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Abstract: Radar remote sensing deals with the extraction of object information from electromagnetic wave
parameters. To fully exploit the potential of acquiring quantitative information requires a detailed description
of the microwaves scattering. The research on this topic was mostly centered on far-field analysis which assume
an incident plane wave, compute its scattered field and evaluate the Radar Cross Section (RCS). However,
under certain practical conditions, the far-field analysis is not valid and a near-field analysis is necessary. In
this paper, we present a full analysis of the near field of a wedge structure due to an incident wave field from
a line source or a plane wave. The far field pattern, for the case of a line source exciting the structure, is also
analyzed. Radar cross section of a rectangular flat plate 1s examined.
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INTRODUCTION

The problem of electromagnetic wave scattering is
very unportant in many applications such remote sensing,
antennas design and especially in defense applications.
The study on this topic was mostly centered on far-field
analysis which assume an incident plane wave, compute
its scattered field due to the scatterer and evaluate the
Radar Cross Section (RCS) of the scatterer. When the
transmitting and receiving antennas are far from the
scatterer, the incident wave can be approximated by a
plane wave and the scattered far field can be regarded as
the radiation far field due to the induced currents on the
scatterer, the far-field analysis thus applies. However, in
practical applications, there are many situations that the
distance between the transmitting antenna and the
scatterer is not large enough to treat the field arriving the
scatterer as a plane wave and the relative motion between
the antennas and scatterer will produce Doppler
frequency shift. In these conditions the far-field analysis
is not valid and a near-field analysis is necessary'.

In calculating radar cross section of complex
targets™” some parts of the structure can be modeled
using singly curved sheets, as for example the wings of an
aircraft. For electrically large bodies the Geometrical
Theary of Diffraction (GTDY*? is a good high frequency
technicue for computing the scattering from those bodies.
But, as it 13 well known, that method 1s not valid in the
caustic of reflected rays which occurs for example when
we illuminate by a plane wave a singly curved screen.
Physical Optics (PO) has been largely used in the last
vears for predicting high frequency radar cross-section
problems because, unlike Geometrical Optics and the
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Fig. 1: Coordinates for rectangular flat plate

GTD, is valid in the transition regions and at caustics. PO
can be improved using the fringe currents contribution of
the edge currents of the Physical Theory of Diffraction
(PTD)H,

Scattering  analysiss: The RCS  of a target
characterizes its scattering property, which is defined
as the area intercepting the amount of power
that, when scattered isotropically, produces ina
receiver a density that 1s  equal to the density
scattered by the actual target. When the transmitter
and receiver are inthe same locatior, the RCS 1s
referred to as monostatic (or backscattered) and it is
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referred to as bistatic when the two are located at
different positions. For three-dimensional target, the RCS
1s given in terms of incident power density, magnetic field
and electric field®™. The RCS in terms of electric field is
given by:
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where p 1s the distance from target to observation point,
E® and E are scattered and incident electric field The
Eq. 1 1s valid when the target 1s illuminated by a plane
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wave which in practice can be only approximated when
the target is placed in the far field of the source, i.e. at
least p = 2D%A, where D is the largest dimension of
the target.

Consider a perfectly conducting rectangular thin flat
plate in the x-y plane as shown in Fig. 1. For a linearly
polarized meident wave in the x-y plane, the horizontal
and vertical backscattered radar cross section are,
respectively, given by
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wherem k, = ka, k ;13 the free space wave number.
Equation 2 and 3 are valid quite accurate for aspect angles
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Fig. 2: Capped wedge structure
0°<0< 80°. For aspect angles near 90°, Ross™ obtained
by extensive fitting of measured data an empirical

expression for the radar cross section. It 1s given by
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The backscattered RCS for a perfectly conducting thin
rectangular plate for incident waves at any 6, ¢ can be
approximated by:
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Equation 7 is independent of the polarization and it is
only valid for aspect angles 6 < 20°. The goal of analysis
is to find the field expressions for the problem of
scattering by a two-dimensional (2-D) Perfect Electric
Conduction (PEC) wedge capped with a dielectric
cylinder (Fig. 2). Using the cylindrical coordinates system,
the excitation due to an electric line current of amplitude
I, located at (py, @) result in Transverse Magnetic (TM )
incident field with the electric field expression given by

B = ®)

z

-1, %H(DZ) (kn ‘p - pn|)

where H,? 1s the Hankel function of the second kind of
order zero.
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The problem is divided into three regions T, TT and TTI.
The field expressions may be assumed to take the
following forms:
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while J(x) and H® are the Bessel and Hankel
functions of order v and argument x. From Maxwell
equations, the magnetic field component H,, is related to
the electric field component E, for a TMwave by
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jou dp

Thus, the magnetic field component H, in the varicus
regions may be written as
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where the prime indicated derivatives with respect to
the full argument of the function. The boundary
conditions require that he tangential electric field
Also the
tangential field components should be continuous across
the air-dielectric surface and the virtual boundary between

components vamsh at the PEC surface.

regions 1 and II, except for the discontinuity of the
magnetic field at the source pomnt. Thus,
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The current density J, may be given in Fourier series
expansion as:
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The boundary condition on the PEC surface is
automatically satisfied by the ¢ dependence of the electric
field Eq. 9. From the boundary conditions in Eq. 14
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From the boundary conditions in Eq. 15, we have
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Since Eq. 17 and 20 hold for all @, the series of the left
and right hand sides be equal term by term, more
precisely,
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where 1, 13 the characteristic impedance of free
space. From Eq. 21 and 23, we have
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Substituting b, in Eq. 21 and 22 and solving for ¢, yield
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From Eq. 26 through 28, d, may be given by
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with these closed form expressions for the expansion
coefficients a,, b,, ¢, and d,, the field components E, and
H,canbe determined from Eq. 9 and Eq. 12, respectively.
Alternatively, the magnetic field component H, can be
computed from
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Thus, the H, expressions for the three regions defined in
Fig. 2 become
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In region I, the far scattered field may be found as
the difference between the total and meidents field. Thus,
using Eq. 8 and 9 and considering the far field condition

(p-e) we get
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For plane wave excitation (p,— <), the expressions in
Eq. 27 and 28 reduce to
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where the complex of the incident plane wave, E;, can be

given by:
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in this study, the field components can be evaluated in
regions T and T only.
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RESULTS AND DISCUSSION

Figure 3 presents the radar cross section of a
rectangular flat plate for the vertical and horizontal
polarizations, compared with the classical formulae. The
parameters of structure are a = b = 10.16 ¢cm and f =
300MHz.
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Fig. 3: Backscattered RCS for a rectangular flat plate (a)
Vertical polarization (b) horizontal polarization

70
{8}

Figure 4 presents the far field of a capped wedge
in the presence of an eleciric line source field. We
clearly show how the cap parameters affect the
maximum radiation of the line source in the presence
of wedge. The distribution of the components of the
fields on the near field of two cases {(conducting
capped edge, dielecitric capped edge) is computed
and shown in Fig. 5 and 6. The near field
distribution for an incident wave field of the two
types of wedges iz also computed and shown in Fig.
7 and 8§ These near field distributions clearly
demonstrated the effect of cap parameters in altering
the sharp edge
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Fig 4: Total far field pattern of a line source near a conducting wedge (a) conducting-capped edge (b) dielectric-
capped edge

Fig. 6: Near field patterns of a line source near a conducting wedge with dielectric-capped edge (a)E, (b) H, (¢)H,
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Fig. 8: Near field patterns of plane wave incident on a conducting wedge with dielectric-capped edge (a)E, (b) H, (c)H,,

singular behaviour. We have used the following wedge
structure parameters:.

a=0.15m,p,=0.5m, ¢=p=30",e, =31 =IlmA
CONCLUSION

In this study, we have presented a full analysis of
electromagnetic scattering. We have presented a case of
backscattered radar cross section for a rectangular flat
plate. An analysis of the far and near field patterns for a
wedge structure shows the effect of cap parameters on
the maximum radiation of the line source. We have also
examined the effect the cap parameters on the sharp edge
behavior for an incident plane wave.
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