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Abstract: The condition of the tool in a turning operation is monitored by using Artificial Neural Network
(ANN). The recursive Kalman filter algorithm 1s used for weight updation of the ANN. To momtor the status
of the tool, tool wear patterns are collected. The patterns are transformed from n-dimensional feature space to
a lower dimensional space (two dimensions). This 1s done by using two discriminant vectors @, and @, These
discriminant vectors are found by optimal diseriminant plane method. Thirty patterns are used for training the
ANN. A comparison between the classification performances of the ANN trained without reducing the
dimensions of the input patterns and with reduced dimensions of the input patterns is done. The ANN trained
with transformed tool wear pattems gives better results in terms of improved classification performance in fewer
tterations, when compared with the results of the ANN trained without transforming the dimensions of the input

patterns to a lower dimension.
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INTRODUCTION

In the manufacturing industries, automated machine
tools are used. Some of them are single spindle,
multispindle automats, capstan and turret and computer
numerical contrel machines. In all these machines,
predefined sequence of mstructions, like using stops and
programming methods, 1s used to execute the operations,
so that good quality parts with mass production are
achieved. When the tools are worn out, they are replaced
with new tools, or reground and used. The duration, after
which a tool has to be replaced or reground, can be
expressed in terms of amount of flank wear land width of
the tool (Vb) or tool life in minutes. Established data both
in terms of tool life and amount of tool wear, are available,
based on which, the tools can be replaced or reground
There 1s no assurance that the tool will last, till the
established time. There 13 every possibility for the tool to
fail in advance. Artificial neural network has been used to
detect the amount of flank wear of the tool.

The methods, used for monitoring tool wear, are
direct and indirect. The direct methods use measurements
of volumetric loss of tool material. This procedure is done
off-ine. Some of the direct methods include change n
work piece dimension, optical techmques, radicactive
methods and pneumatic gauging method. The indirect

methods use the measurement of cutting related
parameters, like cutting forces, tool holder wvibration,
acoustic emission, etc. Due to the complexity and
unpredictable nature of the machine process, the process
has to be modeled with rule-based techniques. Modeling
correlates process state variables to parameters. The
process state variable 1s Vb. The process parameters are
feed rate (F), cutting speed () and depth of cut (D,). Some
of the modeling techniques are multiple regression
analysis and group method data handling. These methods
require a relationship between process parameters and
process state variables (Chryssolouris and Guillot!,

The neural network approach does not require any
modeling between process parameters and the outputs
are process state variables. The network maps the input
domains with the output domains. The inputs are process
parameters and the outputs are process state variables.
Each process parameter or process state variable 1s called
feature. The combination of mput and output constitutes
a pattern. Many patterns will be called data.

In this study, instead of using the actual
dimension of the input pattern (input vector), the
dimension is reduced to two. The two dimensional input
vector does not represent any individual feature of the
original n-dimensional input pattern; instead, it is a
combination of ‘n’ features of the original pattern. The
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components of the reduced pattern do not have any
dimensional quantity.

Transformation of n-dimensional input patterns into two
dimensional input vectors: The process of changmng the
dimensions of a vector is called transformation. The
transformation of a set of n-dimensional real vectors onto
a plane is called a mapping operation. The result of this
operation 1s a planar display. The main advantage of the
planar display 1s that the distribution of the original
patterns of higher dimensions (more than two dimensions)
can be seen on a two dimensional graph. The mapping
operation can be linear or non-linear. Linear classification
algorithm Fisher™ and a method for comstructing a
classifier on the optimal discriminant plane, with minimum
distance criterion for multiclass classification with small
number of patterns Hong and Yang™, have been
developed.

The method of considering the number of patterns
and feature size Foley!” and the relations between
discrimmant analysis  and multilayer
Gallinari™, have been analyzed.

A linear mapping is used to map a n-dimensional

perceptrons

vector space <" onto a two diunensional space. Some of
the linear mapping algorithms are principal component
mapping Kilter and Young®. generalized declustering
mapping Sammeon, Fehlauer, Gelsema and Eden!" ',
leased squared error mapping Mix and Jones™ and
projection pursuit mapping Friedman and Turkey!,

In this study, the generalized declustering optimal
discriminant plane is used. The mapping of the original
pattern “X onto a new vector °Y” on a plane is done by a

matrix transformation, which is given by

Y=AX

a=o]

and ¢, and @, are the discriminant vectors (also called
projection vectors).

(1

where

(2)

An overview of different mapping techmiques 1s
given Siedlecki’™”. The vectors @, and ¢, are obtained
by optimizing a given criterion. The plane formed by the
discriminant vectors 1s the optimal vectors which are the
optimal discriminant planes. This plane gives the highest
possible classification for the new patterns.

The steps involved in the linear mappings are:
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Step 1: Computation of the discriminant vectors ¢, and
¢, this 18 specific for a particular linear mapping
algorithm.

Step 2: Computation of the planar images of the original
data points: this is for all linear mapping algorithms.

Computation of discriminant vectors ¢, and @,: The
criterion to evaluate the classification performance is
given by:

¢
) = (3
¢ Sy
where,
S, =  the between class matrix and
S. =  the within class matrix which is non-singular.
8, = 2plm)(m —m )m —m_ ) (4)
8, = Ep(e)E[X, ~m )X —m) o | (5)
where
P(w,) a prionn the probability of the ith pattern,
generally, p (w;) = 1/m
m, the mean of each feature of the ith class
patterns, (i=1.2...,m),
m, the global mean of a feature of all the patterns in
all the classes,
X= { x, [-1,2,...L} the n-dimensional patterns of
each class,
L the total number of patterns.

Eq. 3 states that the distance between the class centers
should be meximum. The discrimmant vector ¢, that
maximizes T m Eq. 3 1s found as a solution of the
eigenvalue problem given by :

Se @, = A S, @, (6)
where:
Ay = the greatest non-zero eigenvalue of (S, 8,7
¢, = eigenvalue corresponding to Aml

The reason for choosing the eigenvector with
maximum eigenvalue 1s that the Euclidean distance of this
vector will be the maximum, when the compared with that



Res. J. Applied Sci., 1(1-4): 72-83, 2006

of the other eigenvectors of Eq. 6. Another discriminant
vector (@, 1s obtamned, by using the same criterion of Eq. 3.
The discrimmant vector ¢, should also satisfy the
condition given by:
¢ =0 (7)

Eq. 7 indicates that the solution obtained is geometrically
mndependent and the vectors ¢, and ¢, are perpendicular
to each other. Whenever the patterns are perpendicular to
each other, it means, that there is absolutely no
redundancy, or repetition of a pattern, during collection of
tool wears patterns in turning operation. The discriminant
vector @,1s found as a solution of the eigenvalue problem,
which is given by:

Qp Sy ;= Ag2 S, ¢, (8)

where

Am the greatest non-zero eigen value of Q, 3, S,;! and
Q, the projection matrix which 1s given by

[0 oSy

L @)
P Sy

Q

where
T = an identity matrix

The eigenvector corresponding to the maximum
eigenvalue of Eq. 8 15 the discriminant vector ¢,

In Eq. 6 and &, Sy; should be non-singular. The Sy
matrix should be non-singular, even for a more general
discriminating analysis and multiorthonormal vectors
Foley and Sammeon, Liu Cheng"™*" If the determinant of
Sw 18 zero, then Singular Value Decomposition (SVD) on
S has to be done. On using SVD, Sy, is decomposed into
three matrices U, W and V. The matrices U and W are
unitary matrices and V 13 a diagonal matrix with non-
negative diagonal elements arranged in the decreasing
order. A small value of 10° to 107 is to be added to the
diagonal elements of V matrix, whose value 1s zero. This
process 1s called perturbation After perturbing the V
matrix, the matrix 3,.' is calculated by:

S, =U*W*vT (10)

where
Sy the non-singular matrix which has to be considered
n the place of 3,,.

The perturbing value should be very minimum,
which is just sufficient to make $,' non-singular. The
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method of SVD computation and its applications are
given® . As per Eq. 7, when the values of ¢, and
¢, are mmerproducted, the resultant value should
be zero. In reality, the innerproducted value wall
notbe zero. This is due to floating point operations.

Computation of two-dimensional vector from the original

n-dimensional input patterns: The two-dimensional
vector set y; is obtained by:

vy, =, v) =X @ . X @) (11)

The vector set y, is obtained by projecting the

original pattern “X’ onto the space, spanned by ¢, and @,

by using Eq. 11. The values of u; and v, can be plotted in

a two-dimensional graph, to know the distribution of the
original patterns.

3Basics of Artificial Neural Network (ANN): An artificial
Neural Network (ANN) 1s an abstract simulation of a real
nervous system that contains a collection of neuron units,
communicating with each other via axon connections.
Such a model bears a strong resemblance to axons and
dendrites in a nervous system. Due to tlus self~orgamzing
and adaptive nature, the model offers, potentially, a new
parallel processing paradigm. This model could be more
robust and user-friendly, than the traditional approaches.
ANN has nodes or neurons, which are described by
difference or differential equations. The nodes are
interconnected layer-wise or intra-comnected among
themselves. Each node in the successive layer receives
the mmer product of synaptic weights, with the outputs of
the nodes in the previous layer. The inner product is
called the activation value. When the activation value 1s
given as an mput to a neuron, the output of the same
neuron should lie in a closed mterval [0,1]. To achieve
this, sigmoid function iz wused to squash the
activation value.

The supervised learming method is much suitable for
learming tool wear where both mputs and outputs of the
patterns are used for training the ANN. The commonly
used supervised learning method is back-propagation
algorithm BPA" . The main draw back of BPA is, that it
1s very slow 1n convergence and gets stuck up in the local
minima®" In order to increase the convergence rate,
recursive extended Kalman filter algorithm is used.

Extended Kalman Filter algorithm (EKF): The algorithm
uses a modified form of the BPA, to mimnimize the
difference between the desired outputs and the actual
outputs, with respect to the inner products to the
nen-linear function. But, in the conventional BPA,
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Fig. 1: Multilayer artificial neural network

difference between the desired outputs and the outputs
of the network are mmimized with respect to the weights.
The EKF algomthm is a state estumation method for a
non-linear system and it can be used as a parameter
estimation method, by augmenting the state with
unknown parameter™. A multi-layered network is a
non-linear system with layered structure and its
learning algorithm 1s regarded as parameter estimation for
such a system™". The multi-layered ANN is shown in
Fig. 1. The EKF based learmning algorithm gives
approximately the minimum variance estimates of the
weights. The convergence of EKF is faster than that of
BPA. Error values, which are generated by EKF, are used
to estimate the mputs to the non-linearities. The estunated
mputs, along with the input vectors to the respective
nodes, are used to produce an updated set of weights,
through a system of linear equations at each node. Using
Kalman filter at each layer solves these systems of linear
equations.

In EKF algorithm, the mputs to the non-linearities are
estimated and its error co-variance matrix 1s mimmized.
This mimmization of the co-variance of the vector helps in
faster convergence of the network. The steps involved in
training the ANN, by using extended Kalman filter
algorithm are:

Step 1: Tnitialize the weights and thresholds randomly
between layers, initial trace of the error co-variance matrix
Q and the accelerating parameters A and T, to a very
small value.

Step 2: Present the mputs of a pattern and compute
outputs of nodes in the successive layers by:

orntl 1 1SigNn+1
1+exp(-IW.X +@) 1<n<M-1

1t

} (12)
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Step 3: Calculate the error E (p) of a pattern by:

E(p) :%Xdl(p)ffq(p))z (13)

and the Mean Squared Error (MSE) for all the patterns in
iteration 1s obtained by:

E =3E(p) (14)
where:
P the pattern number and
d  the desired output.
Step 4: Calculate the accelerating parameter 4 by:
o (d(p) = Xp)" -~ (d(p) ~X(p)
Mp)=Alp=1)+ —— n, (15)

max

—hp-1)

Step 5: Allot output X of each node to ¥, which improves
the estimation accuracy

T p) = XM (p) 121N, 1] (16)

Forn=M-1 to 1 step-1
Forl=1toN,,,

Step 6: Calculate the error & at each node in the output

layer by:

Si“(p)zfiM(l—ﬁcM) 17
Step 7: Calculate the temporary scalars p and & by:

B (P =38 (p)"8; (p) (18)

o (p) = X7 (p) " (p) (19)
where

vl = Qi -1 X'(0) (20
Step 8: The weights W, are updated by:

W)= Wip- D+ > DREWEL )

Mp)+ o (IR ()
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where:
R,(p)=d(p)- \"(1“ (p) in the output layer (22)
R,(p) = X" (p)— ¥ (p) in the hidden layer (23)
Step 9: Update the error co-variance matrix Q by:
kY n Bﬂ (p) n n T
) =Q(p-Dt i (p)’ (24
Mp)+ o (p)

Step 10: Update estimation accuracy Y in the hidden
layers by:

Y (p) = YR (p)+ & ()X (p) (W (p) - W) (p—1))
Y"vnfl —

< n
1 Ny

(25)

Step 11: Calculate the error & at each node in the hidden
layer by:

8 (p) =1 EB (pIW,(p) (26)

Step 12: Adopt Eq. 14-26 until weights and thresholds
between the layers are updated. Stop training the networlk
once the performance index of the network is reached:
otherwise continue with step 2.

Collection of data: Experimental study on tuming was
conducted with spheroidal graphite cast won work
material. The tool used for this work is made of 13 layers
of coating with ALON, TiC, TiN, Ii(C, N) over a carbide
substrate. This tool is named as Widalon HK15. The
ranges of various process parameters are: cutting speed
(200-500m/min), feed (0.063-0.25 mm/rev) and depth of cut
(0.5-2 mm). The turming operation was carried ona VDF
high-speed precision lathe.

The three components of forces, namely, axial force
(F.), radial force (I,) and tangential force (I ) and flank
wear land width (Vb) were collected. To read the cutting
forces, a three-component piezoelectric crystal type of
dynamometer (KISTLER type 9441) was used. The value
of VB was measured by a toolmaler’s microscope. The
block diagram of the experimental set-up is shown
m Fig. 2.

Experimental procedure: Tuming was done for the
combination of different speeds, feeds and depths of cut,
using a fresh cutting edge. The ranges of cutting
conditions were decided for progressive wear of the tool.
For each cutting condition, the three components of
cutting forces F_, F, and F,, were measured.

»ly

Piezoelectric
dynamometer

Fig. 2: Block diagram of the experimental setup

Measurements were made at different intervals of time.
Depending on the length of cut, machining was stopped
after every 60-80 seconds and Vb was measured. Static
forces were recorded at two or three mtermediate pomts
between two wear measurements. The set of
measurements, immediately prior to a wear measurement,
had been used for traimng the neural network. About 113
patterns were collected. During re-mnsertion of tool inserts
after every wear measurement, inserts were slugged into
the slot made out in the tool holder, so that there was no
change n the tool overhang.

Normalizing the patterns: The patterns are selected for
traiming and testing. The mputs of the traimng and test
patterns are normalized by:

XX/ XX+ X (27
and the outputs are normalized by:
X=X/ K (28)
where:
x; = thevalue of a feature and

X, = the maximum value of the feature.

The reasons for using Eq. 27 to normalize the inputs
of the patterns are:

»  Bach pattern 1s converted mto unit length, so that
the patterns lie in unit space,

»  The vast difference among the values of features of
a pattern is reduced,

» Eq. 4 and 5 represent autocorrelation techmque. In
such cases, the values of each feature of a pattern
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Table 1: Patterns collected during turning

Inputs Outputs

S F D, F, Fy F, Time Vb
5. No. (m/min) (mmirev) (mm) N N N (sec) (mm)
1 450 0.10 1.5 150 115 350 45 15
2 450 0.10 0.5 60 50 115 38 15
3 450 0.10 2.0 180 130 450 32 15
4 350 0.10 0.5 60 90 125 30 15
5 300 0.06 0.5 45 80 70 428 20
6 300 0.06 0.5 40 80 05 428 20
7 200 0.06 0.5 40 65 75 428 20
8 400 0.10 0.5 60 85 110 428 20
9 300 0.08 0.5 50 90 85 428 20
10 300 0.08 0.5 45 90 85 428 20
11 400 0.06 0.5 40 75 as 428 20
12 500 0.08 0.5 50 40 105 428 20
13 200 0.10 0.5 60 90 110 428 20
14 400 0.08 0.5 55 90 100 428 20
15 500 0.10 0.5 50 95 110 428 20
16 200 0.10 0.5 45 85 105 428 20
17 450 0.10 1.0 115 105 250 428 20
18 300 0.10 0.5 45 110 105 428 20
19 300 0.10 0.5 40 105 105 428 20
20 200 0.06 0.5 35 65 70 428 20
21 500 0.06 0.5 45 70 90 428 20
22 200 0.08 0.5 40 75 80 428 20
23 200 0.08 0.5 50 75 90 428 20
24 400 0.20 0.5 75 115 195 428 20
25 300 0.25 0.5 70 140 225 428 20
26 200 0.20 0.5 50 125 190 428 20
27 200 0.20 0.5 120 130 190 428 20
28 400 0.25 0.5 80 125 230 428 20
29 300 0.20 0.5 65 130 185 428 20
30 500 0.25 0.5 60 115 215 428 20
31 500 0.20 0.5 60 110 195 428 20
32 200 0.25 0.5 85 160 220 428 20
33 200 0.25 0.5 60 150 210 35 20
34 450 0.10 0.5 60 55 105 92 30
35 350 0.10 0.5 55 85 140 75 30
36 450 0.10 1.5 130 115 345 65 30
37 450 0.10 2 100 140 450 60 30
38 450 0.10 1 100 105 250 70 40
39 400 0.10 0.5 55 85 110 129 45
40 350 0.10 0.5 60 100 120 42 45
41 450 0.10 0.5 25 70 85 111 55
42 450 0.10 2 160 140 470 85 55
43 350 0.10 0.5 60 100 125 165 60
44 450 0.10 1.5 150 105 330 94 65
45 350 0.10 0.5 60 80 125 202 75
46 450 0.10 1 115 110 260 110 75
47 450 0.10 0.5 25 70 90 149 80
48 450 0.10 2 110 140 470 110 80
49 400 0.10 0.5 50 80 105 240 90
50 350 0.10 0.5 55 85 130 85 90
51 450 0.10 0.5 60 105 125 180 90
52 400 0.10 0.5 60 90 100 128 92
53 350 0.10 0.5 70 100 120 365 93
54 450 0.10 1.5 135 110 325 123 94
55 400 0.10 0.5 50 85 100 172 95
56 350 0.10 0.5 70 100 115 290 96
57 450 0.10 0.5 75 150 150 212 100
58 400 0.10 0.5 60 100 105 207 105
59 450 0.10 1 150 140 275 146 105
60 350 0.10 2 200 140 460 135 105
6l 450 0.10 0.5 60 100 115 358 107
62 400 0.10 0.5 75 205 145 244 110
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Contimied

63 350 0.10 0.5 45 100 110 403 115
64 450 0.10 0.5 60 105 125 241 115
65 450 0.10 1.5 155 170 370 151 115
66 400 0.10 0.5 100 250 150 276 120
67 400 0.10 0.5 50 112 85 277 120
68 450 0.10 0.5 70 175 85 311 125
69 450 0.10 0.5 125 250 150 314 130
70 450 0.10 1.5 300 245 410 161 130
71 350 0.10 2 160 140 460 179 130
72 450 0.10 0.5 75 145 120 438 133
73 450 0.10 0.5 125 275 150 351 140
74 350 0.10 2 400 240 550 197 140
75 450 0.10 1.5 325 230 450 210 148
76 350 0.10 0.5 100 170 120 474 150
77 450 010 2 510 350 600 229 150
78 350 0.10 0.5 135 225 170 510 160
79 450 0.10 0.5 160 325 50 422 165
80 450 0.10 1.5 350 255 455 389 165
81 400 0.10 0.5 150 175 150 240 165
82 450 0.10 1.0 200 160 310 547 170
83 350 0.10 0.5 150 260 175 180 170
84 450 0.10 0.5 160 255 150 583 185
85 400 0.10 0.5 150 340 50 426 185
86 350 0.10 0.5 165 300 140 459 195
87 450 0.10 0.5 160 260 140 620 200
88 450 0.10 0.5 220 425 60 457 205
89 450 0.10 1.0 220 180 320 211 240
90 450 0.10 0.5 230 500 65 488 240
91 450 0.10 1.5 480 350 350 274 245
92 450 0.10 2.0 700 390 640 264 275
93 450 0.10 1.0 325 290 345 240 290
94 400 0.10 0.5 200 350 180 494 295
95 450 0.10 1.0 400 375 365 269 340
96 450 0.10 1.5 450 390 400 308 350
97 450 0.10 1.0 450 400 360 299 365
98 450 0.10 1.5 680 580 560 338 375
99 450 0.10 1.0 450 430 370 529 400
100 450 0.10 2.0 850 700 750 329 400
101 450 0.10 1.5 750 650 500 361 400
102 400 0.10 0.5 175 350 140 299 400
103 450 0.10 1.5 240 850 620 394 540
104 450 0.10 1.0 550 590 430 366 550
105 450 0.10 2.0 1100 1200 340 336 585
106 450 0.10 1.5 260 1200 800 427 690
107 450 0.10 1.0 570 700 450 403 755
108 450 0.10 2.0 1200 1400 1000 364 785
109 450 0.10 1.5 20 1800 1400 454 825
110 450 0.10 2.0 1500 1800 1000 396 880
111 450 0.10 1.0 950 700 500 440 980
112 450 0.10 1.5 380 1880 1500 482 980
113 450 0.10 2.0 1250 1440 1040 428 990

should be normalized within a close range of
values and
* The number of floating point operations are

minimized.

Selection of patterns for training ANN: The number of
classes, the number of patterns in each class, the
classification range m each class and the total number of
training patterns are decided. If only one output is
considered, the range of classification s simple. If more
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than one output 1s considered, a combination criterion has
to be used. The remaining patterns which are used for
training the network, should be, such that they represent
the entire population of the data. The selection of patterns
is done by:

20 % (29)

1 5-2

1

where
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Table 2: Patterns used for finding out discriminant vectors ¢ and ¢, and

training the ANN
Class Pattern number
I 5,6,11,12,13,14,22,27,32,33,41,42,44,47,48,60,71,74,75,77
I 1.02105106107108,109,110,111,112,113

Table 3: Number of patterns and classification range in each class

ol

P L

Pattern No. of No. of pattern ~ No. of patterns
number and patterns in  used for training used for testing Range of
the class each class  the ANN the ANN Viyfmm)
1-87 87 20 67 <=200
Class I
88-113 26 10 16 =200 and<=990
Class 2
Total 113 30 83
E® the maximum variance of a pattern
Nf the number of features and
nf -
2
D% %)) (30)
=1

where

X, the mean for each feature and
L the number of patterns.

The value of E? is found for the patterns given in
Table 1. Patterns with maximum E; are chosen from each
class for traming the network and the corresponding
pattern numbers are given in Table 2. The remaining
patterns 83 are considered as test patterns. The
classification ranges and the number of patterns used for
training and testing the ANN, 18 given in Table 3.

Procedure for implementing optimal discriminant plane
method in ANN: The steps involved in implementing
optimal discrimimnate plane method in the ANN are as
follows:

Step 1: Patterns for training the ANN are selected by
using Eq. 29 and 30 and the remaining patterns are
considered as test patterns.

Step 2: The inputs of each pattern in  the
training and test set are normalized, by using
Eq. 27, so that the length of each pattern 1s one. The
outputs of all the patterns are normalized by using
Eq. 28.

Step 3: S, and 5, matrices are calculated by using
Eq. 4 and 5. The 3, matrix is checked for non-singularity.
If 8, matrix is singular, singular value decomposition is
applied to S, and small perturbation is done. After
perturbation, S, matrix is recomputed as S,

Table 4: The 2-dimensional vectors of the normalized training patterns

Pattern No. u v

1 0.248405 0113239
2 0.281535 0146954
3 0.286177 0157134
4 0.075246 -0.138888
5 0.126176 -0.220629
6 0.300048 0.021163
7 0.208151 -0.106131
8 0.377304 0.118302
9 0.033771 -0.257652
10 0.061219 -0.263593
11 0.427905 0302125
12 0.296603 -0.172194
13 0.429281 0.293695
14 0.311602 -0.200051
15 0.341748 -0.018211
16 0.283635 -0.140818
17 0.296513 -0.163203
18 0.123165 -0.151501
19 0.136756 -0.104236
20 0.010996 -0.170528
21 -0.036130 -0.128443
22 -0.205433 -0.199332
23 -0.375849 -0.230142
24 -0.389305 -0.451422
25 -0.396734 -0.273041
26 -0.410809 -0.560982
27 -0.470258 -0.240555
28 -0.410351 -0.563859
29 -0.397719 -0.275753
30 -0.328632 -0.092794

Step 4: By using Eq. 6 and 8, the discriminant vectors ¢,
and ¢, are calculated and are given by

[+0.535115 ] [+0.483875 ]
+0.000019 ~0.000229
+0.002912 ~0.000692
¢ = L, = (31)
—-0.143451 +0.341656
—0.805960 —-0.347608
| +0.208547 | | —0.726844 |

Step 5: The normalized mputs of the traimng patterns are
transformed into two-dimensional vectors by using Eq. 3.
The two-dimensional vectors for the training patterns are
given in Table 4.

Training the ANN Off-line
Step 6: The normalized inputs of the test patterns are
transformed to two-dimensional vector, by using Eq. 31.

Step 7: The two dimensional vectors of the training
patterns are used as the inputs and the corresponding
normalized outputs to the ANN. Presenting all the traimning
vectors forms one iteration.

Step 8: At the end of each iteration, the two dimensional
vectors of the test patterns are presented to the network.
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If the classification performance of the ANN is not
satisfactory, step 7 is adopted. Otherwise, training of the
ANN 1s stopped and the weights obtained i the last
iteration 18 considered, as the final weights.

Implementing the ANN online for tool wear monitoring:
Based on the above, an on-lme method for tool wear
condition monitoring 1s suggested below:

Step 1: The final weights of the network, obtained during
training, 1s stored in the database.

Step 2: The cutting forces are collected from the
dynamometer and speed, feed and depth of cut are given
as the 1nputs to the ANN.

Step 3: The inputs are normalized and transformed into
two-dimensional vectors by using the ¢, and ¢

discriminant vectors.

Step 4: Classification rules are written to check the output
of the network. Tf the output of the networl is within the
specified value, step 2 1s continued. Otherwise,
corrective actions are implemented. Some of the corrective
actions are:

*  Stopping the machimng operation, or

*  Regrinding the tool, or

+  Replacing the worn out tool with a new tool using the
automatic tool changer (ATC).

RESULTS AND DISCUSSION

The transformed vectors given in Table 4 are shown
i Fig. 3. The x-axis represents values of ‘0’ and y-axis
represents values of “v’. As per Table 3, 20 patterns from
class 1 and 10 patterns from class 11 have been used for
training the ANN. Tt can be observed from Table 1 that
most of the patterns are m class 1 and hence more
number of patterns have been chosen from class 1, when
compared with that of patterns chosen from class 11. The
legend X represents 20 patterns from class 1 and clearly
forms one group and legend ‘A’ represents 10 patterns
from class 11 and forms a separate group. There s no
mixing of patterns belonging to one class with another
class. Eq. 3 has ensured that the class T and class 11 are
separate. The transformation method also helps us m
visualizing of how the given set of patterns is distributed
in space.

The ANN is trained with different number of nodes in
the hidden layer, to find out the exact number of hidden
nodes required to represent the tool wear data. The exact
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Fig. 3: Distribution of the 30 traimng patterns

mumber of nodes obtained is 6. Only one hidden layer is
used. Using more than one hidden layer will only increase
the mumber of arithmetic operations. Normally, one hidden
layer 1s sufficient.for the ANN to represent most of the
patterns available. Thresholds are not used during
training, as they increase the number of iterations to reach
the desired performance mdex of the network. The range
of mitial weights used 18 0.25-0.45. The classification
performance of the network has been taken as criteria to
stop the training of the network. During training of the
network, at the end of each iteration, all the test patterns
are presented to the network and  their correct
classification is noted. While presenting the test patterns
to the network, weight updating 1s not done. If the
classification performance s not up to the expectation,
training of the network 18 continued. Once the desired
classification performance is obtained, training of the
network is stopped: and the weights are treated as the
final weights for on-line implementation.

Training the ANN by using EKF without reducing the
dimensions of the inputs of the tool wear patterns from 6
to 2: The network i1s tramned by using EKF weight
updating algorithm to learn the tool wear data. The inputs
of the training patterns are presented to the network
reducing  their The training
conditions used are: momentumn factor as 0.5, mitial value
for the error co-variance matrix Q as 20 and the initial
value for the accelerating parameter T, as 20. The
number of nodes in the hidden layer is & The
configuration of the network 1s 6-6-1. The above values
for Q and T, are obtamed by simulation of network. A

without dimensions.
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Fig. 40 MSE and classification performance of the
network trained by wusing EKF  without
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Fig. 5: MSE and Classification performance of the
network trained by using EKF with transformed
mputs of the tool wear patterns

Table 5: Comparison of the Performance of the net work trained by using
EKF with and with out transformed input patterns
Classification
performance in

Configuration percentage Iterations MSE
With out
Transforming input
patterns 6-6-1 89.16 9 1.1277
with transformed
input patterns 2-6-1 95.18 8 0.4666

maximum classification performance of 89.13% is obtained
m 9 iterations. The Mean Squared Error (MSE) 18 1.12779.
The MSE is the summation of the square of the difference
between the desired and actual outputs of the network for
all the training patterns. The classification performance
and MSE curves are shown in Fig. 4. The classification
performance increases up to the Sth iteration and then
decreases. There is no improvement in the classification
performance during further training of the network.
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Training the ANN by using EKF by reducing the
dimensions of the inputs of the tool wear patterns from 6
to 2: The network 1s trained by using EKF. The inputs of
the traming patterns are transformed mto 2 dimensions
and presented to the network. The initial value for the
accelerating parameter T, is 20 and initial value for the
error co-variance matrix () 1s 20. The configuration of the
network 1s 2-6-1. A maximum classification performance of
95.18% is obtained in 8 iterations at MSE of 0.4666 (Fig. 5),
whereas the classification performance of the networlk is
only 89.15% (Fig. 4) when trammed without transforming
the dimensions of the mput patterns. Because of the
transformation of the input patterns the size of the
network is reduced, the classification performance has
increased and the iterations, at which maxiunum
classification performance i1s obtained, are reduced. A
comparison of the performance of the networl trained by
using BEKF with transformed input patterns and without
transforming the input patterns is given i Table 5. From
Table 5, it can be seen that the network trained with
transformed input patterns gives higher classification
performance.

CONCLUSION

The network trained with transformed input patterns
has multfold advantages than the network trained
without transforming the mput patterns. The advantages
are the number of nodes in the input layer is reduced and
hence the size of the network also is reduced the number
of anthmetic operations 1s drastically reduced and the
tterations, at which maximum classification performance is
obtained, are reduced.

Nomenclature:

ANN  artificial neural networlk

BPA  back-propagation algorithm

di(P) desired output of the pattern ‘p’

D. depth of cut, mm

EKF  extended Kalman filter

F feed, mm/rev

F, axial force, N

F, radial force, N

F, tangential force, N

J(©)  objective function in Fisher’s criterion

L total number of patterns

M total no of layers including the input and cutput
layers

m; mean of each feature of the ith class patterns

m, global mean feature of all the patterns in all the

classes
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indices

total number of nodes mn the nth layer
pattern number

error co-variance matrix

projection matrix

speed m/min

between class matrix

within class matrix which 1s non-singular
singular value decomposition

flank wear land width of turning tool wm
weights between layers

n-dimensional patterns of each class
value of a feature and also the outputs of
neurons in the hidden and output layers
maximum value of a feature

out of the node, ‘1" in the nth layer for pattern ‘p’
e¢momentum or accelerating factor
derror of the nodes in the ldden and output
layers learning factor

thresholds of the nodes

estimation accuracy parameter

. accelerating parameters

greatest non-zero eigenvalue

projection vectors or discriminant vectors

*3
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