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Abstract: An mvestigation inte the dynamical behaviour of axial force Rayleigh beam traversed by umiform

partially distributed moving loads is carried out.

The beam 1s assumed to be Prismatic while the shear
deformation, rotatory inertia and damping are taking into consideration.

The resulting coupled partial

differential equation is solved using finite difference method. Graphs were prepared for the results obtained.
It was found that the response amplitude for the moving mass problem 1s greater than the response amplitude

of the moving force problem.

Key words: Dynamical, axial, deformation, rotatory, amplitude

INTRODUCTION

The dynamic response of elastic structures subjected
to a moving load is an interesting problem in several fields
of Applied Mathematics, Applied Physics
Engineering. The problem has been studied by many
authors to motivate a variety of

and

and continues
mvestigations, among them are; (Tinoshenko, 1992;
Inglis, 1934, Stanisic and Hardin, 1969, Gbadeyen and Oni,
1992; Ghorashi and Esmailzadeh, 1993, 1994, 1995; Leech
and Tabarrok, 1970, Adetunde and Alkinpelu, 2005;
Adetunde, 2003; Akinpelu, 2003; Cifuentes, 1989).

Timoshenko (1992) he considered the case of a
pulsating load passing over a bridge, while Inglis (1934)
performed an analysis of tramn crossing a bridge and
considered many important factors such as the effect of
the moving load, the influence of dampmg and
suspension of locomotives.

The dynamic analysis of a simply supported beam
carrying a moving mass was carried out by Stamsic and
Hardin (1969) 1s interesting enough but not easily
applicable to different boundary
Gbadeyen and Oni (1992) considered vibration of beams

conditions. But

with time dependent boundary conditions under the
action of moving masses. Two prominent publications
concerning the behavior of a beam carrying a moving
concentrated mass under different situations are those of
(Leech and Tabarrok, 1970; Cifuentes, 1989).

Ghorashi (1993, 1994, 1995) has investigated many
cases of moving load problems. The vibration of an Euler
Bermoulli beam traversed by uniform partially distributed
moving mass has also been studied (Ghorahi, 1993).
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The present research extends the scope of the
previous study (Adetunde and Akimpelu, 2005) by
considering the dynamical behaviour of axial Force
Rayleigh beam traversed by uniform partially distributed
moving loads. In the present research, the following
assumptions are adopted.

The beam is assumed to be of constant cross-section
with uniform mass distribution.

The dynamic characteristics of the beam are
described by the axial force Rayleigh beam equation.
The effect of the inertia for both the beam and
moving mass are taken into consideration with the
gravitational effect of load.

The load moves with a uniform speed on the beam.
The computations are performed for simply
supported boundary conditions. Finally as to the
mmitial conditions the beam 1t assumes to be free of
the load.

MATHEMATICAL PROBLEM FORMULATION

Consider the Vibration of a uniform simply supported
axial force Rayleigh beam carrying a mass M. The load is
assumed to start entering the beam of length 1., from the
left hand support at t = 0, with a constant speed V. The
mass is also assumed to be uniformly distributed over a
fixed length of the beam (Fig. 1). Although the beam
considered 18 sumply supported at either end, the analysis
and the formulation are not limited to the boundary
condition. The governing differential equation describing
the lateral vibration of a beam carrying the time varying
force, F (x, t) per umt length 1s
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Fig. 1: Mathematical model of the problem

Hyo*y(x, 1) 4 92y(x,t) - Hyd vix, 1)
ax® at? axot?

] (1)
- H3aa})(r2(x,t) “Foxt)
Where H, = EI = FEI-Flexural rigidity of the beam.
m E-Young modulus of elasticity
I(x)-the variable moment of inertia
m = mass per urit length of the beam
H, = b’ = b =radius of gyration
m m = as defined above
H, = Prestressed constant term
yix, t) = the transverse displacement
t = time
X = gpatial coordinate
F(x,t) = moving force

while the time varying force F(x, t) per unit length acting
on the beam 1s defined as

F(x,t):é[—Mg ~MAJ[H(x - &+ %) —Hex —g—g)] (2

0 x<0

Hix)= (3)
() {1 x>0
Where

M = Mass of the moving load,

£ = isthe fixed length of the load.

£ = 1sa particular distance along the beam.

H = Heaviside Unit function

g = acceleration due to gravity

A = Py, 0%y Vil (4)

o axot ok’

Using Eq. 2 and 4 in 1 resulted to the governing equation
of motion
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H184y(x, t) +ﬁ, H284y(x,t) - H382y(x,t)

axt at*  axtet? ax?
_1 - Glazy(x,t) . Gzazy(x,t) . G382y(x,t) (5)
= axz ataX aX_Z

IS £
{H(X—é‘kz)—H(X—é—z)}
Where

Mg

M
GI:;,GZ:T\QGI, G3=V,°Gy, P =

From Eq. 5, the first term in the square brackets of Eq. 5
describes the constant gravitational force, while the other
terms accounts for the effect of the moving mass.

Boundary conditions: Equation 5 1s subject to the
following end support at the end x = 0 one of these holds.

y(x,0)=0=y (x,t}; y(x,1)=0=y (x,1)

(6a)
y (x0)=0=y (x.t); yx.=0=y (x.t),
and the initial conditions are
y(x,O)z%(x,O):O (6b)

Operational simplification of the equations: To solve the
problems, an approximate solution describing the
transverse vibration of the beam 1s used,

YO H= 3 2 (%0

i=1

(N

Where o,(t)s are the unknown functions of time
(%) 18 the known normalized deflection curves
Introducing Eq. 7 into Eq. 1 we have

S aoxeo + Ko

i=1 i=1

“Hy 3 0%, ~Hy 3 0y (0
i=1 i=1
_P_Glz‘l:i(t)xi(x)_(}z ®

_ i=1

1
IR o
D G006 Y 40X,

i=1 i=1

{H[x—@L%]—H[X_@—%ﬂ
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Remark: Since the r.h.s of equation is

FOt = ) 5(0%(%)

i=1

multiply through the r.h.s of Eq. 8 by x;(x) and integrate along the length of the beam, we have;

co L L
P € g
;¢i(t)!Xi(X)Xj(X)dX = —E‘!‘Xi(x){H[x —-E+ 2}‘ H[X —é—zﬂ

co L co L
G o G N , = =
dx —Ellz; o (t)!xi(x)xj(x)dx —;;q)i(t)lxi (X)Xj(x){H[x —Eg 2}— H[x —&—zﬂdx - (9

w , L
C:Ed)i(t)jxi”(x)xj(x){H[x—a+ i} -H[X _g_‘zﬂdx
i1

By orthogonality property

L
J.Xi (X)XJ(X)dX =1
0

fori = j then follow reference (Ghorashi and Esmailzadeh, 1994, 1995, Adetunde, 2003; Akinpelu, 2003) we have
Eq. 9 becomes;

=

b P X0+ Ex -6, D 0] XX+ KA E - DAOXE + KON E]
i i 24 i 1i=1 i i i 24 i il i il i il

2 ee 2
GzZm(t{Xi'@)Xj(aﬁ SO 2K OX @) Xf(é)xj"(a)]} 10

i=1

O e EZ .
G3 ) 0i(0)] XX+ XMOX+ 20X ") + X EX )
i=1

Hence Eq. 10 can be written as

o o 2
Flx,t)= 3 0i()X (x)= Y Xl(x)[;—H-P {Xl(%n 62—43«”(&)“—

1=1 1=1

c z

61X, 6 ([ X (5)X (&) ¢ TIX EEIX [ (8) + 2X ()X (8 + X (8)X J”(&)]}
1=1

(1)
i - 2

-G 22 ‘Di(t)[xl’(%)x j(8) + GZT['”Xi(E_.)X J(EY + 2 X7 (58X ((8) + X 7(8)X j”(%)]}
i=1

= 2
-G 32 ¢,(t){X,”(E)X JE) + %[X:V(g)x JEY+ ZX U(ENX (E) o+ X U(E)X J,,(E)]H
i=1

Substitution this Eq. 11 back into Eq. 1 we have;
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By o (030 () + D 040K~ Hy D 40X~ Hy " 40X, ()

i=1 i=1 i=1 i=1
- -1 e?
=) %) k—{Hxi(é) - —Xi"@ﬂ
= c 2
2 ee 2
G, ) oD X EX;E) + %{Xi EXGE+ 2X OO+ X @] 12

i=1

O . 2
~Ga ) O KRGO + XX+ 23O O XX ”@ﬂ -

i=1

. .
G3 Y O] X KO+ | K@K + XX O + X OK ”@]m

i=1

Free vibration system: For free Vibration system see (Ghorali, 1994, 1995; Adetunde and Akinpelu, 2005), we have

XY (x)-B"X;(x)=0 (13)
Where
L
Yoel
= XV(x)=B*X;(x) :M (14)

el
Where A, is the i Natural frequency of the beam, putting Eq. 14 inte Eq. 12 we have

D NN legi(t)xi (x)—H, zgi(t)Xi"(x)

i=1 i=1 i=1
o o 2
H; ) G0%(0 = 3 Xi(x) H[P{X C-2% ”(x)ﬂ
i=1 i=1

o 44 2
_GIE ¢, (t) {Xi(x)Xj O+ %[Xi"(x)}(j )+ 2 OX )+ X (X)Xj”(x)ﬂ (15)

i=1
e E2
GZZq)i (0] X3 (0% + E[Xi XG0+ 23X (0K () + X[ GOX (0 |

i=1

i=1

- ,
=G5 ) 01X GO0+ | XY GOX;00+ 2% G0X; 60 + X (0X ym}ﬂ}

Equation 15 is now the foundamental equation of our problem, which is a set of coupled linear second order differential
equations. In solving Eq. 13 the values of ¢,(t)’s can be determined which will help i solving Eq. 7 i.e., the derived
solution for the Vibration of the beam.
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Since our elastic system has simply support at the edges x = 0 and x = L., we choose the normalized deflection

[T iomi-
Xx)= me %—1,2,3...

(16)

Direct substitution of (16) into (15) will yield the desired governing equation which is however an approximate one. It
is remarked that for the configuration under discussion an exact differential governing equation can be defined by going
through arguments similar to these used in obtaining system (15). Hence by substitution (16) into (15) we finally have

o .. o v e 2 e ..z
EsinT(EQ)i(t)Kiz H Y G0+ H22¢i(t)[17ix] +H32¢i(t){1];x] -
i=1 i=1 i=1 i=1

1TTX

mei-j) Q)

P\/_SIH

1me

. me ZGIEq)()

L

=

sin

2L L

)

nEi+ j)

RG] me Q)
L 2L

<2 e 1
+2Glz 9;(t) D {cos
i=1

LG TEE(I—J)

J—Q%S’“zw{(@{@

S

L (1 + J)] (17)

[ sin

nE ... WE .. )
cos— (I =14+ )sin—0 + 1=1,23,..
L ( i 2L( J)m

L

1#]

The above Eq. 17 1s the exact governing equation of
a simply supported Beam. We now use the finite
difference method in order to solve the above question
Numerically. To obtain the results, we made use of
approximate central difference formula.

RESULTS AND DISCUSSION

To solve Eq. 17, we made use of approximate Central
difference formula for the derivatives in (17). Thus for N
modal shapes, Eq. 17 are transformed to a set of N linear
algebraic equations which are to be solved for each
mnterval of time.

As an illustration, the uniform Axial force Rayleigh
beam is taken to be 10 mlong, (I.=10m), V=12kmh™"
E=207x10,M=70kgm ', m=7.04kgm™, time = 0.0l sec
b=03,1=1.04x10"m*, h=01

The analysis was carried out separately for both
moving force case and moving mass case. The results are
shown on the various graphs.

In the mumerical analysis, the analysis was carried out
separately for both cases of moving force and moving
mass problems.

They dynamic response of the axial force Rayleigh
beam to a moving force 1s displayed in (Fig. 2), it 1s
evident that the response amplitude for the moving mass

2G5 (im) .
[ RS0l i o

174

mEGi+ D), (1 iyl
L
6.00E-02
—e— Moving force
Movi
4.00E-02 —i— Moving mass
2.00B-02
£ 000800 <N - ’
8 0.5 S5 [2 22 /3 35
R -2.00E-02
-4.00E-02
-6.00E-02
-B.00E-02 1
Time(s)

Fig 2: The response amplitude of the axial force rayleigh
beam for the moving force and moving mass

problem 1s greater than the response amplitude for the
moving force problem.

Figure 3, shows that deflection of the axial force
Rayleigh beam moving force for a particular value of
the mass of the load (that 1s M = 7.04 kg with constant
£=0.1 m at different values of timet(t=0.5,1,1.5 sec)
It was observed that as t increases the deflection
decreases.

Figure 4, illustrates the response of the axial force
Rayleigh beam moving mass for a particular value of the
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Fig. 3:  The deflection of the axial force rayleigh beam for moving force, for
a particular value of the mass of the load m = 7.04 kg with a
constant £ = 0.1m at different values of time t (t =0.5s, t = 1.05s
and t =1.55s)

Length of the When When When

beam X(m) t=10.5 gec. t=1.0sec. t=1.5 sec.

1.429 -3.40E-08 -3.50E-08 -6.00E-08

2.88 2.59E-07 241E-07 4.06E-07

4.306 -3.10E-07 3.02E-07 -5.08E-07

5.726 1.32E-07 1.32E-07 2.20E-07

7.145 8.39E-07 8.44E-07 1.42E-06

8.564 -1.79E-06 -1.83E-06 -3.08E-06

9.983 2.66E-06 2.74E-06 4.61E-06
6.00E-067

== When t = 0.5 sec.
5.00E-067 _g When t= 0.1 sec.
—& When t = 1.5 gec.
4.00E-06
g 3.00E-06+
8 2.00E-061
L=
g 1.00E-06
g
< 0.00E+H00
0 15
A -1.00E-064
-2.00E-064
-3.00E-06
-4.00E-06
Length of the beam (X(m)
Fig4: The deflection of the axial force rayleigh beam for a particular m

= 7.04 kg m™! with a constant value of € = 0.1 m at different
values of time t(i.e., t=0.5, 1.5 and 1.0 sec)

Length of the ‘When When When
beam X(m) t=0.5 sec. t=1.0sec t=1.5 sec.
1.429 -2.96E-06 -5.71E-05 -8.72E-05
2.88 -8.19E-05 -1.52E-04 -2.30E-04
4.306 -3.47E-05 -5.83E-05 -845E-05
5.726 845E-05 1.60E-04 2.42E-04
7.145 2.40B-05 3.78E-05 5.38E-05
8.564 -2, 7TE-04 -5.11E-05 -7.68E-04
9.983 -4, 9004 -8.81E-04 -L.31E-03
4.00E-04+
2.00E-044
0.00E~+00+
E -2.00E-044, 10 15
_g -4.00E-04-
Yy
(=]
_% -6.00E-04+
& -8.00E-041
-1.O0E-031 _o Whent=0.5 sec.
- Whent=1.0 sec.
-1.20E-034 -4 Whent= 1.5 sec.
- 10E-03

Length of the beam (X{m})
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Fig. 5: The displacement of axial force rayleigh beam for the moving force
for different values of e =0.1and 1 m

Length of the beam X{m) Whene=0.1m Whenc=1.0m
0.43 -3.40E-08 5.80E-06
0.86 2.59E-07 5.55E-06
1.29 -3.10E-07 -3.96E-06
1.72 1.32E-07 9.65E-07
2.15 8.39E-07 -2.85E-06
2.58 -1.79E-06 -3.01E-06
3.01 2.66E-06 2.93E-06
8.00E-061
=—E=01m
=+ E=1m
6.00E-06
§ 4.00F+H16
&
H  2.00E-06-
a
]
§ 0.00E+00
= 0 1 3 4
A
-2.00E-06
-4 00E-06
-6.00E-06
Time (5)

mass the load (that is M = 7.04 kg with constant € = 0.1 m
at different values of time t (t = 0.5, 1, 1.3sec) It was
observed that as t increases the deflection decreases
which bring about increased in the amplitude.

Figure 5, shows the displacement of axial force
Rayleigh beam moving force for different values of
(e =0.1 and 1 m) it was observed that as € increases, the
deflection of the beam increases.

CONCLUSION

The dynamical behaviour of axial force Rayleigh beam
traversed by uniform partially distributed moving loads.
The theory based on orthogonal functions and inertia
effect of load and the results indicate that the governing
differential equation of motion can be transformed into a
coupled ordinary differential equation.

Numerical analysis was carried out and the work
exhibits the following interesting features.

»  Ignonng this effect (inertial effect) result m solving a
set of uncoupled linear second order differential
equations which is the solution of the corresponding
moving distributed force and not the moving mass
problem.
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In solving the governing differential equations
(moving distributed mass problem) the technique of
Central difference expansion was employed. Tt was
observed that the length of the distributed moving
mass affect the dynamic response considerably.

The response amplitude for the moving mass problem
is greater than the response amplitude of the moving
force problem.

It the rotatory inertial term is zero then the resulting
problem leads to Euler Bernoulli problem.

Tt was also observed that as time t increases for both
cases of our consideration the deflection decreases.
Finally, a comparison of the moving mass and moving
force (Fryba, 1971) results indicate and at least 80%
difference between two results and thus shows the
importance of moving load having a grate effect on
dynamics stress of the bodies or structures of
consideration and causes them to vibrate intensively,
especially when the velocity is high.
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