A Zero Stable Continuous Hybrid Methods for Direct Solution of Second Order Differential Equations

S.J. Kayode
Department of Mathematical Sciences, Federal University of Technology, Akure

Abstract

This study produces a zero stable hybrid three-step methods for a direct solution of general second order ordinary differential Eq of form $y^{\prime \prime}=f\left(x, y y^{\prime}\right)$. The differential system from the basis polynomial function to the problem is collocated at all the grid points and at an off-grid point. The basis function is interpolated at $\mathrm{x}_{\mathrm{nti}}, \mathrm{I}=0,1,2$. The method is consistent and zero-stable. The efficiency and accuracy of the method are shown with some test examples.

Key words: Collocation, differential system, basis function, hybrid, symmetric, continuous method, zero stable

INTRODUCTION

The solution of higher order differential Eq of the form

$$
\begin{equation*}
\mathrm{y}^{(\mathrm{m})}=\mathrm{f}\left(\mathrm{t}, \mathrm{y}, \mathrm{y}^{1}, \mathrm{y}^{11}, \ldots, \mathrm{y}^{(\mathrm{m}-\mathrm{l})}\right) \mathrm{y}^{(\mathrm{s})}\left(\mathrm{t}_{0}\right)=\mathrm{y}_{0}^{(\mathrm{s})}, \mathrm{s}=0(1) \mathrm{m}-1 \tag{1}
\end{equation*}
$$

is considered in this study. It has been observed in literature that solutions of such Eq are usually reduced to system of first order Eq of the form

$$
\begin{equation*}
\mathrm{y}^{\prime}=\mathrm{f}(\mathrm{y}), \mathrm{y}\left(\mathrm{t}_{0}\right)=\mu, \mathrm{f} \in \mathrm{C}^{1}[\mathrm{a}, \mathrm{~b}], \mathrm{y}, \mathrm{t} \in \mathrm{R}^{\mathrm{n}} \tag{2}
\end{equation*}
$$

There are numerous numerical methods developed to handle the reduced Eq. 2 (Lambert, 1973; Goult et al. 1973; Jain, 1984; Lxaru, 1984; Jacques and Judd, 1987; Fatunla, 1988; Bun and Vasil' Yer, 1992; Awoyemi, 1992; Jaun, 2001; Chan et al., 2004). This approach has many disadvantages such as much of computational burden and computer time wastage. Hence, there is need for direct methods for solving Eq. 1 without reducing it to system of first order equations.

Awoyemi and Kayode (2003) highlighted some of the direct methods for solving (1), in which $\mathrm{m}=2$ and the derivative is absent in the right side.

In this study, a three-step hybrid numerical technique is proposed for a direct solution of initial value problems (1) in which $\mathrm{m}=2$ to be of the form

$$
\begin{equation*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), y(a)=\mu, y^{\prime}(a)=\tau, f \in C^{1}[a, b], y, x \in R^{n} \tag{3}
\end{equation*}
$$

MATERIALS AND METHODS

In this study, the development of the collocation methods for the solution of second order ordinary differential Eq. 3 directly without reducing it to first order system of Eq. is discussed. The method obtained is an order five hybrid linear multistep with continuous coefficients of the form

$$
\begin{align*}
& y_{k}(t)=\sum_{j=0}^{k-1} \alpha_{j}(t) y_{n+j}+\sum_{j=2}^{k} \beta_{j}(t) f_{n+j} \tag{4}\\
& +\tau(t) f_{n+u} t \in(0,1] \text { and } v \in(1,2)
\end{align*}
$$

The approximate solution to problem (1) is taken to be a partial sum of a P- series of a single variable x in the form

$$
\begin{align*}
& y(x)=\sum_{j=0}^{2 k} a_{j} x^{j} \tag{5}\\
& a_{j} \in \mathfrak{R}, j=0(1) 2 k, y \in C^{m}(a, b) \subset P(x)
\end{align*}
$$

It is assumed that the initial value problem (1) satisfies the hypotheses of existence and uniqueness theorem. The first and second derivatives of (5) are respectively taken as

$$
\begin{gather*}
y^{\prime}(x)=\sum_{j=1}^{2 k} j a_{j} x^{j-1} \tag{6}\\
y^{\prime \prime}(x)=\sum_{j=2}^{2 k} j(j-1) a_{j} x^{j-2} \tag{7}
\end{gather*}
$$

From (3) and (7), we have

$$
\begin{equation*}
\sum_{\mathrm{j}=2}^{2 \mathrm{k}} \mathrm{j}(\mathrm{j}-1) \mathrm{a}_{\mathrm{j}} \mathrm{x}^{\mathrm{j}-2}=\mathrm{f}\left(\mathrm{x}, \mathrm{y}(\mathrm{x}), \mathrm{y}^{\prime}(\mathrm{x})\right) \tag{8}
\end{equation*}
$$

Thus, collocating Eq. 8 at the grid points $\mathrm{x}_{\mathrm{nti}}, \mathrm{I}=0,1,2,3, \mathrm{v}$, $1<\mathrm{v}<2$, and interpolating (5) at $\mathrm{x}_{\mathrm{nti}}, \mathrm{I}=0(1) \mathrm{k}-1$, for $\mathrm{k}=3$, yields a system of Eq.

$$
\begin{align*}
& \sum_{j=2}^{2 k} j(j-1) a_{j} x_{n+i}^{j-2}=f_{n+i}, i=0(1) k \tag{9}\\
& \sum_{j=2}^{2 k} j(j-1) a_{j} x_{n+i}^{j-2}=f_{n+v}, \quad v \in(1,2) \tag{10}\\
& \sum_{j=0}^{2 k} a_{j} x_{n+i}^{j}=y_{n+i}, i=0(1) k-1 \tag{11}
\end{align*}
$$

whe re $f_{n+i}=f\left(x_{n+i}, y_{n+i}, y_{n+i}^{\prime}\right) y_{n+i}$ is the numerical

$$
\text { approximation to } \mathrm{y}\left(\mathrm{x}_{\mathrm{n}+\mathrm{i}}\right) \text { at } \mathrm{x}_{\mathrm{n}+\mathrm{i}}
$$

and

$$
x_{n+i}=x_{n}+i h .
$$

Solving Eq. 9, 10 and 11 to obtain the parameters $a_{j} \cdot s, j$, and then substituting for these values into Eq. 3 produces a continuous method expressed as

$$
\begin{equation*}
y_{k}(x)=\sum_{j=0}^{k-1} \alpha_{j}(x) y_{n+j}+\sum_{j=2}^{k} \beta_{j}(x) f_{n+j}+\tau(x) f_{n+u} \tag{12}
\end{equation*}
$$

Using the transformations

$$
\begin{equation*}
\mathrm{t}=\frac{1}{\mathrm{~h}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{n}+\mathrm{k}-1}\right) \text { and } \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1}{\mathrm{~h}} \mathrm{t} \in(0,1] \tag{13}
\end{equation*}
$$

the coefficients in the continuous method (12) are obtained, as a function of t, to be

$$
\begin{gathered}
\alpha_{2}(t)=\{1+t\} \\
\alpha_{1}(t)=-t \\
\alpha_{0}(t)=0 \\
\beta_{3}=\frac{h^{2}}{360(3-v)}\left\{(8 v-13) t+20(2-v) t^{3}\right. \\
\left.+5(8-3 v) t^{4}+3(5-v) t^{5}+2 t^{6}\right\} \\
\beta_{2}=\frac{h^{2}}{120(2-v)}\left\{(75-43 v) t+60(2-v) t^{2}+\right. \\
\left.10(4-v) t^{3}+5(2 v-3) t^{4}+3(v-4) t^{5}-2 t^{6}\right\}
\end{gathered}
$$

$$
\begin{align*}
& \beta_{v}=\frac{h^{2}}{60 v(3-v)(2-v)(v-1)}\{11 t \\
& \left.-20 t^{3}-5 t^{4}+6 t^{5}+2 t^{6}\right\} \\
& \beta_{1}=\frac{h^{2}}{120(v-1)}\{11(2 v-3) t+20(2 \\
& \left.-v) t^{3}+5 v t^{4}+3(v-3) t^{5}-2 t^{6}\right\} \\
& \beta=\frac{h^{2}}{360 v}\left\{(11-7 v) t+10(v-2) t^{3}\right. \tag{14}\\
& \left.-5 t^{4}+3(2-v) t^{5}+2 t^{6}\right\}
\end{align*}
$$

Taking the first derivatives of $a_{\mathrm{j}}, \$_{\mathrm{j}}$, in (14) yields

$$
\begin{aligned}
& \alpha_{2}^{\prime}=\frac{1}{\mathrm{~h}} \\
& \alpha_{1}^{\prime}=-\frac{1}{\mathrm{~h}}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{3}^{\prime}=\frac{h}{360(3-v)}\left\{(8 v-13)+60(2-v) t^{2}+\right. \\
& 20(4-3 v) t^{3}+15(5-v) t^{4}+12 t^{5}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{2}^{\prime}=\frac{h}{120(2-v)}\{(75-43 v)+120(2-v) t+ \\
& \left.30(4-v) t^{2}+20(2 v-3) t^{3}+15(v-4) t^{4}-12 t^{5}\right\}
\end{aligned}
$$

$$
\beta_{v}^{\prime}=\frac{h}{60 v(3-v)(2-v)(v-1)}\left\{11-60 t^{2}-20 t^{3}+30 t^{4}+12 t^{5}\right\}
$$

$$
\begin{aligned}
& \beta_{1}^{\prime}=\frac{h}{120(v-1)}\left\{11(2 v-3)+60(2-v) t^{2}\right. \\
& \left.+20 \mathrm{vt}^{3}+15(v-3) \mathrm{t}^{4}-12 \mathrm{t}^{5}\right\}
\end{aligned}
$$

$\beta_{0}^{\prime}=\frac{h}{360 v}\left\{(11-7 v)+30(v-2) t^{2}-40 t^{3}+15(2-v) t^{4}+12 t^{5}\right\}$

To obtain a sample discrete scheme from the continuous method (12), the values of t in (14) could be taken in the interval $\mathrm{I}=(0,1]$. Hence for the purpose of this research t is taken to be 1 , which implies that $x=x_{n+3}$ from (13), to have a one-point hybrid discrete scheme as

$$
\begin{align*}
& y_{n+3}-2_{n+2}+y_{n+1}=\frac{h^{2}}{60 v(3-v)(2-v)(v-1)} \tag{16}\\
& \left(A f_{n+3}+B f_{n+2}+C f_{n+v}+D f_{n+1}+E f_{n}\right)
\end{align*}
$$

Res. J. Applied Sci., 2 (2): 202-207, 2007
where

$$
\begin{aligned}
& A=v(14-5 v)(2-v)(v-1) \\
& B=v(103-50 v)(3-v)(v-1) \\
& \quad C=-6 \\
& D=v(5 v-2)(3-v)(2-v) \\
& E=-(3-v)(2-v)(v-1)
\end{aligned}
$$

and from (15)

$$
\begin{aligned}
y_{n+3}^{\prime}= & \frac{1}{h}\left(y_{n+2}-y_{n+1}\right)+\frac{h}{360 v(3-v)(2-v)(v-1)} \\
& \left(\mathrm{Ff}_{n+3}+G f_{n+2}+H f_{n+v}+I f_{n+1}+J f\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{F}=\mathrm{v}(354-127 \mathrm{v})(2-\mathrm{v})(\mathrm{v}-1) \\
& \mathrm{G}=3 \mathrm{v}(303-138 \mathrm{v})(3-\mathrm{v})(\mathrm{v}-1) \\
& \mathrm{H}=-162 \\
& \mathrm{I}=9 \mathrm{v}(10-\mathrm{v})(3-\mathrm{v})(2-\mathrm{v}) \\
& \mathrm{J}=(8 \mathrm{v}-27)(3-\mathrm{v})(2-v)(v-1)
\end{aligned}
$$

Taking the values of v in (16) and (17) are taken at three points $5 / 4,3 / 2,7 / 4$, in the interval (Awoyemi, 1992; Awoyemi and Kayode, 2002) to obtain the following discrete schemes:
For $v=5 / 4$:

$$
\begin{aligned}
& y_{n+3}=2_{n+2}-y_{n+1}+\frac{h^{2}}{2100}\left(155 f_{n+3}+1890 f_{n+2}\right. \\
& \left.-512 f_{n+\frac{5}{4}}+595 f_{n+1}-284 f_{n}\right)
\end{aligned}
$$

of order $\mathrm{P}=5$, error constant $\mathrm{C}_{\mathrm{p}+2} \approx-0.002292$

$$
\begin{aligned}
& y_{n+3}^{\prime}=\frac{1}{h}\left(y_{n+2}-y_{n+1}\right)+\frac{h}{12600}\left(3905 f_{n+3}+\right. \\
& \left.18270 f_{n+2}-13824 f_{n+\frac{5}{4}}+11025 f_{n+1}-476 f_{n}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { Order } \mathrm{P}=5, \mathrm{C}_{\mathrm{p}+2}=0.006344 \tag{19}
\end{equation*}
$$

For: $\mathrm{v}=3 / 2$

$$
\begin{align*}
& y_{n+3}=2_{n+2}-y_{n+1}+\frac{h^{2}}{180}\left(13 f_{n+3}+\right. \\
& \left.168 f_{n+2}-32 f_{n+\frac{3}{2}}+33 f_{n+1}-2 f_{n}\right) \tag{20}
\end{align*}
$$

Order $\mathrm{P}=5$, Error constant $\mathrm{C}_{\mathrm{p}+2} \approx-0.002083$

$$
\begin{aligned}
& y_{n+3}^{\prime}=\frac{1}{h}\left(y_{n+2}-y_{n+1}\right)+\frac{h}{360}\left(109 f_{n+3}+\right. \\
& \left.576 f_{n+2}-288 f_{n+\frac{3}{2}}+153 f_{n+1}-10 f_{n}\right)
\end{aligned}
$$

Order $\mathrm{P}=5$, Error constant $\mathrm{C}_{\mathrm{p}+2} \approx 0.005407$
for $v=7 / 4$:

$$
\begin{aligned}
& y_{n+3}=2_{n+2}-y_{n+1}+\frac{h^{2}}{2100}\left(147 f_{n+3}+2170 f_{n+2}\right. \\
& \left.-512 f_{n+\frac{7}{4}}+315 f_{n+1}-20 f_{n}\right)
\end{aligned}
$$

Order $\mathrm{P}=5$, Error constant $\mathrm{C}_{\mathrm{p}+2} \approx-0.001875$

$$
\begin{aligned}
& y_{n+3}^{\prime}=\frac{1}{h}\left(y_{n+2}-y_{n+1}\right)+\frac{h^{2}}{12600}\left(3689 f_{n+3}+25830 f_{n+2}\right. \\
& \left.-13824 f_{n+\frac{7}{4}}+3465 f_{n+1}-260 f_{n}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { Order } \mathrm{P}=5, \text { Error constant } \mathrm{C}_{\mathrm{p}+2} \approx 0.004469 \tag{23}
\end{equation*}
$$

Starting values for the methods: The set of implicit discrete schemes (18), (20) and (22) and their respective first derivatives (19) (21) and (23) are not self-starting. Thus to be able to implement them, some starting values, of the same order $p=5$ and their derivatives are developed using the same technique for the main method (13). Thus at $\mathrm{t}=1$ and $\mathrm{r}=5 / 4,3 / 2,7 / 4$, the main starting values are:
For $v=5 / 4$:

$$
\begin{aligned}
& y_{n+3}=-\frac{23}{4} y_{n+2}+\frac{29}{2} y_{n+1}-\frac{31}{4} y_{n}+\frac{h^{2}}{240}\left(495 f_{n+2}\right. \\
& \left.-512 f_{n+\frac{5}{4}}+1990 f_{n+1}+127 f_{n}\right)
\end{aligned}
$$

having order $\mathrm{p}=5$ and $\mathrm{C}_{\mathrm{p}+2} \approx 0.0122396$ and

$$
\begin{gather*}
y_{n+3}^{\prime}=\frac{1}{24 h}\left\{-757 y_{n+2}+1538 y_{n+1}-781 y_{n}\right\}+\frac{h}{7200} \\
\left\{45585 f_{n+2}-65024 f_{n+\frac{5}{4}}+248410 f_{n+1}+16129 f_{n}\right\} \\
p=5, C_{p+2} \approx-0.054671 \tag{25}
\end{gather*}
$$

For $\mathrm{v}=3 / 2$:

$$
\begin{align*}
& y_{n+3}=-\frac{9}{2} y_{n+2}+12 y_{n+1}-\frac{13}{2} y_{n}+\frac{h^{2}}{24} \tag{26}\\
& \left(51 f_{n+2}-32 f_{n+\frac{3}{2}}+150 f_{n+1}+11 f_{n}\right)
\end{align*}
$$

of order $\mathrm{p}=5$ and $_{\mathrm{p}+2} \approx 0.011458$

$$
\begin{align*}
& y_{n+3}^{\prime}=\frac{1}{4 h}\left\{-105 y_{n+2}+214 y_{n+1}-109 y_{n}\right\}+\frac{h}{720} \tag{27}\\
& \left\{4749 f_{n+2}-4064 f_{n+\frac{3}{2}}+18618 f_{n+1}+1397 f_{n}\right\}
\end{align*}
$$

and of order $p=5, C_{p+2} \approx-0.051364$

For7/4

$$
\begin{align*}
& y_{n+3}=-\frac{13}{4} y_{n+2}+\frac{19}{2} y_{n+1}-\frac{21}{4} y_{n}+\frac{h^{2}}{336} \tag{28}\\
& \left(847 f_{n+2}-512 f_{n+\frac{7}{4}}+1638 f_{n+1}+127 f_{n}\right)
\end{align*}
$$

of order $\mathrm{p}=5$ and $_{\mathrm{p}+2} \approx 0.01015625$ and

$$
\begin{aligned}
& y_{n+3}^{\prime}=\frac{1}{24 h}\left\{-503 y_{n+2}+1030 y_{n+1}-527 y_{n}\right\}+\frac{h}{100080} \\
& \left\{83377 f_{n+2}-65024 f_{n+\frac{7}{4}}+201978 f_{n+1}+16129 f_{n}\right\}
\end{aligned}
$$

$$
\text { also of order } \mathrm{p}=5 \text { and } \mathrm{C}_{\mathrm{p}+2} \approx-0.0458519
$$

Other starting values for $y_{n+2}, y_{n+2}, y_{n+v}, y_{n+v}, y_{n+1}, y_{n+1}$ are obtained to be

$$
\begin{gather*}
y_{n+2}=2 y_{n+1}-y_{n}+h^{2} f_{n+1}, p=2, c p+2=0.0833 \tag{30}\\
y_{n+2}^{\prime}=\frac{1}{h}\left(y_{n+1}-y_{n}\right)+\frac{h}{6}\left(11 f_{n+1}-2 f_{n}\right) \tag{31}\\
p=2, c p+2=-0.375
\end{gather*}
$$

The initial values y_{n}, y_{n} ' are obtained in the given problem.

$$
\begin{gathered}
y_{n+j}=y_{n}+(j h) y_{n}^{\prime}+\frac{(j h)^{2}}{2!} f_{n}+\frac{(j h)^{3}}{3!} \\
\left\{\frac{\partial f_{n}}{\partial x_{n}}+y_{n}^{\prime} \frac{\partial f_{n}}{\partial y_{n}}+f_{n} \frac{\partial f_{n}}{\partial y_{n}^{\prime}}\right\}+O\left(h^{4}\right) \\
y_{n+j}^{\prime}=y_{n}^{\prime}+(j h) f_{n}+\frac{(j h)^{2}}{2!} \\
\left\{\frac{\partial f_{n}}{\partial x_{n}}+y_{n}^{\prime} \frac{\partial f_{n}}{\partial y_{n}}+f_{n} \frac{\partial f_{n}}{\partial y_{n}^{\prime}}\right\}+O\left(h^{3}\right) \\
\text { where } j=1, \frac{5}{4}, \frac{3}{2} \text { and } \frac{7}{4}
\end{gathered}
$$

The initial values y_{n}, y_{n}^{\prime} are obtained in the given preblem.

NUMERICAL EXPERIMENT

The accuracy of the continuous method developed for the direct solution of second order ordinary differential Eq tested with the following problems

$$
\mathrm{yO}=2 \mathrm{y}^{3}, \mathrm{y}(1)=1, \mathrm{y}^{\prime}(1)=-1 ;
$$

Theoretical solution: $\mathrm{y}(\mathrm{x})=1 / \mathrm{x}$.

$$
\mathrm{yO}=\mathrm{y}+\mathrm{xe}^{3 \mathrm{x}}
$$

Theoretical solution: $y(x)=\frac{(4 x-3)}{32 \exp (-3 x)}$.

$$
\begin{aligned}
& y^{\prime \prime}(x)=\frac{(4 x-3)}{32 \exp (-3 x)} y\left(\frac{\Pi}{6}\right) \\
& =\frac{1}{4} y\left(\frac{\Pi}{6}\right)=\frac{\sqrt{3}}{2}, h=\frac{1}{40}
\end{aligned}
$$

Theoretical solution is given as $y(x)=\operatorname{Sin}^{2} x$.

$$
\mathrm{YOx}\left(\mathrm{y}^{\prime}\right)^{2}=0, \mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=1 / 2 ; \mathrm{h} 1 / 40
$$

Theoretical solution is $y(x)=1+\frac{1}{2} \ln \left\{\frac{(2+x)}{(2-x)}\right\}$.

RESULTS

The absolute errors obtained from the method (15) for $\mathrm{k}=3$ are compared with those obtained from the method for $k=2$ in Kayode (2004) for the problems (i)-(iv). The results are shown in the Table 1 and 2 below. The accuracy of the results is further illustrated graphically in the Fig. 1-4.

Table 1:Comparison of errors for problems (i) and (ii) for $\mathrm{k}=2,3$

	Kayode (2004) for problem (i)	New Method (15) for problem (i)	Kayode (2004) for problem (ii)	New Method (15) for problem (ii)	
x	Errors for k=2	Errors for $\mathrm{k}=3$	x	Errors for k $=2$	Errors for $\mathrm{k}=3$
1.1	$0.5373197 \mathrm{D}-06$	$0.5263931 \mathrm{D}-08$	0.1	$0.9056176 \mathrm{D}-08$	$0.2086753 \mathrm{D}-09$
1.2	$0.4142659 \mathrm{D}-06$	$0.3720895 \mathrm{D}-08$	0.2	$0.8640876 \mathrm{D}-07$	$0.1923770 \mathrm{D}-09$
1.3	$0.3260932 \mathrm{D}-06$	$0.2704051 \mathrm{D}-08$	0.3	$0.2167778 \mathrm{D}-06$	$0.1391324 \mathrm{D}-09$
1.4	$0.2612683 \mathrm{D}-06$	$0.2012022 \mathrm{D}-08$	0.4	$0.4277919 \mathrm{D}-06$	$0.2508468 \mathrm{D}-10$
1.5	$0.2125477 \mathrm{D}-06$	$0.1527879 \mathrm{D}-08$	0.5	$0.7599223 \mathrm{D}-06$	$0.1857944 \mathrm{D}-09$
1.6	$0.1752254 \mathrm{D}-06$	$0.1180986 \mathrm{D}-08$	0.6	$0.1287868 \mathrm{D}-05$	$0.5588885 \mathrm{D}-09$
1.7	$0.1461539 \mathrm{D}-06$	$0.9271881 \mathrm{D}-09$	0.7	$0.2073414 \mathrm{D}-05$	$0.1157671 \mathrm{D}-08$
1.8	$0.1231736 \mathrm{D}-06$	$0.7380502 \mathrm{D}-09$	0.8	$0.3250983 \mathrm{D}-05$	$0.2107025 \mathrm{D}-08$
1.9	$0.1047692 \mathrm{D}-06$	$0.5947730 \mathrm{D}-09$	0.9	$0.4998729 \mathrm{D}-05$	$0.3578957 \mathrm{D}-08$
2.0	$0.8985620 \mathrm{D}-07$	$0.4846371 \mathrm{D}-09$	1.0	$0.7571481 \mathrm{D}-05$	$0.5822924 \mathrm{D}-08$

Res. J. Applied Sci., 2 (2): 202-207, 2007
Table 2:Comparison of errors for problem (iii) and (iv) for $\mathrm{k}=2,3$
$\left.\begin{array}{llllll}\text { Kayode (2004) } \\ \text { for problem (iii) }\end{array} \quad \begin{array}{l}\text { New method (15) } \\ \text { for problem (iv) }\end{array}\right]$

Fig 1: Comparison of errors for problem (i) for $\mathrm{k}=2,3$

Fig 2: Comparison of errors for problem (ii) for $\mathrm{k}=2,3$

CONCLUSION

This study has considered the development of a continuous hybrid numerical method with step number $\mathrm{k}=3$. A set of discrete schemes of the same order $p=5$ are obtained from the continuous method. The major predictors for the methods are constructed to be of the same order $\mathrm{p}=5$ with the methods. The efficiency of the method is compared with existing order four method (Kayode 2004; 2006).

Fig 3: Comparison of errors for problem (iii) for $\mathrm{k}=2,3$

Fig 4: Comparison of errors for problem (iv) for $k=2,3$
The comparison of the absolute errors obtained from the results for the test problems above are shown in Table 1 and 2 and also in Fig. 1 and 4. These errors show a considerable improvement in accuracy of the new method over Kayode (2004).

REFERENCES

Awoyemi, D.O., 1992. On some continuous linear multistep methods for initial value problems. Ph.D Thesis (Unpublished), University of Ilorin, Nigeria.

Awoyemi, D.O. and S.J. Kayode, 2003. An optimal order collocation method for direct solution of initial value problems of general second order ordinary differential equations. FUTAJEET, 3: 33-40.
Bun, R.A. and Y.D. Vasil Yev, 1992. A numerical method for solving differential equations of any orders. Comp. Math. Phys., 32: 317-330.
Chan, R.P.K., P. Leone and A. Tsai, 2004. Order conditions and symmetry for two-step hybrid methods. Int. J. Comp. Math, 81: 1519-1536.
Fatunla, S.O., 1988. Numerical Methods for IVPs in ordinary differential equations Academic Press Inc. Harcourt Brace Jovanovich Publishers, New York
Goult, R.J., R.F. Hoskins, Milner and M.J. Pratt, 1973. Applicable mathematics for Engineers and Scientists. The Macmillan Press Ltd., London.
Ixaru, G.R. Liviu, 1984. Numerical methods for differential equations and applications. Editura Academiei, Bucuresti, Romania.

Jacques, I. and C.J. Judd, 1987. Numerical Analysis. Chapman and Hall, New York.
Jain, R.K., 1984. Numerical solution of differential equations (2nd Edn.). Wiley Eastern Limited, New Delhi.
Jaun, A., 2001. Numerical methods for partial differential equations http://pde.fusion.kth.se
Kayode, S.J., 2004. A class of maximal order linear multistep collocation methods for direct solution of second order initial value problems of ordinary differential equations Ph.D Thesis, FUTA. (Unpublished).
Kayode, S.J., 2006. A P- stable collocation algorithm for direct solution of second order differential equations. To appear in International Journal of Numerical Mathematics.
Lambert, J.D., 1973. Computational methods in ordinary differential equations. John Wiley and Sons, New York.

