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Abstract: Several Non-Destructive techniques were applied in the quality control as radiography (x-rays),
acoustic signals, and the radicactivity (gamma rays), among these techmiques, that of infra-red thermography.
Nevertheless in several situations as the industrial quality control, it 1s very important to use the technique of
infra-red thermography in order to examine quantitative information starting from the images of infra-red. The
numerical and experimental examination of a circular sample with porosities intern in materials and structure
gave results on various positions and dimensions of porosities. The samples used as example are steel,
alummium, ceramics and the pellets of Uraninite (UO,).
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INTRODUCTION

The quality control with Non-Destructive
techmiques 1s increasingly more important for much
application ndustrial (aviation, electronics, materials,
nuclear  industry, ciwvil  engineering....etc). A
particular  Non-Destructive  technmique
subjecting the structure which one wants to examine
with a thermal process and to measure the surface
distribution of temperature, for example technique of
mfra-red  thermography. The  possible surface
deformations of the temperature can reveal the
presence of internal porosities. In order to increase the
possibilities of detection and to be able to obtain
quantitative information on the internal defects, it is
necessary to be prepared of mathematical models of
simulation suitable and precision of the thermal process
1 the system. To have more information on porosity, we
determine its various positions and dimensions inside
the sample.

In this present study, we will take as model a circular
thick plate with mternal porosities for materials and
metals, tandisque m nuclear industry, we work on
Uramnite pellets (UO,) to the presence of internal
porosities formed during sintering! .

consists 1n

MATERIALS AND METHODS

Mathematical definition of the studied problem: The
presence of porosity 1s revealed by the determination of
the surface distribution of the temperature by solving the
thermal equation of conduction with the boundary
conditions in no stationary mode. Porosity 1s detected by
its position, its thickness. The physical model taken as
example is a circular sample™,

Mathematical model: The mathematical equation of the
model is the differential equation of thermal conduction
without internal source in the no stationary mode:™.
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Fig. 1: Representation of artificial porosity

« : Thermal Diffusivity [m¥3].

A : Thermal conductivity [W/m k].

Cp : Specific heat [T/kg"k].

p : Density [kg/m®].

T =T (x,y,t): temperature of the body.

The two-dimensional model m no stationary mode
represented in the co-ordinates cylindrical 1s:

9’ T(r,zt) N 9 T(r,z,t) 1 9T(r,z1) @
ar dz* a ot

The circular sample is subjected to a constant

flow o on

side, on other surfaces a mnatural

convection (h) is imposed Because of symmetry
compared to axis 7 where R = 0 to see Fig. 1, we study half
of the plate. The geometry of the problem as well
as the boundary conditions is represented on the

figure Fig. 1.

The boundary conditions on the borders are:
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To make the result more general, one replaces all the
sizes by adimensional sizes:"”
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The Eq. 2 m the adimensional form becomes then:

2 2
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Also, the boundary conditions (1.a-d) are written 1n
the form: With Bi = h=s/A and Bil = b’ *s/A numbers of biot

Z*=0 99 =-1 (za)
g 7Z*
Z*=1:-Bilx8 = 9 6 (2.b)
d 7Z*
d6
r*=0: =0 2c
P (Z.0)
r*:L:fBilxezae (z.d)
S ar*

Then the mathematical model 1s represented by the

Eq. 3 with the equations of the boundary conditions
(2.a-d),

Numerical methods utilisees for the resolution of the
mathematical model: We used two methods of numerical
resolution:

»  The method clarifies simple!'".
+  Method ADI
method)!+2,

(alternating  direction  implicit
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Fig. 2: Results of the ADI method (stainless steel). Distribution of the temperature en function of X
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Fig. 3: Result of the ADI method (Aluminum)

Note: It is necessary to pay attention to the calculation of
the time limits. The time limits are smallest time given by
the stability conditions. At " < At ..

The resolution by method ADI leads us to the
resolution of a system tridiagonal. This system is solved
by the algorithm of Thomas!™.

The data-processing program: Two programs were
established for the resolution of the problem in question,
one program for the resolution by the explicit method and
that of method ADI!,

RESULTS AND DISCUSSIONS

After having posed and having defined the
mathematical model and after the establishment of the
simulation program describing the problem, we collect the
results of some examples of application (steel, aluminium,
ceramics, Uramnite (UQ,)). Let us introduce the
characteristics geometrical and physical material and

35

porosity (3, L, 3d, Pd) . A each fixed Sd thickness and with
positions different Pd from porosity, we have the results
of the surface distribution of the ATmax temperature and
the values of the number of corresponding Fomax Fourier.
With each position Pd of porosity, us will take values
maximum of Fo and AT for different moments i.e. that we
stop the execution of the program when the difference in
surface temperature AT 15 maximum (test of convergence),
Fig. 2.

What enables us to trace a graph of Fomax and
ATmax according to the various positions Pd with each
3d thickness in order to be able to determine the optimal
time of detection between thermal diffusivities of material
and porosity, the position and the characteristics of
porosity. The calculation programme based on the model
and the digital techmque previously described was
launched on a microcomputer. The parameters of
the data are dimensions of the sample and porosity,
their mtervals of discretization second, their axes 7 and
R, the thermophysical characteristics of material of the
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Fig. 4: Results of the ADI method. stainless steel
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Fig. 5: Results of the ADI method ceramic alumina
(ALOy)
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sample and porosity, the convection coefficient and the
step of time.

The adimensional numerical results, in particular the
couple (Fomax, ATmax), for many combinations the
thicknesses Sd* and depths Pd* of porosity, were
represented in graphs. See Fig. 3, 5, and 6 of the treated
examples.

We note a difference from 10% to 15% between the
theoretical studies and that experimental presented on the
Fig. 4.
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- DT max exp —¢-Dt max théo

Example 1: (Stainless steel 18.,6% Cr; 9,5% Ni; 1,11%Mn;
0,46% 81, 0,063% C; 0,023% P).

Example 2: Tron™.

CONCLUSION

The goal of this work is to estimate the presence of
porosities inside metallic material or different by means of
research thermography of transition. The analysis was led

for wvarious thicknesses of porosities and various
positions, in parallel we carried out a digital model with
the finished differences representative of heat exchange
conductive inside the sample.

In the digital model, we suppose to impose on the
one of the two plane faces of the sample a constant heat
flux, and we carry out the taking away of the temperatures.

We thus create on such surface a heat gradient between
the centre and the edge. The digital model confirms the
validity of such obvious assertion. Moreover, the couple
of the values of thermal moment of visibility meximum are
single, 1.e., there are never two identical couples
representing of dimensions various and localizations
different from porosity.

LIST LEGENDS
Symbols  Designations units
A¥ Thermal conductivity [ w/mK]
Cp Specific heat [ T/kg K]
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p Density [ kg/m’]
« Diffusivity has [ m*/8]
T(x,y.t) Temperature of the solid. [°K]
d Differential operator.
T Axis of symmetry. [m]
Z Axis of symmetry. [m]
3 Thickness of the plate. [m]
L Length of the plate. [m]
=d Thickness of the defect. [m]
Pd Depth of the defect. [m]
Ld Length of the defect. [m]
t fo Number of Fourier
(adimensional time
0 (R,Z, T) Adimensional Temperature.
r' Coordinated adimensional.
z" Coordinated adimensional.
Sd” Adimensional Thickness of
the defect in %.
Pd’ Adimensional Depth of
the defect in %
T Temperature of the flud. [°K]
hh' Convection coefficients [ wm®K]
Bi, Bil Numbers of Biot.
q Quantity of the flux [ w/m’]
AT’ Variation of adimensional time.
AD Variation in the adimensional
temperature.
0 Heat flux [W].
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