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Neuro Fuzzy Modelling of a Dci Diesel Engine and Fault Detection
and Diagnosis by Space Parity and Observers
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Abstract: Faults detection and diagnosis systems, which are designed and implemented for the common rail
direct injection diesel engine. Requiring models that are very near to the mechanical and thermodynamic reality
process which 1s substantially non linear and time varying. A complete model 1s presented, the parameters
1dentification using neuro-fuzzy approach, the around this model, we have built a faults diagnosis and detection
structure, using the parity space and the observers. Finally, we propose a human machine cooperation
structure in the monitoring loop, in order to have more reliability and an easier intervention for this process
maintenance.
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INTRODUCTION residues with the normal value, thus we can conclude if
the process 1s faulty.

HIS work was initiated to answer certain questions

concerning the right operation of the common rail and
direct jection diesel engine, (DCI, HdI, model).

The technological complexity of the elements which
constitute these engines, increasingly integration of
calculation space and as well as the degree of cooperation
of the designer detection of rather powerful diagnosis
of faults.

For that 1t 1s presented a complete model describing
the phases of admission combustion and of exhaust,
model strongly non linear.

The neuro-fuzzy approach 1s used to build mult
model (LOLIMOT) 'local linear model tree' the
aforementioned reproduce the most accurately
phenomenon of thermodynamic and mechanic.

The 1dentification of the parameters 1s carried out on
uncoupled linear models described by a neuro-fuzzy
representation see ref!’.

A rather consistent simulator 1s launched for to
build a data base, permiting to delimit the operation
horizons, of direct injection engine.

A structure of detection of faults and diagnosis is
built around a block of generator of residues by two
methods, that of the parity space and a bank of observers,

in a second stage we established a test to compare the

MODELLING OF COMMAN RATL DIRECT
INJECTION DIESEL ENGINE

The system of injection high pressure with common
consists in feeding, using an electronically controlled
high Pressure pump, a commonrail which provides the
function of accumulator of the fuel. This rail 1s connected
to myectors which ensure a very fine pulverization
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Fig. 1: Simplified diagram of the diesel engine
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Table 1: Units for state space represntation

Variable Symbol Description

ul Kegr Egr rate

u2 mg fuel mass flow

u3 po Varying Turbin geometry
ud M The load momentium

x1 n Speed engine

X2 Pman Intake Manifold pressure
X3 mff Fuel film mass flow

X4 PC Power of turbo

X5 Pex T BExtaust manifold pressure
X6 Tman Tntak e manifold temperatre
X7 Texo Exfaust manifold temperature

directly in the combustion chamber using a pressure
ranging between 1350 and 1400 bars. This very fine and
Mégane 2. Pulverization makes it possible to improve the
combustion we are particularly interested in the study
of the Renault engine 1,5 DCI (K9K) of the CLIO,
Kangoo

The physical model representing the dci diesel engine
includes the following dynamics:

*  Dynamics of the air represented by the equations: 2,
4 and 6. of (Y )

¢ Dynamics of combustion equations 1 and 3. of (Y )

¢ Dynamics of the exhaust equation 5 and 7.de (Y )
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Tt is has to stress that the input signals (which will be
to use in the phase training of ' lolimot ' are of pseudo
random binary type, Fig. 2. One uses the method
Rang-Kutta of order 4 for the solution of the nonlinear
system of equations composed by the equations (Y )
xl... x7.
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Fig. 2: The mputs of the system, Rate of egr, flow of
mjection, variable geometry hamesses, the

moment of load
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Fig. 3: Speed, pressure of admission, flow of films
mjection, power of turbo
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Fig. 4: Pressure of exhaust, temperature of admission,
temperature of exhaust

The solution of the system is represented in Fig. 3
and 4, 1t comresponds to the variables of state of the
system (driving).
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USE OF NEURO-FUZZY NETWORKS
LINEARIZATION OF THE MODEL IN
ORDER TO OBTAIN (LOLIMOT)

The dynamic models with p input and Q are

represented by the structure of NARX (i = 1...,q)
outputs:
.00 =0( ud-Dyou ko),
u (k=1),---,u,(k—nu,}, i

Y1(k 71)37”:}71(1( *H}’l),'”,
y (k1. y (k—ny)

where nu, and ny, are the dynamic order of the system.

The structure of the model which is represented in (1)
carries out a stage of prediction ahead for the
identification of the parameters, the model can be carried
out in parallel with the process (simulation) while turning
over the outputs of models of prediction ¥, instead of
employing the measurements produced by process, e.g.
they are normalized such:

Y0,(2)=1 @

The structure of the local linear network neuro-fuzzy
is represented in Fig. 5. Each neuron carries out a Linear
Model Local (LLM) and is associated to a function of
validity which determines the area bult of the validity of
the LLM.

The use of the network of newo-fuzzy for the
linearization of model For every input 7 of model, the
output of local linear model neuro-fuzzy is calculated by:

Fig. 5: Fuzzy Structure of newro fuzzy network of local
linear model with M neurons for Ny LLM of mputs
¥ and N , functions of validity of inputs 7
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Where the local linear models depend on x = [X
X, X, X,]"and the functions of validity depend on z =
[Z,7; 7, .., Zy]" Thus, the output of network is calculated
as a balanced sum of outputs of the local linear models
where @, (z) are mterpreted as operation poimt depend on
ponderation . The network mnterpolates between different
LLMs with the validity functions. The weights W, are
linear parameters of network.

The functions of validity are typically selected as
normalized Gaussienne. If these Gaussianne are moreover
orthogonal the functions of validity are defined by the
following equations:

o z-HD (4)
() S @ (4
with:
(z, ,Cl,l)z (Z, —Cip ¥

) -

The centres and the standard deviations are the
nonlinear parameters of the network.

In the fuzzy interpretation of system, each neuron
represents arule. The fimctions of validity represent the
positions of rule and LLMs represents consequent of
rules.

Unidimensional Gaussienne membership functions:

M,,J(ZJ)—exP{—le

2 T,

1.1

(z)=ex L +ot
pﬁ - p 2 Gz Gz

il inz

(6)

We can be combined by a T-standard (conjunction)
carried out with the operator of product to form the
functions of multidimensional membership represented
mn (5).

One of the principal forces of the lmear local
neuro-fuzzy models is that the antecedents and the
consequents must not depend on the identical variables,
meaning z and x can be selected independently™.

TECHNIQUES OF DETECTION AND
DIAGNOSIS OF THE FAULTS

The techniques of detection of the fault are
numerous, we can classify in distinguish four principal
techniques:
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¢ Methods by material redundancies,

*  Methods by expert systems,

¢ Methods by pattern recognition,

*  Anmnalytic methods (based on analytic models)

In our study we are interested by the last method. In
fact the comparison Between two methods which we
judged adapts to know  parity space and a banc of
observers, we shall proposed a structure F.D.I around
the block of residues generation who will take account of
the faults sensors, actuators and system. Study in
simulation 13 made on this part which be appeared the
faults in all element of system!®”.

The parity space: The concept of the space parity was
generalized by using the relation temporal of redundancy
(or dynamics) generated from the model of the dynamic
system let us consider the following deterministic model:

x(k+1)= A x(k)+ Bu(k)+ F d(k)
yky=Cx(k)+F dk)

7

Meaning that the measuwrements depend only
defected state on defect and does not utilize the mput U.

¥ €1R" the unknown state; U € IR® the known
input.

y €IR" known cutputs. C € IR™* F, €IR™
With € IR: The matrix of state of system.

F, € [R™

B € IR* the matrix of control

The material redundancy 1s expensive and offer small
mterest for the momtoring of the actuators, therefore we
can regulate it by a temporal redundancy (dynamic)
which links information of the sensors and the actuators
at various moments, this redundancy offers a great help.
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Fig. 6: Detection by a banc of observers
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Indeed on a horizon of observation [ K, k+s ], the
equations of system can be gathered 1 the form:

0

USERN(E o0 uk)
ikt | | CA B 0 ulk+)
CAB (B
B = z X(k)+ z . +
: : : CB
ykts)) | cab oA R e B - CAB B ol ulkrs)
F 0 0 - 0 "
H B Ak
CA - Chy
: ®
e R )
One can write:
Yk, s) = O). x(k)+Gs). Ul s+ Fs). D(ks)  (9)

One can indeed show the relation (9). Iteratively the
relation is checked for S =0, S =1, one supposes that it
1s true for 3 and shows that it 1s true for s+1.

The form (9) is preferable to the form (8) because we
passes from a system of N equations to a system of
n(s+1) equations this offers more possibilities of the
elimination of the unknown states x(k). For this
elimination one multiply (%) by a matrix & (called matnx of
parity) orthogonal to O (s) (the existence of £ is related
to the rank of O(s)). Q. O (s) = 0 the generalized parity
vector

P(k) = Q(Y(k.s) - G(5).Uk.s))
ou
Pk) = Q F(s). D(k.s)

(10)

The vector of parity generalizes P(k) characterizes all
the existing relations between the mputs and the outputs
of the systems.

This vector of parity 1s biased (after a failure of a
sensor or an actuator), for example: the vector of parity
becomes different from zero and is directed in a privileged
direction according to the defect.

The temporal redundancy (dynamic) relating to only
one sensor is related to a generator of relations
expressing 1n the course of time the output of only one
sensor, for that it is enough to extract the I component
from the vector from observation by selecting in C the
line C, therefore (9) unplies:
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y,(k,s)=0,(s). x(k)+G,(s). Uk,s)+F,; Dk, s)(11)

or: O; G; F,; result from the definition from O G and F by
replacing C and by their J * line.

In case if Q; is an orthogonal matrix with O (s)
thus the single relation of parity relating to the J3rd
sensor is defined by:

P &) =Q(y, ks) -G, (). Uks) (12)
for more precision the application of theorem of Cayley
Hamilton implies the existence of a value S; such as:

if s <8, = row (O,;(S)) = 1+s
if S= S, - arrange (O, (s)) =5,

as the line (S, +1) of the matrix O, (S, is a linear
combination of the other S; lines there is a vector line
Q; such as:

(:j
C.A
Q- J: =0 (13)
C,A%
P (k) =Q,(y, (ks,;-g,(S ; Uk, S)) (14)

the Eq. 12 which utilizes only one output of the system
clarifies the temporal redundancy between the outputs
and the J ™ output and thus a means of test of correct
operation of J ™ sensor if one makes the assumption of
correct operation of actuations of the actuators.

Detection of the fault by observers: We are developed
residual generation by using a banc of observers , for
faults detection and localization , on the direct injection
diesel engine. ( Abdelkader AKHENAK™) we proposed
one method of detection and rebuilding of faults sensors
by using an neuro-fuzzy observer.

Detection by a banc of observers: In this study we
supposed that the state space vector is completely
observed and one rebuilds as many outputs as we have
measurements. The number of observer is equal to
measured outputs number, Fig. 7.

With this intention and after presenting the two F.D I,
we are going to present a limited number of simulations
because the article space is limited. It will be possible to
show more examples.
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SIMULATION OF (LOLIMOT) AND
STRUCTURE F.D.I
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Fig. 10: Change of the signal with a sensor fault
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Fig. 12: Residue generated by projection on parity
space of admission pressure

The results and the validation of mult model
identification by (Lolimot) Fig. 7-9.

The simulation of fault of pressure sensor
admission one

of
considers a fault pressure sensor of
admission one derives at mstant 500 ; represented on the
Fig. 10.

GRAPHIC INTERFACE AND STRUCTURE
HUMAN MACHINE*

Graphic interfaces: During the simulation of F.D.I under
Matlab, a graphic created allowing
visualization of the behaviour of the engine subjected to
possible faults.

mterface 1s

Human machine structure: In this precise field whuch 1s
1 fact the design of a structure of detection of faults and
diagnosis in the diesel engine, the cooperation intervenes
between the designer and the conductor on one hand
and the embarked computer on the other hand, this
cooperation 18 desired according to the way shown by
the diagram of the Fig. 14.

After having implemented an evolutionary structure
on the embarked computer the communication through
Internet with the designer this will make it possible to
make evolve/move the data base, the mformation
displayed, on the management reports will have an impact
on the safety of the driving and on a possible mtervention

of its maintenance™.
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Fig. 14: Structure of human-machine cooperation

The diagnosis of the faults 1s established 1n
cooperation with the scanner this makes the task of the
mechamnic easier.

CONCLUSION

After analysis of several examples of simulations one
can say that F.DI structure answers clearly i the
presence  of faults by giving an analysis on the
responsible causes.

Finally from this study it should be stressed the
perspectives which remain open on proposing the study
of the integration of the additive faults the ntroduction
of specific sensor and to detect the presence of water in
the gas o1l, the msertion of a fault-tolerant command and
to enclose the loop it will be necessary to improve the
monitoring by the implementation of the structure above

of Homme Machine cooperation described.
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