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Abstract: We give sufficient conditions for the existence
of nontrivial solutions to a class of critical nonlocal
problems of the Brezis-Nirenberg type. Our result extends
some results in the literature for the local case to the
nonlocal setting. It also complements the known results
for the nonlocal case.

INTRODUCTION

Nonlinear elliptic equations involving critical
Sobolev exponents have been extensively studied in the
literature, beginning with the following celebrated result
of Brezis and Nirenberg™.

Theorem 1.1: Let Q be a smooth bounded domain in R",
n>3 and consider the problem:

-Au :ku+\u\2~'2 u inQ
u>0 inQ (1)
u=0 onoQ

where, A>0 is a parameter and 2” = 2n/(n-2) is the critical
Sobolev exponent. Let A,>0 be the first dirichlet
eigenvalue of -A in Q.

e If n>4, then problem (1.1) has a solution for all
Ae(0, Ay)

e Ifn=3, then there exists L.€[0, A;] such that problem
Eg. 1 has a solution for all Ae (A, A,)

47

e Ifn=3and Q= B,(0) is the unit ball, then A. = A,/4
and problem Eqg. 1 has no solution for A<\, /4

Following®¥, Gazzola and Ruf!? considered the more
general problem:

-Au=g(x, u)+|uf u
u=0

where, g is a Caratheodory function on QxR with sub
critical growth:

inQ
on oQ

@

lime 9(xt)
[0

=0

uniformly a.e., on Q. Let 0 <\ <A,<, ..., ~+ be the
sequence of Dirichet eigenvalues of -A in Q, repeated
according to multiplicity. The following extensions of
Theorem 1.1 were obtained by Gazzola and Ruft?.

Theorem 1.2: Assume the following conditions on g; for
all €>0, there exists a.cL™?(Q) such that [g(x,
t)|<a.(x)+e|t}** for a.a. xeQ and all teR. G(x, t): —j g (X,
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1)dt>0 for a.axeQ and all teR; there exist keN, 8, 6>0
and pe(hy, Ayp) such that 1/2(A+o)t?<G(x, 1) <1/2 p t* for
a.a. xeQand |t|<8; G(X, t)>1/2 (A +o)t?- =-t* for a.a xeQ
and all teR; if n = 3, there exists a nonen‘?pty open subest
Q, of Q such that:

lime
t— +o

G(x,t)
.

uniformly a.e. on Q,. Then problem (2) has a nontrivial
solution.

Theorem 1.3: Assume conditions (1), (2) and there exists
5>0, keN and pe()y, Ay.y) such that 1/2 A, t*<1/2ut? for
a.a. xeQ and |t|<3; there exists 6¢€(0, 1/27) such that G(x,
)>1/2u t3-(1/2°-0) |t}*" for a.a. xeQ and all teR; there
exists a nonempty open subset Q, of Q such that:

lime G(uY) _
t— 4+ t8nl(nz-4)

uniformly a.e. on Q,. Then, problem (1.2) has a nontrivial
solution. Other extensions and generalizations can be
found, e.g., by Capozzi et al.l¥l, Cerami et al.¥ and
Tarantello™ More recently, Servadei and Valdinocit® 7
considered the nonlocal critical problem:

inQ
in R\Q

{(—A)Su =wu+[u*"u 3)

u=0

where, se(0, 1), Q is a bounded domain in R", n>2s with
Lipschitz boundary, A>0 is a parameter and 2°, = 2n/(n 2s)
is the fractional critical Sobolev exponent. Here (A)* is the
fractional Laplacian operator, defined, up to a
normalization factor, on smooth functions by:

x)-u(y)

n+Zs

(- I|m — __Z/dy, xeR

T\B, (X

Let us recall the definition of a weak solution of problem
Eq. 3. Let:

n+2s
_y‘

HS(R): {ue L (R):J.lgn(U(i)_u(y))

dx dy < +oo}

be the usual fractional Sobolev space endowed with the
Gagliardo norm

> u(x)-u(y)y’ N
ol = [uqm Gt dy]

‘n+25

48

and let:
Hy (Q) = {ueH*(R):u=0ae in R\Q}

Then, H; () is a closed linear subspace of H(R"),
equivalently renormed by the Gagliardo seminorm:

and the imbedding H{ (Q) -L*(Q) is continuous for
re[L 2, ] and compact for re[ 1 2; | ®1, A weak solution of
problem Eq. 3 is a function ue H; (Q) satisfying:

(u(x)-u(y))(v(x)-0(y))

_[Dgn ‘X_y‘nﬁs

T a0+ w0 o )

dx dy =
(4)

Let O<A,<M\,<, .., -+« denote the sequence of
eigenvalues of the nonlocal eigenvalue problem:

o

repeated according to multiplicity (Proposition)®.
Servadei and Valdinoci®® " obtained the following results.

inQ

0 in R\Q

Theorem 1.4: If nx4s, then problem (3) has a nontrivial
weak solution for each A>0 that is not an eigenvalue of

(4).

Theorem 1.5: If 2s<n<4s, then there exists As>0 such that
problem Eq. 3 has a nontrivial weak solution for each
A>As that is not an eigenvalue of Eqg. 4. By Servadei and
Valdinocil, they also considered the more general
problem:

inQ
in R\Q

u+f (x, u)

{(-A)S u = au+fuf*? ®)

u=0

where, f is a Caratheodory function on QxR and obtained
the following result.

Theorem 1.6: Assume the following conditions:

For all M>0, sup {|f (x, t)|: XeQ, |t|<M }<+e

im fOot) _ o

>0t 0 uniformly a.e. on Q
li f(x,t
im 100 ) = 0 uniformly a.e. on Q

[t| >+ |t s =
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If n>4s, then problem Eqg. 5 has a nontrivial weak
solution for all Ae(0, A,). In the present paper we consider
the problem:

inQ
in R\Q

(-0 u=g(x, u)+u**u ©)
u=0
where se(0, 1), Q is a bounded domain in R", n>2s with
Lipschitz boundary and g is a Caratheodory function on
QxR. Our main result is the following theorem.

Theorem 1.7: Assume the following conditions:

« H, there existpe[L2)and C>0 such that |g(x,
t)|<C(|t|p *+1) for a.a. xeQ and all teR

e H, Gut”g(xﬂdehma>@QaMaHmQam
aII teR

e H,there exist keN, 3, 6>0 and pe (A, A,,) such that
1/2 (MFo)tP< G(X, t)</2pt2 foraa xeQ and |t|<5

e H, G(x, t)=1/2 (\+0) t2
teR

e Hthere EXIS&S(:I ncinempty open subset Q, of Q such

that‘t‘i”jroO T =t uniformly a.e. on Q,

Then problem Eqg. 6 has a nontrivial weak solution.
Theorem 1.7 extends the results of Gazzola and Ruf? to
the nonlocal case and complements the results of Servadei
and Valdinoci®® " *!, This theorem will be proved after
some preliminaries in the next section.

PRELIMINARIES

A function ue H; (Q) is a weak solution of problem Eq. 6
if
(u()-u(y)(u(x)-u)(y))

J.Dgn ‘X_y‘nﬂs

_[Q(g(x, u)+\u(x)\zz'2 u(x))v(x)dx

dx dy=

for all ue Hy(Q) . Weak solutions coincide with critical
points of the C*-functional:

dx dy-

7.'.113

L;[G(ﬁ U)+Z\U\25]dx, ueH:(Q)

Recall that E satisfies the Palais-Smale compactness
condition at the level ceR or the (PS), condition for short,
if every sequence (u)<H;(©)such that E(u)-c and
E'(u)-0, called a (PS), sequence has a convergent
subsequence. Let:

n+25

49

dx dy

(u()-u(y))
.

‘n+25

" /2,
o o
Q

be the best constant for the fractional Sobolev imbedding
H3 () - L (Q). Proof of theorem 1.7 will be based on the
following proposition.

inf

T ueH; (Q)\{0} 0

Proposition 2.1: If 0 <c<s/n S"/%, then every (PS),
sequence has a subsequence that converges weakly to a
nontrivial critical point of E.

Proof: Let (u;) be a (PS), sequence. Then:

77.[ MS dx dy-
“ \X \ (®)
and
N (uj(x)-uj(y))zd -
E(UJ)UJ Jngn ‘X_y‘nﬂs X ay )

Jo(ugCx u)efuf Jax = o]y
Dividing Eq. 9 by 2 and subtracting from Eq. 8 gives:
1 S| 2
I Sualxu)e(x u)+2fuf o= o] +00)

which together with (H,) and the Holder and Young’s
inequalities gives:

[Juf" ex<om]u|+o()

This together with (H,) and Eq. 8 implies that (u;) is
bounded in H5(22). So, arenamed subsequence converges
to some u weakly inH;(Q)strongly in LYQ) for
allae[1 2. | and a.e. in Q. Then, u is a critical point of E
by the weak continuity of E’. Suppose u = 0. Since, (u;) is
bounded in H; () and converges to 0 in L"(Q), Eq. 9,
(H,), and Eq. 7 give:

o=,

Jalul dX>U[

(1,004, (v))

‘ ‘n+25

H 2-2
zs/z

If {jul|-0, then E(u;)-0, contradicting ¢ > 0, so, this
implies:

dx dy-
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HUJHZ 28" +0(1)

for a renamed subsequence. Dividing Eq. 9 by 2*s and
subtracting from Eq. 8 then gives:

x) u; y))

n+25

S n/2s
—J'K dx dy+0(1)zﬁs "% +0(1)

contradicting C<%S"’zs . To produce (PS), sequences with

0<x<s/n S"*, we will use the following linking theorem
of Rabinowitz™ 2,

Theorem 2.2: Let E be a C* functional on a Banach space
V and let V = V'eV" be a direct sum decomposition with
dim V'<e. Assume that there exist R>p>0 and w, eV*
with ||w|| = 1 such that:

W< gt B
where:
Q={

}

LetT" = {heC(Q, V): h|y, = id} and set:

c:= Ihrlir: 511% E(u)

Then:
inf E(u)<c<maxE(u)

uedB,NV* ueQ
and E has a (PS), sequence.

Proof of Theorem 1.7: In this section we prove Theorem
1.7. Lete,, ..., &, be L2-orthonormal eigenfunc-tions for
My oo My, let H =span {e,, ..., e} and let H" = (H?)"
Without loss of generality we may assume that 0eQ,,. For
meN, so, large that B4/m : = {xeR"|x|<4/m}<cQ,, let

0, xeBy,
Cn(X)=4mlx|-L, xeA =By, \By,
1, xeQ\B,,,
It is easily seen that:
|G (X) G (Y)][< M[x-y] WX, yeQ (10)

Lete] =Cn€;, j=1 .., k and let H_ =span {e], ... ]}

Lemma 3.1: Let f eL=(Q) and letueH;(Q) be a weak
solution of (-A)* u =fin Q. Then:

50

[

clf
Jemull <l +—

where, C = C(n, Q, s)>0. To prove this lemma we will
need the following estimates from!®!,

Lemma 3.2; ([6], Lemma 2.3): Let feL%Q), 1<g<~ and
let ue H3 () be a weak solution of (-A)°* u =fin Q. Then
|ul,<C]f|, where:

1<g<n/2s
n/2s<q<oo

_ {nq/(n-qu),

w!

and C=C(n, Q, s, q)>0. In particular, if feL"(Q), then |u]..
=C|f|..

Lemma 3.3 (Lemma 2.5)1%: Let feL%(Q), n/2s<q< and
let ue H; (22) be a weak solution of (-A)* u = fin Q. Then:

loul” < CIF[:(Jof, +lel ) Vo< (@)NH; (@)
where, C = C(n, Q, s, 9)>0 and g’= g/(g-1).

Proof of Lemma 3.1: We have:

(u(x)-u(y))z

‘n+25

2
&yl < J‘Al dx dy+

-
j et
of o (x)u(x)-u(y)y

‘X_y‘st

X) S (V) u(y)f

‘n+25

dx dy +

dx dy =:1,+l,+l,

where, A, = B;,, xB5,,, A, = BgjnX B3,m and A, =B,,,

we have |,<||u|]>. To estimate I,, let

x B

3/m

C;m (X)‘ Xe B3/m
o (X) = X|, X€Byn\Byy,
0, X e B¢

4/m
Applying Lemma 3.3 to ¢,, with q = «:

<[lonull <CIfL. (lonf; *lonl")
where, C = C(n, Q, s)>0. Since, ¢,,(X) = @,(mx):

2
‘(Pl‘z

[@uly = [, 0 (¥)" dx = [y (mx)’ ="

and:
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[0 (x)0. (¥)]
= i = dx dy =
H(PmH J.]]? ‘X_y‘nﬂs y
[0, (mx)-p, (my)[* H(P H
N
So:
clff
|2 < r]]n—ZS

For (X, y)eAs, [x-yl=|yl-x[>Iyl-2/m=y|-(2/3)ly| =
so:

IyI/3,

CIf[
dx dy < =

n-2s

m

<ol ],

n+2s
1]

by Lemma 3.2. The desired conclusion follows.

Lemma 3.4: We have ] — e, in H; (Q) as m- and:

[Tz

n-2s
m

max
uHIudxl

(11)

for some constant C>0.

Proof: We have:

(c ( ) 1(x)-¢(x))-
(v)-e(v))

‘n+25

2
1 dx dy =

dx dy<

e -, L0
&; () [ G (%) Ca (y ]+
[Qm 1][ i ,- ]

J-]an ‘X_y‘nﬁs

of, S e (5]

‘n+25

(12)

dx dy +

(G0 ()] [e,(x)&,(y)]

‘X y‘n+25

Juo

dx dy < 2(“31‘1 I1+I2)

Where:
[0 () Cn ()]

I 7.'% ‘X ‘n+25

L. [Cn(¥)-1] [e;(x

x-y|

dx dy,

—¢,(y)]

dx dy

n+25

We will show that I, and I, go to 0 as m-c. Since, {,
=1in B, :

51

(60 ()G (9)]
‘n+25

L=
Boim*Ba/m ‘X_

]

‘n+25

dx dy+2l, =

TG (9]

dx dy =
|x-

1,421,

“-BZImXBZ/m
Write:

(16, ()]

n+2s
X-y|

(14, ()]

IBZ/mX(B3rm\Bz/m) ‘X-y‘ nezs

J'BZ/mXBE/m

dx dy+

dx dy =: 1+l

Clearly, I; and I are less than or equal to:

(G0 ()6 ()]

s dxdy=:1,
[x-y|

'[BZ/mXBs/m

s0, I, = 2I5+3l,. To estimate I and I, we change variables
from (x, y) to (x, ) where, £ = x-y. For (X, ¥) € By, x B3
[&]>yI-X[>1/m and hence:

dx dy
n+2s
x-y|

dx dy <
‘g‘st

< <
® J'BZ/mXBE/m BymxBi/m m"-2 (13)

For (X, Y)€B,mXBam, [E]<|X|+|y|<5/m and hence (11) gives:

C
I, < mz_[ < mzj
Bo/m*Bs/m

n-2s
m

dx dy

n-2(1-s)

dx dy <
n-2(1-s) —
£ 2(1

Baim*Bam ‘X y‘

Thus, I,<C/m™*, Now we estimate I,.We have:

(16, )] [e,(x)¢, ()]

dx dy <1, +4fe,[ I,
x-y|

I, = [
2 FxBym

Where:
[e,()-¢,()]

‘X_y‘nﬂs

dx dy

n+2s

dx dy, = .[

o]
Boim*Baim BYm*Ba/m ‘X_y‘

Since, €;eH;(Q) and |B;,,XBy|~0, 1g~0. As in
Eq. 13, l,<C/m"®. Thus, 1,<C/m"*+o(1). To prove
Eq. 11, letv =) age,eH". By Lemma 3.1:

j=1

1]

clf
ol <fol”+—22

(14)
Where:
f= (—A)S L= Ek roye eH”
j=1

Since, dim H™<e:
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K K
7 <eulfly = e 2 4o <erid af = c,lof;
=1 =1

for some constants c,, ¢,>0. Since, |p|P<AJv[%, this
together with Eq. 14 gives:

C
ool = (e ok (15)
On the other hand:
[0l = [ 0" X4, (G0 02 [0, v
and:
oL ok
Ilemoz dx >c, m: <c, m'?
for some constants c;, ¢,>0, so:
C
ol 2 125 o (19)

Combining Eq. 15 and 16 gives:
C
L

Since, Eq. 11 follows from this.
Lemma 3.5: For all sciently large m, H; () = H, ®H".

Proof: Let P:H;()— H" be the orthogonal projection.
First we show that PH,, = H™ for all sufficiently large m.
Since, PH, cH and dim H™ = k, it suffices to show
that Pey, ..., Pe; are linearly independent. Suppose not.
Then there exists o™ = (o', - @ )€S™ such that:

k
;afPeT =0 (17)

where, S™! is the unit sphere in R". Passing to a
subsequence, we may assume that a™-a = (a, ..., a,,)€S™™.
Since, Pej' — Pe; = e; by Lemma 3.4, then passing

to the limit is Eq. 17 gives:

Since, e,, ..., e, are linearly independent, then
o = = = o = 0, contradicting aeS"".Given
ueH3(Q) , write u =v+w withveH™, weH". Since, PH_, =

52

H~, there exists ze H,, such that Pz = v. Then u
z+(v-z+w) and v-z+weH* since, P (v-z+w) = 0. Finally,
suppose ueH, NH". Since, ueH;, :

for some a,, ..., a, €R. Since, ueH™
k

P, =Y opel =0
j=1

Since, Pef’, .., Pef are  linearly independent for
sufficiently large m, then a,= - = o, = 0 and hence, u=0.
As by Rabinowitz*Y, set:

(n-2s)/2
c(n,s)e 50

where, ¢(n, s)>0 is such that:

2 24 onizs
_‘Uu‘zg =S

U&

Then take a smooth function n,,:R"-[0, 1] such that
Nm = 1in B,/,,, and n = 0 outside B,/,,, and setu] =n, U..
The following estimates were obtained Rabinowitz!*!):

ur

2 _ Sn/25+o(gn725)’ ‘UT‘Z - Sn125+o(8n) (18)

as e-~0. We prove Theorem 1.7 by applying Theorem 2.2
using the direct sum decomposition H; (Q) = H,, @ H* and
taking w,, = u™. We will show that:

max E(u)<0< inf
uedQ uedB,NH"*

E(u)

if p,e>0 are sufficiently small and m, R>p are sufficiently
large where:

Qr = {U+tUT Ve Hr’n,HUH <R, te[O, R]}
Let T = {heC(QU, H3(®)): ., =id] and set:

c:=inf max E(u)
hel ugh(Q:;")

Then Theorem 2.2 gives a (PS), sequence with:

ulErJl;H E(u)<c< rﬂg;(E(u)

We will show that:
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mgx E(U)< Ss"/ZS

(19)

if & is sufficiently small and apply Proposition 2.1 to
obtain a nontrivial critical point of E.

Lemma 3.6: If p>0 is sufficiently small, then:

inf E(u)>0

uedB,NH*

Proof: By (H,) and (H,), G(x, t) <1/2ut*+c|t|° for a.a.xeQ
and all teR for some constant ¢,>0. Ju H

For ueH*, thistogether with the fact that -7 = *.. and
the fractional Sobolev embedding theorem‘ ‘29|ves

u\]z
S

E(u)2 2 of f[ e,

1 u 2 ( p 2;)
=1 1-— - +
{1 o <. o 1

for some constant ¢,>0. Since, p<,,, and 2<p<2”,, the
desired conclusion follows from this for sufficiently
small p.

Lemma 3.7: If m and R>p are sufficiently large and e>0
is sufficiently small, then:

m%>m<E(u)SO (20)
Proof: For ueH, with |[v]|<R and te[0, R]:
E(v+ul') = E(v)+E(w])-4t[ v(x) M(Sy) dxdy (21)

c
Bijm*Byom ‘X ‘

since,v =0in B, anduy =
3.4 and (H,):
1
s

C

0 outside B,,,,. By Lemma

E(v)<=
%(G

for sufficiently large m. Since, Hj, is finite dimensional, it
follows from this that:

E(v) </ [off

(22)

for some constant ¢,>0 in particular, E(v)<0. By (H,) and
Eqg. 18:

53

2 tzs

m m|%

€

E(r) < ‘2

-

25

z

>
2| ==
2 2

for some constant c,>0. The last integral in Eqg. 21 is
bounded by:

]SH/ZS +CBR2;8n-25 (23)

dx dy
n+2s (n-2s)/2
x-y|"* (sz+\y\2)

c(n, S)‘U‘w S(H—ZS)/ZJ

c
Bijm*Byzom

Changing variables from (x, y)-(¢, y) where £ = x-y,
[€]=|X]-ly|>1/2m and hence, the integral on the right is
bounded by:

d¢ dy
n+25‘ ‘n-ZS

4

J. 3
Bij2m>*Byzm

and the scaling (¢, y)—~(md, my) shows that this integral is
independent of m. Since, |v|<R, it now follows that:

uy n-2s
(- (x.)y:*z(sy) dedy seRTHE(24)

for some constant c,>0. Combining Eq. 21-24 gives:

2 12 .
E(UHUT) <-c, HUH2 +[t2_1:2*]8"/25+C8R258nZS+C10R28(n-ZS)/2
S

where ¢, = 4c,. For v+u] e6QM\H , either ||| =R ort=
R, so, it follows from thls that there exists R>p such that
Eqg. 20 holds for all sufficiently small €. Turning to Eg.19
by contradiction, suppose:

max E(u) > >5"%
uec) n

for some sequence €;~0. Since, H,, is finite dimensional,
Q: is compact and hence, the above maximum is attained
at some point u; = v;*tu; € Q7. Then:

%S”’ZS < E(uj) = E(uj)+E(tju;"J)—
v(x)u7 (y) t

dx dy <+

2 tz;
jJ.Bf/szBuzm ‘X_y‘nﬂs B 2

m i
Ual

m
£

=L (25)

2

m (n-2s)/12
JQG(X, tjuﬂ])dx+c11 g

for some constant ¢,,>0 as in the proof of Lemma 3.7. The
estimates in Eq. 18 give:

2
ti

2

P

2 42
‘< LJ_L
2 2

LA

2
m][? tj

2

m
£

(26)

n/2s n-2s
]S +Cpp8;
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< max
te[0, )

¢t n/2 25 _ Sann -2
PR S e, el =an +C, (27)
S

for some constant ¢,,>0, so, Eq. 25 gives:
J.Q G (X' tiU:; ) dx < Cis 82"-25)/2 (28)

for some constant ¢,,>0. Since, [0, R], t; converges to
some t,€[0, R] for a renamed subsequence. In Eg. 25 and
26 (H,):

s 2 t>
HSn/25 < Ej_? gn/zs +C148(jn-25)/2

s

for some constant ¢,,>0 and passing to the limit gives:

6.
2 2. n
. . 2 t* -
Since, the function [0, «) -R, t»—>—-? attains its
maximum value of s/nonly att=1, it foflods that t,=1.
We now show that (28) together with (H,) and (H;) leads
to a contradiction. For j, so, large that B,<B,,, (H,)
gives:

J‘QG(X, tjufi‘)dxzj‘B”G(x, tjUEJ)dx (29)
since, N, =1 in By, Set:
. G(x, T
(p(t) = XJ&Q‘;Z[ T(n+(25)/(n—2)s) ! t=0
Then ¢f is nondecreasing:
limo(t) = +e0 (30)

by (Hs) and G(x, t)>@(t)t™?"2) for a.a. xeeQ, andt=0.
Since, B,;=B,,=Q, this together with (29) gives:

Ja(x

For xeB,;:

tum)dxz_[B G(tjusj)dx(tjugj )dx (31)

» L
i

)(n+25)/(n725

gi‘)z Uﬁ. (g].): Clsgi(nrzs)lz

u, (x)=U,(

for some constant c,;>0. Since, t-1 and ¢ is
nondecreasing, this together with Eq. 31 gives:
J.QG (X, tjusm,)dx > CiﬁjBEJ (P(Cu Si(n-ZS)IZ)S](MZS)/Z dx =

-(n-2s)/2'\ _(n-2s)/2
Cw‘P(Cusj )Sj
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for some constants ¢, C;5, C;>0 and all sufficiently large
j. This together with (28) implies that f(c,.g;"*") is
bounded, contradicting (30). This completes the proof of
Theorem 1.7.
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