / 2 \mathrm{~s}} \leq\left(\frac{\mathrm{t}_{\mathrm{j}}^{2}}{2}-\frac{\mathrm{t}_{\mathrm{j}}^{2}}{2_{\mathrm{s}}^{*}}\right) \mathrm{S}^{\mathrm{n} / 2 \mathrm{~s}}+\mathrm{c}_{14} \varepsilon_{\mathrm{j}}^{(\mathrm{n}-2 \mathrm{~s} / 2}
$$

for some constant $\mathrm{C}_{14}>0$ and passing to the limit gives:

$$
\frac{\mathrm{t}_{0}^{2}}{2}-\frac{\mathrm{t}_{0}^{2_{s}^{*}}}{2_{\mathrm{s}}^{*}} \geq \frac{\mathrm{s}}{\mathrm{n}}
$$

Since, the function $[0, \infty) \rightarrow \mathbb{R}, \mathrm{t} \mapsto \frac{\mathrm{t}^{2}}{2}-\frac{\mathrm{t}^{2_{s}^{*}}}{2^{*}}$ attains its maximum value of s / n only at $t=1$, it foflows that $t_{0}=1$. We now show that (28) together with $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{5}\right)$ leads to a contradiction. For j, so, large that $B_{\varepsilon j} \subset B_{4 / \mathrm{m}},\left(H_{2}\right)$ gives:

$$
\begin{equation*}
\int_{\Omega} G\left(x, t_{j} u_{\varepsilon_{j}}^{m}\right) d x \geq \int_{B_{\varepsilon_{j}}} G\left(x, t_{j} U_{\varepsilon_{j}}\right) d x \tag{29}
\end{equation*}
$$

since, $\eta_{m}=1$ in $B_{1 / 4 \mathrm{~m}}$. Set:

$$
\varphi(t)=\inf _{x \in \Omega_{0}, \tau \geq \leq} \frac{G(x, \tau)}{\tau^{(n+2 s)(n-2 s)}}, t \geq 0
$$

Then φf is nondecreasing:

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \varphi(t)=+\infty \tag{30}
\end{equation*}
$$

by $\left(\mathrm{H}_{5}\right)$ and $\mathrm{G}(\mathrm{x}, \mathrm{t}) \geq \varphi(\mathrm{t}) \mathrm{t}^{(\mathrm{n}+2 \mathrm{~s})(\mathrm{n}-2 \mathrm{~s})}$ for a.a. $\mathrm{x} \in \in \Omega_{0}$ andt ≥ 0. Since, $B_{\varepsilon j} \subset B_{4 / \mathrm{m}} \subset \Omega_{0}$, this together with (29) gives:

$$
\begin{equation*}
\int_{\Omega} G\left(x, t_{j} u_{\varepsilon_{j}}^{m}\right) d x \geq \int_{B_{\varepsilon_{j}}} G\left(t_{j} U_{\varepsilon_{j}}\right) d x\left(t_{j} U_{\varepsilon_{j}}\right)^{(n+25)(n-2 s)} d x \tag{31}
\end{equation*}
$$

For $\mathrm{x} \in \mathrm{B}_{\varepsilon \mathrm{j}}$:

$$
\mathrm{U}_{\varepsilon_{\mathrm{j}}}(\mathrm{x})=\mathrm{U}_{\varepsilon_{\mathrm{j}}}\left(\left|\varepsilon_{\mathrm{j}}\right|\right) \geq \mathrm{U}_{\varepsilon_{\mathrm{j}}}\left(\varepsilon_{\mathrm{j}}\right)=\mathrm{c}_{15 \varepsilon_{\mathrm{j}}^{-(n-2 s) / 2}}
$$

for some constant $\mathrm{c}_{15}>0$. Since, $\mathrm{t}_{\mathrm{j}} \rightarrow 1$ and φ is nondecreasing, this together with Eq. 31 gives:

$$
\begin{aligned}
& \int_{\Omega} \mathrm{G}\left(\mathrm{x}, \mathrm{t}_{\mathrm{j}} \mathrm{u}_{\varepsilon_{\mathrm{j}}}^{\mathrm{m}}\right) \mathrm{dx} \geq \mathrm{c}_{16} \int_{\mathrm{B}_{\mathrm{B}_{5}}} \varphi\left(\mathrm{c}_{17} \varepsilon_{\mathrm{j}}^{-(\mathrm{n}-2 \mathrm{~s}) / 2}\right) \varepsilon_{\mathrm{j}}^{-(\mathrm{n}+2 \mathrm{~s}) / 2} \mathrm{dx}= \\
& \mathrm{c}_{18} \varphi\left(\mathrm{c}_{17} \varepsilon_{\mathrm{j}}^{-(\mathrm{n}-2 \mathrm{~s}) / 2}\right) \varepsilon_{\mathrm{j}}^{(\mathrm{n}-2 \mathrm{~s}) / 2}
\end{aligned}
$$

for some constants $\mathrm{c}_{16}, \mathrm{c}_{17}, \mathrm{c}_{18}>0$ and all sufficiently large j. This together with (28) implies that $f\left(\mathrm{c}_{17} \varepsilon_{j}^{-(n-2 s) / 2}\right)$ is bounded, contradicting (30). This completes the proof of Theorem 1.7.

REFERENCES

1. Brezis, H., and L. Nirenberg, 1983. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Comm. Pure Applied Math., 36: 437-477.
2. Gazzola, F. and B. Ruf, 1997. Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations. Adv. Differ. Equations, 2: 555-572.
3. Capozzi, A., D. Fortunato and G. Palmieri, 1985. An existence result for nonlinear elliptic problems involving critical sobolev exponent. Ann. l'Institut Henri Poincare (C) Non Linear Anal., 2: 463-470.
4. Cerami, G., S. Solimini and M. Struwe, 1986. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal., 69: 289-306.
5. Tarantello, G., 1992. Nodal solutions of semilinear elliptic equations with critical exponent. Differ. Integral Equations, 5: 25-42.
6. Servadei, R. and E. Valdinoci, 2013b. A BrezisNirenberg result for non-local critical equations in low dimension. Commun. Pure Appllied Anal., 12: 2445-2464.
7. Servadei, R. and E. Valdinoci, 2015a. The BrezisNirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc., 367: 67-102.
8. Nezza, E.D., G. Palatucci and E. Valdinoci, 2012. Hitchhiker's guide to the fractional sobolev spaces. Bull. Sci. Math., 136: 521-573.
9. Servadei, R. and E. Valdinoci, 2013a. Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst., 33: 2105-2137.
10. Servadei, R. and E. Valdinoci, 2015b. Fractional Laplacian equations with critical sobolev exponent. Rev. Mat. Complut., 28: 655-676.
11. Rabinowitz, P.H., 1978b. Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4: 215-223.
12. Rabinowitz, P.H., 1978a. Some Minimax Theorems and Applications to Nonlinear Partial Differential Equations. In: Nonlinear Analysis, Cesari, L., R. Kannan and H.F. Weinberger (Eds.)., Academic Press, New York, USA., pp: 161-177.
13. Mosconi, S., K. Perera, M. Squassina and Y. Yang, 2016. The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differ. Equations, Vol. 55, 10.1007/s00526-016-1035-2
