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Abstract: Thousands of patients are annually diagnosed
with cancer in Iran and around the globe. The early
detection and diagnosis of cancer, the tumorigenesis is in
its early phase is crucial for its ultimate control and
prevention. Today, the number of people who die from
cancer, compared to three decades ago, have declined.
Identifying the nature and development of cancer have
always attracted a lot of attention from clinicians and
scientists. Understanding the cellular changes alone in
living species requires basic molecular investigations.
Recent advances in molecular biology have been of great
help researcher’s understanding the complex interaction
of genetic alteration, transcription and translation of
human cancer. Proteomics studies could play an important
role in prevention, early detection and treatment of
cancer. Early stage detection is the key to obtain a better
outcome for therapeutic intervention of cancer. Although,
advances in early stage detection of cancer have come of
great help to cancer treatment, most routine screening and
diagnosis tools lack sufficient sensitivity and specificity
of molecular approaches such as proteomics. With the
proteomic technologies emerging, classification and
identification of body fluid proteins have been a major
focus of scientists.  Proteomic analyses have opened a
new horizon in screening changes happening in cellular
processes to become cancerous, however, it is yet to be
perfected using complementary approaches for more
accurate diagnosis of cancers. A combination of
proteomics approaches like Ciphergen Protein Chip
Arrays and SELDI-TOF MS with bioinformatics tools
was proved to be effective in the discovery of new
biomarkers which further helps the early-stage detection
and diagnosis of cancer.

INTRODUCTION

Cancer have always been one of the major challenges
in human societies. Cancer remains one of the most

common cause of death, accounting for 20% of deaths in
the US and 35-100 annual fatal patients out of roughly
100000 cases, globally[1]. Cancer is usually caused by
malfunction, this malfunction is caused from genetic
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damages due to chemical substances, hormones and
sometimes viruses. Therefore, a cancer starts when
mechanisms responsible for stabilizing the cell growth
process are interrupted[2].

Mutations in two classes of cells, namely tumor
suppressor genes and proto-oncogenes, cause cancer.
Proto-oncogenes are normal genes that help to regulate
the cell growth, however, mutation causes over-
stimulation of this process. Tumor suppressor genes
inhibit cell division and their mutation leads to excessive
cell division. The third type of genes are the caretaker
genes that play an important role in cancer. This type of
genes encode products that stabilize the genome and their
mutation lead to genomic instability[3].

Proteomics: Proteomics is the large-scale study of
proteome which is the entire set of proteins expressed by
a genome. Proteins control the phenotype of an organism
and form a critical part of a living organism which plays
important functions in physiologic metabolic pathways of
cell[4]. It is estimated that roughly 30,000 genes are
responsible for synthesis of the proteome comprised of
>500,000 proteins. Most variations are related to
consecutive alterations and post-translational changes.
Defective proteins are the main reason of cancer and
therefor are important indicators for cancer detection and
treatment. Moreover, proteins are the main target as well
as foundation for design of most medicines. Therefore,
proteomics analysis is very useful in early stage detection
and control of cancer[5].

Proteomics can improve understanding of cell and
living organisms. This approach especially investigates
structure, function and operation of proteome, isoforms,
structural changes, changes in post-transcription and
translation (phosphorylation and glycosylation),
interaction with other proteins and medicines which could
be of great help in the analogy of mutant and normal
proteins[6]. Increased level of complexity as compared to
the genome makes proteomics a far more complex and
efficient approach than genomics[7].

Proteomics usually implements electrophoresis
technique for separating proteins. In this method, protein
separation is carried out based on charge and weight, that
is isoelectric and molecular weight which can later on
help study the changes in Amino acid expression and
sequence, causing the formation of new isoforms or
changes after transcription and translation like
phosphorylation, glycosylation, conjugation and
acetylation. One application of proteomics in the design
of new drugs to identify and analyze the cell proteome.
Identifying cancer-related proteins could help targeting
them with drugs that are designed by computer
software[8]. Knowing the exact three-dimensional structure

helps designing an effective drug to inhibit its activity.
Since, different people have different genetic information,
they have different protein expression. Therefore, one of
the applications of proteomics is to design more specific
drugs for the treatment of each person by determining the
proteome of any individual[9].

Biomarker: One of the main objective of proteomics is
discovering cancer related biomarkers and design of the
medicine. Plasma and urine are best sources of studying
this kind of proteins. Plasma proteome regularly changes
with the cancer status. These changes can be explained by
the increase or decrease in the expression of some
proteins. Developments in the field of mass spectrometry
and bioinformatics can help identifying new biomarkers
in cancer. Today, proteomics is considered one of the best
and most complete tools for proteomics analysis of
biological systems. Biomarkers are important tools for
cancer detection and monitoring. The first report of
implementing proteomics approach applied for cancer
detection was on the detection of ovarian cancer[10].

More than two third of patients suffer from this type
of cancer. When this cancer begins to develop, symptoms
may be vague or not apparent but they become more
noticeable as the cancer progresses and when it reaches its
final stage the possibility of treatment becomes scarce.
But if in the early stage (stage 1) control of cancer, the
patient’s chance of survival will increase to >5 years.
Therefore, application of proteomics approach or such is
necessary for early detection of cancer in order to be able
to deal with it[11]. Today, advances made in this field help
to identify biomarkers in various cancers as well as the
design and function of proteins found. Developments in
proteomics and genomics have helped identifying of a
wide spectrum of biomarkers with high clinical value.
Identification of Biomarkers helps determining the stage
of the disease the specific treatment for it[12].

Early stage detection of cancer, evaluation of disease
progression, treatment with the use of the most effective
techniques and also a measurable factor in human
population make biomarkers of paramount importance.
These biological molecules describe the physiological
condition of the individual[13]. In fact, gene mutations,
alterations in protein transcription and translation can all
potentially serve as cancer biomarkers. Changes in serum
proteome happens with cancer progression can be
considered as a biomarker of cancer[14]. Not only the
analysis of a cancer is not possible with a single
biomarker to have sufficient information on it but also due
to changes in the level of expression, various proteins
could be valuable[15]. Two-dimensional electrophoresis
coupled with mass spectrometry have been primary
techniques for in the proteomics study of biomarkers.
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Although, spectroscopy is an ideal method for identifying
biomarkers,  other  complementary  methods  such  as
high-density small, antibody arrays, protein arrays,
molecular arrays and Laser Capture Microdissection
(LCM) could be very helpful[16].

MS mass spectrometry is a key development for
analysis of biological data, particularly cancer[17]. This
technique shows high accuracy for the identification of
biomarkers. MALDI-TOF-MS is a powerful tool for the
analysis of proteins and peptides. This method is able to
detect changes even very in small protein. Considering the
importance of proteomics in these types of studies,
advances in genomics, epigenome, transcriptome,
proteomics and metabolomics, along with proteomics
have been effective in the process of identifying
biomarkers[15]. Investigating best biomarkers in order to
evaluate and study the disease is one of the other
challenges in identification of biomarkers. Only 12
different types of cancer biomarkers have been approved
by FDA and WHO by 2006, therefore, further studies
using other techniques are required to verify the
distinction between biomarkers and protein in healthy
cells, precancerous and malignant[18].

Application of proteomics in cancer studies: Due to the
complexity of biological systems (each cell to produce
107 polypeptides) it is very difficult to study and
investigate this system; therefore, extensive research,
comprehensive comparative studies carried out by several
study groups, is required[19]. Among the applications of
proteomics to identify biomarkers in early diagnosis of
diseases well. In this regard, it is possible to compare
these data with the study of changes isoforms, various
modifications in the protein molecules are made to realize
the cancer. Applications of proteomics include identifying
biomarkers in early diagnosis of diseases. Investigating
the data with the study of changes in isoforms and
different alterations in the protein molecules can help
understanding the cancer status. Detection of cancer
biomarkers and distinguishing them from isoforms are
very important[20]. Before new techniques such as
spectrometry and bioinformatics, Admn and Beadle and
Tatum method was used to study proteins.

Recently, labeling of ICT isotopes in mass
spectrometry have attracted much attention to measure
protein content. One of the applications of proteomics is
patient monitoring treatment-specific changes in the
patient’s serum to further use in the treatment and specific
drug design[21]. One of the goals in cancer therapy is
targeting glycoprotein protein that plays an essential role
in metastasis and immune responses. Branches of
oligosaccharide chain of glycoprotein in cancerous cells
usually increase which, in turn, increase their attachment

to sialic acid that is identified by the lectin and interacts
with it. These interactions between sialic acid and lectin
make the cancer cells capable of metastasis[22].

One of the applications of proteomics is in drug
design, that is, different disciplines such as genomics,
proteomics,  metabolomiscs,  bioinformatics,
crystallography X-ray, synthesis chemistry,
pharmacology, microbiology, biotechnology and
molecular medicine are used. The first step in making the
medicine is to identify cancer-causing agent which is
conducted by techniques such as genomics, proteomics
and  metabolomiscs.  Genomics  can  identify  faulty
cancer-causing genes and thus contribute to cancer
proteomics analysis of proteins. The biochemical
interactions between genes and metabolomiscs can
determine the loss of protein’s function. Therefore, by
understanding the causes of cancer, we will be able to
design drugs to treat people. Proteins are cancer causing
factors themselves; therefore, they are considered suitable
targets for the drug. Using bioinformatics, we can design
drugs that can first be tested for the toxicity of
biochemical  and  on  animal  and  then  tested  on
humans[23].

Literature review: Utilizing proteomics techniques roots
back to 70’s, however, it took until 1997 for it to be
known as proteomics[24]. Two-dimensional electrophoresis
technique was first used in 1975 by Farrel and Klose; they
succeeded to separate 1100 E. coli proteins and spread
them across a 2-D gel. The introduction of spectroscopy
mounted a great revolution in proteomics. Several
methods could be used for protein extraction from cell
and tissue[25]. Many factors, including sufficient clinical
data and appropriate sampling, affect the results of
proteomic analysis. If the analysis is suffering from poor
sampling, even the most advanced technology of data
analysis would failed to analyze them[26]. With the help of
PCR technique, necessary amounts of nucleic acid can be
obtained to examine a cell, however, in proteomic
methods reproduction of protein samples necessary for the
analysis is not possible. Therefore, these approaches have
been facing limitations regarding sample preparation and
sufficient  samples  should  be  prepared  for  the
analyses[27].

Proteomic studies of cancer are subject to problems
caused from a mixture of cancerous and healthy cells both
present in the tumor tissue; study of the tumor requires
purified tumor proteins. Body fluids are a suitable source
for proteomic analysis because of availability and ease of
sampling and are vital in evaluating the tumor and also
repeatability of the test[28].

Using the patient’s body fluids have facilitated
repeated analyses to assess the patient’s status. Another
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method is to use the serum for cancer detection and
monitoring patient. In fact, serum is one of the best
biospecimens to deeply investigate and separate proteins.
In spite of recent advances in technology, proteome
analysis to identify biomarkers remains a difficult task
due to proteins such as albumin; scientists have developed
a host of techniques such as immuno-subtractionto help
the process. Plasma is another source of biomarkers used
for proteomics studies. Plasma is a suitable medium for
different proteins in the body. HUPO, in association with
different laboratories, initiated the Plasma Proteome
Project (PPP) in 2002 as a suitable alternative to serum.
Urine is another source to study the protein biomarkers
for cancer detection as it can identify cancer biomarkers
related to urinary tract and other sorts of cancer[29].

MATERIALS AND METHODS

Samples: Prepared serum samples were obtained from the
Johns Hopkins Clinical Chemistry serum banks. This
study includes a total of 169 specimens. The cancer group
consisted of 103 serum samples from breast cancer
patients at different clinical stages: stage 0 (n = 4), stage
I (n = 38), stage II (n = 37) and stage III (n = 24).
Diagnoses were verified pathologically and sampling was
conducted before treatment. Age information was not
available on six of these patients. The median age of the
remaining 97 patients was 56 years (range, 34-87 years).
The  non-cancer  control  group  included  serum  from 
25 patients with benign breast diseases (BN) and 41
healthy women (HC). Exact age information was not
available from 21 healthy women. The median age of the
remaining  20  healthy  women  was  45  years  (range,
39-57  years).  The  median  age  of  the  BN  group  was
48 years (range, 21-78 years). All samples were stored at
80°C until use.

Protein-chip  array  analysis:  In  a  typical  experiment,
20 μL of each serum sample were mixed with 30 μL of a
solution containing 8 mol/L urea and 10 g/L CHAPS in
phosphate-buffered saline, pH 7.4. The mixture was
vortex-mixed at 4°C for 15 min and diluted to 1:40 (5 μL
of mixture plus 195 μL of phosphate-buffered saline) in
phosphate-buffered saline. Immobilized Metal Affinity
Capture Arrays (IMAC3) were activated with 50 mmol/L
NiSO4, the procedure was instructed by the manufacturer
(Ciphergen). Diluted samples (50 μL) were applied to
each spot on the ProteinChip Array by a 96-well
bioprocessor (Ciphergen). The samples were allowed to
bind at room temperature for 60 min on a stirrer, then the
array was washed twice with 100 μL of phosphate-
buffered  saline  for  5  min  and  two  quick  rinses  with
100 μL of distilled water. After air-drying, 0.5 μL of
saturated sinapinic acid, prepared in 500 mL/L

acetonitrile-5 mL/L trifluoroacetic acid, was added twice
to each spot. Finally, proteins on the chelated metal
(bound by histidine, tryptophan, cysteine or
phosphorylated amino acids) were detected with the
ProteinChip Reader. Data collection was conducted by an
average 80 laser shots (intensity of 240 and a detector
sensitivity of 8). Reproducibility was also estimated using
two a sample from the healthy controls and one from the
cancer patients. Each serum sample was spotted on all
eight bait surfaces of one IMAC-Ni array in each of the
two bioprocessors. The CV was estimated for the selected
mass peaks.

Bioinformatics and biostatistics: All spectra, qualified
mass peaks (signal-to-noise ratio >5) with mass-to-charge
ratios (m/z) between 2000 and 150 000 were
automatically detected. Peak cluster completion was
conducted using second-pass peak selection (signal-to-
noise ratio >2 within 0.3% mass window) and adding
estimated peaks. The peak intensities were normalized to
the total ion current of m/z between 2000 and 150 000 all
of which were performed using ProteinChip Software 3.0
(Ciphergen). The only additional pre-processing step was
logarithmic transformation of the peak intensity data.
Such a transformation in general reduces the range of
intensity data. As a result, the variance of the transformed
peak intensity (across multiple samples) is inclined to be
less fickle over the entire length of the spectrum.

ProPeak (3Z Informatics) was used as the software
package in order to compute and rank the contribution of
each peak towards the optimal separation of two
diagnostic groups. It implements the linear version of the
Unified Maximum Separability Analysis (UMSA)
algorithm which was first reported for use in microarray
data analysis (14). The key characteristic of the UMSA
algorithm is incorporating data distribution information
into a structural risk minimization learning algorithm (15).
Therefore, identifying a direction along which the two
classes of data are best separated would be facilitated.
This direction is represented as weighted sum of the
original  variables.  The  weight  assigned  to  each
variable in this combination measures the contribution of
the variable toward the separation of the two classes of
data.

ProPeak, currently, offers three UMSA-based
analytical modules. First is the Component Analysis
Module which demonstrates each specimen as an
individual point in a three-dimensional space. The
components (axes) are linear combinations of the original
spectrum peak intensities. The axes represent the
directions along which two pre-specified groups of data
will achieve maximum separability. The two groups of
data can be observed to investigate their separation in the
component space in an interactive three-dimensional
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display. The second module of ProPeak, BootStrap
Selection, is used to reduce the complexity of the original
data set, in case the separation achieved using
combinations of all peaks. This module performs multiple
runs of UMSA each of which entails randomly leaving
out a fixed percentage of the samples from both groups.
The mean, the median and the corresponding SD of the
ranks from multiple runs are estimated for each peak. The
bootstrap-estimated SD of a peak’s rank provides the
information about the consistency of the peak’s ranking
across multiple randomly selected subpopulations of the
samples. To establish an objective peak selection
criterion, in this study the same bootstrap procedure was
also applied to a random dataset that, peak by peak,
simulates the distribution of the actual data. The minimum
of the rank SDs among all peaks in the simulated random
data set was used as the cutoff value for rank SD of the
actual data to select a subset of peaks that, in addition to
being top-ranked in their contribution to the separation of
the data groups, also demonstrated a consistency that was
less likely attributable to pure chance. Finally, ProPeak
implicates the third module to apply a backward stepwise
selection procedure to compute a significance score for
each peak. The absolute value of the score is based on the
peak’s contribution to data separation and is in reverse
relation to the order in which it is removed from the initial
list of peaks. A positive or negative score indicates
relatively increased or decreased expression, respectively,
of the corresponding mass peak for the diseased group,
whereas the absolute value of the score represents its
relative importance toward data separation.

Identifying potential biomarkers that can detect breast
cancer at early stages, protein profiles of specimens from
stage 0-I, requires breast cancer patients to be compared
against those of the non-cancer controls. The analysis
involved multiple iterations using all three modules in
ProPeak to select from the original full set of mass peaks
a small panel of peaks that possessed a consistently high
degree of significance in the optimal separation between
the two selected diagnostic groups.

After selecting small panel of biomarkers, an
evaluation of their ability to detect breast cancer was
carried out using the set-aside independent test data set of
stages II and III cancer patients. Complementary
performance of multiple biomarkers was assessed using
a composite index derived by multivariate logistic
regression based on the entire data set. Descriptive
statistics including p-values from two-sample t-tests and
ROC curve analysis were provided for the selected
individual biomarkers as well as the composite index. To
partially overcome the limitation of lacking a full set of
independent test data other than those from the late-stage
cancer patients, we used the bootstrap procedure (16) to
estimate key performance criteria such as the sensitivity

and specificity of the composite index. In this procedure,
the patient data set was repeatedly divided through
random sampling into a training set to derive a composite
index through logistic regression and a test set for
computing sensitivities and specificities. The results from
multiple runs were then aggregated to form the bootstrap
estimate of sensitivity and specificity.

RESULTS

Peak detection and data pre-processing: An analysis of
serum proteins retained on the IMAC-Ni2+ arrays was
performed on a PBS II mass reader. To acquire the high
mass was set to 150 kDa, with an optimization range from
5-30 kDa. A mass accuracy of 0.1% was obtained by
external calibration using the All-In-1 Protein Standard
(Ciphergen).

Between a total of 147 acceptable detected mass
peaks (signal-to-noise ratio >5), 61 peaks had m/z values
in 2 to 10 kDa, 30 peaks had m/z values between 10 and
20 kDa, 33 peaks were between 20 and 50 kDa and 23
peaks  were  between  50  and  133  kDa.  Peaks  with
a m/z<2 kDa were mainly ion noise from the matrix and
therefore excluded. Peak intensity was normalized to total
ion current (2-150 kDa) and logarithmic transformation
was applied. The plots in Fig. 1 illustrate the effect of
variance reduction and equalization through logarithmic
transformation.

Biomarker selection based on early-stage cancer and
non-cancer controls: To identify biomarkers with
potential for early stage detection of breast cancer, UMSA
was performed using the positive group (early-stage
cancer, stage 0-I; n = 42) and the negative group of non-
cancer controls (HC+BN; n = 66). First the separability
between the two groups was tested by UMSA-derived
liner  combination  of  all  147  mass  peaks.  When  the
entire protein profiles were compared, the early-stage
cancer  was  separable  from  the  non-cancer  group.
Figure 2 illustrates the early-stage cancer (red) and the
non-cancer (green) data in the UMSA three-dimensional
space.

Figure 2a, plot of training data: stage 0-I vs.
noncancer using UMSA-derived linear combination of all
147 peaks (Fig. 2b), plot of training data: stage 0-I vs.
noncancer using the three selected peaks (Fig. 2c), plot of
training and test data: stage 0-I (training data) and stage
II-III (independent test data) vs. noncancer (training data),
using the three selected peaks.

In order to select biomarkers with consistent
performance, UMSA was repeatedly applied for a total of
100 runs, each with a 30% leave-out rate, using the
ProPeak BootStrap module. The same procedure was also
applied to a simulated random data set. The minimal rank 
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Fig. 1: Effect of logarithmic transformation on data variance reduction and equalization

Fig. 2(a-c): Three-dimensional UMSA component plot of stage 0-I (red) or stage II-III (blue) breast cancer vs. non-
cancer controls (green)

SD derived from the simulated data was 7.0. Among the
peaks with top mean ranks from the actual experimental
data, 15 had a rank SD less than this value. They were
selected as candidate biomarkers for further analysis.
Their mean ranks and the corresponding rank SDs are
plotted in Fig. 3.

Horizontal line at 7.0 was the minimum rank SD
computed by applying the same procedure to a randomly

generated data set that simulated the distribution of the
original data. Further ranking of the peaks in this reduced
set of candidate biomarkers was performed using the
Stepwise Selection module of ProPeak. The absolute
value of the relative significance scores of the 15 peaks
are presented in a descending order in Fig. 4a which
illustrates that the majority of separability between the
two groups of data was contributed by the first six peaks. 
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Fig. 3: Fifteen peaks with top mean ranks ( ) and minimal
rank SDs (~) derived from ProPeak Bootstrap
Analysis

Fig. 4(a, b): Plot of absolute values of the relative
significance scores of selected peaks based
on contribution toward the separation
between stage 0-I breast cancer and the
noncancer controls

Among these six peaks, two were identified by
ProteinChip Software 3.0 as doubly charged forms of the
others. The recognition of both the doubly charged and
the singly charged forms of these peaks suggests their
importance in disntiguishing the selected two diagnostic
groups. By excluding the doubly charged forms, the four
unique peaks were further recombined and evaluated
using the Backward Stepwise Selection module of

ProPeak. The relative significance scores that were
recalculated are plotted in Fig. 4b. The top-scored three
peaks, designated BC1 (4.3 kDa), BC2 (8.1 kDa) and
BC3 (8.9 kDa) were finally selected as the potential
biomarkers for detection of breast cancer. Snapshots of
three-dimensional plots of stage 0-I or stage 0-III breast
cancer against the non-cancer controls using these three
biomarkers are shown in Fig. 2, panels B and C,
respectively. Between the three biomarkers, BC1
appeared to be down-regulated (scored negative; data not
shown) whereas BC2 and BC3 were up-regulated (scored
positive; data not shown). This is easily seen in Fig. 5
which illustrates a comparison based on the representative
spectra and gel views of the selected biomarkers between
cancer and non-cancer controls.

Figure 4a, the 15 peaks selected from ProPeak
Bootstrap Analysis with rank SD <7.0. Figure 4b,
reevaluated scores of the selected top four peaks.

Figure 5a, BC1 (4.3 kDa), down-regulated in cancer;
(Fig. 5b), BC2 (8.1 kDa), up-regulated in cancer; and
(Fig. 5c), BC3 (8.9 kDa), up-regulated in cancer. Left
panels show the spectrum views; right panels show
pseudo-gel views of the same spectra. Both cancer and
noncancer representatives were randomly selected with no
bias on stages in cancer or between healthy and benign in
non-cancer.

Evaluation of the selected biomarkers: The estimated
CVs of the log-transformed peak intensities were 6% for
BC1, 7% for BC2 and 13% for BC3. The largest CV of
13% belongs to BC3 amongst the three biomarkers. A
descriptive statistics of these three biomarkers are
summarized in Table 1. Figure 6 shows results of the
ROC analysis. BC3 possesses the highest individual
diagnostic power [area under the curve (AUC), 0.934]
compared with BC1 (AUC, 0.846) and BC2 (AUC,
0.795). Its distributions over the diagnostic groups
including clinical stages of cancer patients are plotted in
Fig. 7a. Even by considering the sensitivities and
specificities of BC3 alone at a cut-off value of 0.8 could
differentiate the diagnostic groups which are listed in
Table 2 A. The overall sensitivity for breast cancer was
85% and specificity was 91%.

The AUCs, for the composite index for three
biomarkers BC1, BC2 and BC3 0.846 are 0.795, 0.934
and 0.972, respectively. Significance for AUC
comparisons between individual biomarkers and the
composite index is as follows: p<0.0001 for BC1 and
BC2 vs. the composite index; p<0.01 for BC3 vs. the
composite index.

Applying a combination of three selected biomarkers:
To form a single-value composite index, a multivariate
logistic regression was used in order to combine the three
selected  biomarkers.  The  descriptive  statistics   of   the 
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Table 1: Descriptive statistics for BC1, BC2, BC3 and the logistic regression-derived composite index
Breast cancer patients
---------------------------------------------------------------------------------------------

Noncancer controls (n = 66) Stage 0-I (n = 42) Stage II-IIII (n = 61)
----------------------------------- ----------------------------------- --------------------------------------

Variables Mean SD Mean SD Mean SD
BC1 0.302 0.312 -0.118 0.244 -0.081 0.258
BC2 0.981 0.358 1.411 0.154 1.295 0.250
BC3 0.526 0.352 0.993 0.193 1.003 0.234
Composite index -0.375 0.313 0.425 0.257 0.349 0.242

Table 2: Diagnostic performance of BC3 (A) and bootstrap-estimated performance of Logistic Regression (LR)-derived composite index (B)
Noncancer controls, 1n Breast cancer patients by stage, 2n

A. BC3 ----------------------------------------------------- ------------------------------------------------------------------------------
Cutoff = 0.8 HC3 Benign Subtotal 1 0-I II4 III4 Subtotal 1
Positive 0 6 6 37(88%) 29(78%) 22(92%) 88(85%)
Negative 41(100%) 19(76%) 60(91%) 5 8 2 15
Total 41 25 66 42 37 24 103
B. LR-derived Noncancer controls Breast cancer patients by stage
composite index5 ------------------------------------------------------ ------------------------------------------------------------------------------
Cutoff = 0 HC Benign Subtotal 1 0-I II III Subtotal 1
Positive - - - 93% 85% 94% 93%

(85-100%)
Negative 100% 85% 91%(82-100%) - - - -

Fig. 5(a-c): Representative spectra and gel views of the selected biomarkers

composite are presented in Table 1. Its distributions over
the various diagnostic groups are represented in Fig. 7b.
However, ROC curve analysis of the composite index
gave a much improved AUC (0.972) compared that of
individual biomarkers (Fig. 6).

Estimation of the diagnostic performance of the
composite  index  (20  runs;  in  each  run,  70%  samples
were randomly selected for composite index derivation
and  the  remaining  30%  for  testing)  was  performed

using  bootstrap  cross-validation.  The  estimated
sensitivity  (93%)  and  specificity  (91%)  are  listed  in
Table 2.

Correlation to tumour size and lymph node
metastasis: The three potential biomarkers content were
evaluated in relation to pT (tumor size) and pN (lymph
node metastasis) categories. No tangible correlation was
observed (data not shown).
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Fig. 6: ROC curve analysis of BC1 (~), BC2 ("), BC3
(Î) and logistic regression-derived composite
index (+)

Fig. 7(a, b): Distribution of the selected biomarker(s)
across all diagnostic groups including
clinical stages of the cancer patients: (a),
BC3 alone and (b), Logistic regression-
derived (LR) composite index using BC1,
BC2 and BC3

DISCUSSION

Proteomics play an important role in prevention,
early-diagnosis and treatment with drug design; therefore,
it is an invaluable technique for the study of cancer. In
most cases detecting cancers is at their malignant state
and patients become aware of their situation when
malignancy has advanced. Therefore, proteomics by early
detection and diagnosis of cancer, even in the
premalignant state, helps current or future treatment

strategies to have a better chance of cancer treatment.
Proteomics gives information on cell processes that
control cell division and differentiation in cells, apoptosis
in normal cells, cause of abnormalities in healthy cells
that initiate the cancer. Methods used in proteomics,
however should be improved for better efficiency.
Therefore, one of the objectives in perfecting proteomics
is to raise the content and purity of extracted proteins and
reduce the amount of samples to analyze, automation (i.e.,
using tools such as robots to replace human in the
process), utilizing more efficient software and also using
complementary techniques with more sufficient
sensitivity and specificity to achieve higher accuracy in
detecting the malignancy of cancers[30].

Multifactorial nature of cancer likely necessitates a
combination of several markers to effectively detect and
diagnose cancer. Such traces of cancer require not only
high-throughput genomic or proteomic profiling but also
sophisticated bioinformatics tools for complex data
analysis and pattern recognition, to be detected.

Simultaneous analysis of the protein profiles of 169
serum samples from patients with/without breast cancer
was conducted. The software package ProPeak evaluated
each mass peak according to its collective contribution
towards the optimal separation of the cancer patients from
the non-cancer controls. The two mentioned advances has
led to the identification of three discriminatory
biomarkers that, if used in combination, achieved both
high sensitivity (93%) and high specificity (91%) in early
detection of breast cancer patients from the non-cancer
controls.

Biomarkers particularly sensitive to differences
between early-stage breast cancer patients and non-cancer
controls can be found by performing the selection of mass
peaks reported here using stage 0-I cancer and non-cancer
controls as the training data and more advanced cancer as
test data. The biomarkers that were used in the final
selection were, however, not sensitive to the stages of
cancer patients used in the selection process. In fact,
whether the combinations used were stage II vs. non-
cancer, stage III vs. non-cancer, or a randomly selected
subset of cancer patients at all stages against non-cancer
controls, the same three peaks were always selected as the
best and most consistently ranked biomarkers. Early
detection remains one of the most urgent issues in breast
cancer research.

The screening of a large number of potential markers
simultaneously can be facilitated through high-throughput
profiling of complex protein expression patterns.
However, the sample sizes are relatively small for most
currently available data sets compared with the total
number of detected mass peaks. There is a real danger to
mistakenly select mass peaks whose high discriminatory
power is purely by chance because of artifacts in the data
that  are  unrelated  to  the  disease  process.  The  use  of
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high-order nonlinear classification models directly on raw
spectrum data may further amplify and mask the influence
of such false markers.

In the present study, the UMSA algorithm resulted an
efficient model for ranking a large number of peaks
collectively according to their contribution to the
separation of two predefined diagnostic groups. The
ProPeak BootStrap module has brought about random
perturbations in multiple runs to examine the consistency
of the top-ranked peaks, measured by the SD of computed
ranks from multiple runs. To establish an upper cutoff
value on a peak’s rank SD for its performance not to be
considered as purely by chance, the same bootstrap
procedure was applied to a randomly generated data set
that simulated the distribution of the real data. The
minimum value of rank SDs from such “simulated peaks”
indicates the degree of consistency that a peak might
achieve by random chance. This minimum value was used
as the cutoff to help to reduce the original 147 peaks to a
subset of 15 peaks for further consideration. The
performance of such peaks should be less likely
attributable to random artifacts in the data.

The composite index described in this report was
derived by simple multivariate logistic regression to
achieve simpler results. Further validation of these
selected biomarkers, more may use complex and
nonlinear classification models to combine the multiple
biomarkers. The use of complex modelling methods on
carefully screened and tested biomarkers should in
general offer a more robust performance than the direct
application of such methods on raw data from a large
number of mass peaks.

Total specimens analysed in this study to some extent
limited the validity of the results. The bootstrap cross-
validation estimation of performance brings about
statistical confidence on the generalizability of these
biomarkers over future data. Further independent
validation studies are needed. The specificity of these
selected biomarkers for detection of breast cancer needs
to be addressed by testing specimens from other types of
cancer. Moreover, validation data sets preferably should
be from sources different from that of the original training
data set. This is one way to ensure that the performance of
the selected biomarkers is not influenced by systematic
biases between the disease and the control specimens.

The three biomarkers selected showed no significant
correlation between their concentrations and the tumour
size or lymph node metastasis. Therefore, the
discriminatory power of these markers can be attributed
to the malignant nature of the tumour rather than its
progression. The origin and identity of BC1, BC2 and
BC3 are currently under investigation. Furthermore, it is
not our intent at this stage to suggest a final diagnostic
algorithm based on nonlinear classification.

CONCLUSION

In this study, it was shown that using proteomics
approaches such as Ciphergen ProteinChip Arrays and
SELDI-TOF MS together with bioinformatics tools could
help the discovery of new biomarkers. The panel of three
selected biomarkers were used to achieve high sensitivity
and specificity for the detection of breast cancer.

REFERENCES

01. Azodi, M.Z., H. Ardestani, E. Dolat, M. Mousavi, S.
Fayazfar and A. Shadloo, 2008. Breast cancer:
Genetics, risk factors, molecular pathology and
treatment. J. Paramed. Sci., Vol. 4.

02. Zali, H., M. Rezaei-Tavirani and M. Azodi, 2011a.
Gastric cancer: Prevention, risk factors and
treatment. Gastroenterol. Hepatol. Bed. Bench., 4:
11-18.

03. Lodish, H., 2009. Molecular Cell Biology. 6th Edn.,
Springer, New Jersey, USA., pp: 5-10.

04. Redei, G.P., 2008. Encyclopedia of Genetics,
Genomics, Proteomics and Informatics. 3rd Edn.,
Springer Netherlands, Netherlands, Europe, Pages:
2201.

05. Hayat, M.A., 2009. Methods of Cancer Diagnosis,
Therapy and Prognosis: Liver Cancer. 1st Edn.,
Springer, Netherlands, Europe, Pages: 602.

06. Seyyedi, S.S., M.S. Dadras, M.R. Tavirani, H.
Mozdarani, P. Toossi and A.R. Zali, 2007. Proteomic
analysis in human fibroblasts by continuous exposure
to extremely low-frequency electromagnetic fields.
Pak. J. Biol. Sci., 10: 4108-4112.

07. Rozek, W. and P.S. Ciborowski, 2008. Proteomics
and Genomics. In: Neuroimmune Pharmacology.
Ikezu, T. and H. Gendelman (Eds.), Springer, New
Jersey, USA., pp: 725-741.

08. Pooladi, M., S. Sobhi, R.A. Khaghani, M. Hashemi,
A. Moradi et al., 2013. The investigation of Heat
Shock Protein (HSP70) expression change in human
brain asterocytoma tumor. Iran. J. Cancer Prevent., 6:
6-11.

09. Gottfries, J., M. Sjogren, B. Holmberg, L.
Rosengren, P. Davidsson and K. Blennow, 2004.
Proteomics for drug target discovery. Chemom.
Intell. Lab. Sys., 73: 47-53.

10. Petricoin, E.F., G.B. Mills, E.C. Kohn and L.A.
Liotta, 2002. Proteomic patterns in serum and
identification of ovarian cancer. The Lancet, 360:
170-171.

11. Wulfkuhle, J.D., L.A. Liotta and E.F. Petricoin,
2003. Proteomic applications for the early detection
of cancer. Nat. Rev. Cancer, 3: 267-275.

12. Ludwig, J.A. and J.N. Weinstein, 2005. Biomarkers
in cancer staging, prognosis and treatment selection.
Nat. Rev. Cancer, 5: 845-856.

55



J. Mol. Genet., 13 (2): 46-56, 2021

13. Srinivas, P.R., M. Verma, Y. Zhao and S. Srivastava,
2002. Proteomics for cancer biomarker discovery.
Clin. Chem., 48: 1160-11696.

14. Srinivas, P.R., B.S. Kramer and S. Srivastava, 2001.
Trends in biomarker research for cancer detection.
Lancet Oncol., 2: 698-704.

15. Rezaei-Tavirani, M., H. Zali, F.R. Jazii, M.H.
Heidari, B. Hoseinzadeh-Salavati, F. Daneshi-Mehr
and K. Gilany, 2010. Introducing aldolase C as a
differentiation biomarker: A proteomics approach.
Arch. Adv. Biosci. Vol. 1, No.1.

16. Bichsel, V.E., L.A. Liotta and E.F Petricoin 3rd,
2001. Cancer proteomics: From biomarker discovery
to signal pathway profiling. Cancer J., 7: 69-75.

17. Mechref, Y., Y. Hu, A. Garcia and A. Hussein, 2012.
Identifying cancer biomarkers by mass spectrometry-
based glycomics. Electrophoresis, 33: 1755-1767.

18. Uen, Y.H., K.Y. Lin, D.P. Sun, C.C. Liao, M.S.
Hsieh et al., 2013. Comparative proteomics, network
analysis and post-translational modification
identification reveal differential profiles of plasma
Con A-bound glycoprotein biomarkers in gastric
cancer. J. Proteom., 83: 197-213.

19. Reymond, M.A., J.C. Sanchez, G.J. Hughes, K.
Gunther, J. Riese et al., 1997. Standardized
characterization of gene expression in human
colorectal epithelium by two-dimensional
electrophoresis. Electrophoresis, 18: 2842-2848.

20. Kruger, T., J. Lautenschlager, J. Grosskreutz and H.
Rhode, 2013. Proteome analysis of body fluids for
amyotrophic lateral sclerosis biomarker discovery.
Proteomics. Clin. Appl., 7: 123-135.

21. Goldknopf, I.L., 2008. Blood-based proteomics for
personalized medicine: Examples from
neurodegenerative disease. Proteomics, vol. 5, No. 1.
10.1586/14789450.5.1.1

22. Kim, Y.J. and A. Varki, 1997. Perspectives on the
significance of altered glycosylation of glycoproteins
in cancer. Glycoconjugate J., 14: 569-576.

23. Cheng, Y., T. LeGall, C.J. Oldfield, J.P. Mueller and
Y.Y.J. Van et al., 2006. Rational drug design Via.
intrinsically disordered protein. Trends Biotech., 24:
435-442.

24. Wilkins, M.R., C. Pasquali, R.D. Appel, K. Ou and
O. Golaz et al., 1996. From proteins to proteomes:
Large scale protein identification by two-dimensional
eletrophoresis and amino acid analusis. Nature
Biotechnol., 14: 61-65.

25. Pooreydy, B., F. Tajik, M. Jafari, M. Karimi, M.
Rezaei-Tavirani et al., 2013. Organelle isolation for
proteomics: Mitochondria from peripheral blood
mononuclear cells. J. Paramed Sci., 4: 78-86.

26. Canas, B., C. Pineiro, E. Calvo, D. Lopez-Ferrer and
J.M. Gallardo, 2007. Trends in sample preparation
for classical and second generation proteomics. J.
Chromatogr. A., 1153: 235-258.

27. Moon, H., A.R. Wheeler, R.L. Garrell and J.A. Loo,
2006. An integrated digital microfluidic chip for
multiplexed proteomic sample preparation and
analysis by MALDI-MS. Lab. Chip., 6: 1213-1219.

28. Zali, H., G. Ahmadi, R. Bakhshandeh and M. Rezaei-
Tavirani, 2011b. Proteomic analysis of gene
expression during human esophagus cancer. J.
Paramed Sci., 2: 2008-4978.

29. Albalat, A., J. Franke, J. Gonzalez, H. Mischak and
P. Zurbig, 2012. Urinary proteomics based on
capillary electrophoresis coupled to mass
spectrometry in kidney disease. Clin. Appl. Capillary
Electrophoresis., 919: 203-213.

30. Shi, T., D. Su, T. Liu, K. Tang, D.G. Camp et al.,
2012. Advancing the sensitivity of selected reaction
monitoring-based targeted quantitative proteomics.
Proteomics, 12: 1074-1092.

56


