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A Zero Stable Continuous Hybrid Methods for Direct Solution
of Second Order Differential Equations
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Abstract: Thisstudy produces a zero stable hybrid three-step methods for a direct solution of general second
order ordinary differential Eq of formy” = f (x, yy'). The differential system from the basis polynomial function
to the problem is collocated at all the grid points and at an off-grid point. The basis function isinterpolated at
Xnir | =0,1,2. The method is consistent and zero-stable. The efficiency and accuracy of the method are shown

with some test examples.
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INTRODUCTION

The solution of higher order differential Eq of the
form

YT )y (to) =y5 s =0@m- 1
@

y™ =f(ty, vyt .

is considered in this study. It has been observed in
literature that solutions of such Eq are usually reduced to
system of first order Eq of the form

ye=f(y), yt,)=m f1 Ca b],y,ti R" @

There are numerous numerical methods developed to
handle the reduced Eq. 2 (Lambert, 1973; Goult et al. 1973;
Jain, 1984; Lxaru, 1984; Jacques and Judd, 1987; Fatunla,
1988; Bun and Vasil’ Yer, 1992; Awoyemi, 1992; Jaun,
2001; Chan et al., 2004). This approach has many
disadvantages such as much of computational burden
and computer time wastage. Hence, there is need for direct
methods for solving Eq. 1 without reducing it to system of
first order equations.

Awoyemi and Kayode (2003) highlighted some of the
direct methods for solving (1), in which m = 2 and the
derivative isabsent in theright side.

In this study, a three-step hybrid numerical technique
is proposed for a direct solution of initial value problems
(1) inwhich m=2to be of the form

ye=f(x,y,y9, y(@=m y€a)=t,f1 C'[a b],y,x] R"
©)
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MATERIALSAND METHODS

In this study, the development of the collocation
methods for the solution of second order ordinary
differentia Eq. 3 directly without reducing it to first order
system of Eq. is discussed. The method obtained is an
order five hybrid linear multistep with continuous
coefficients of the form

k-1 K
Yy (t)= j(::lo aj(t)ynﬂ' + ja:-Z bi(t)f"*i (4)

+(Of,,,tT (0,1 and vi (1L2)

The approximate solution to problem (1) is taken to

be a partial sum of a P- series of asingle variable x in the
form

¥
y(x) =4 ax

=0

al A, j=02k,yl C"(ab)i PX)

©)

It is assumed that the initial value problem (1)
satisfies the hypotheses of existence and uniqueness
theorem. The first and second derivatives of (5) are

respectively taken as
2k
y&x) = Q jax’ (6)

j=1

2k )
yix) =g i(j- Dax? @)

j=2
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From (3) and (7), we have

2k

a ii- Dax2 =f(x,y(x), y&x)) ®)

N

Thus, collocating Eq. 8 at the grid points x,.,;, | = 0,1,2,3,v,
1<v<2, and interpolating (5) at X,.;, | = 0(1)k-1, fork =3,
yields a system of Eq.

2k

a i(i- Daxi=f,,, i=0@k ©)
j=2
3 . -
ail-naxii=f.,. vi 12 (10)
j=2
3 _
aax,, =y, i=0Dk-1 (11)
j=0
where froi = Xosir Yot Y8, isthe numerical
approximation toy(x,,;)atx,.,;
and X, =X, +ih.

Solving Eq. 9, 10 and 11 to obtain the parameters a, ‘s, j,
and then substituting for these valuesinto Eq. 3 produces
a continuous method expressed as

k-1 k
v () =3 a,(x)y,.,; +a b,xf,,, +t(xf,,, (12
j=2

i=0

Using the transformations
1 d _ 1.
t==(x- X and— ==t1 (0,1 (13)
h ( n+k- 1) dX h ( ]

the coefficients in the continuous method (12) are
obtained, as afunction of t, to be

a,(t) ={1+t4

a,(t) =-t

a,(t)=0
_ h? 3
b3 = m{ (8V - 13)t + 20(2- V)t

+5(8- 3v)t* +3(5- v)t® +2t%)

h2
b2 -
120(2- v)
10(4- V)t*+5(2v - 3)t* +3(v- 4)t° - 2t%

{(75- 43v)t +60(2- V)t* +
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2
b, = h {11t
60v(3- v)(2- v)(v-1)
- 20t% - 5t* +6t° + 2t%

h2
bl =
120(v- 1)
- V)t +5ut? + 3(v - Jt°- 2t%

{11(2v - 3t +20(2

_n s
b= 360V{(ll- 7v)t +10(v - 2)t (14)

-5t* +3(2- v)t° + 2t%

Taking the first derivatives of a, $;, in (14) yields

1
ag==
g:h

1
ag=-=
f h

bg= _h
360(3- V)
20(4- 3v)t* +15(5- v)t* +12t°

{(8v- 13) +60(2- V)t? +

bg = L
120(2- v)
30(4- V)t +20(2v - 3)t> +15(v - 4)t* - 12t%}

{(75- 43v) +120(2- v)t+

_ h
T 60V(3- V)(2- V)(v- 1)

b¢ {11- 60t> - 20t* +30t* +12t%}

bg}: L
120(v - 1)
+20vt® +15(v - 3)t* - 12t%}

{11(2v - 3) +60(2- V)t?

h
b¢=——{(11- 7v) +30(v- 2)t>- 40t +15(2- v)t* +12t°
¢ 360V{( ) +30(v- 2) (2- v) }

(15

To obtain a sample discrete scheme from the continuous
method (12), the values of t in (14) could be taken in the
interval | = (0, 1]. Hence for the purpose of this research
t istaken to be 1, which implies that x = X,.;from (13), to
have a one-point hybrid discrete scheme as

h2
-2 ..+ =
Yoa™ G2V o0 3 v vv-)  (16)
(Afn+3 + Bfn+2 + Cf v + Dfn+l + Efn)

n+
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where
A =v(l4- 5v)(2- v)(v- D)
B =v(103- 50v)(3- v)(v- 1
C=-6
D=v(5v- 2)(3- v)(2- v)
E=-(3- v)(2- v)(v- 1)
and from (15)
1 i h
Y$+3 _F(ymz yn+1) + 360V(3- V)(2- V)(V- 1) (17)
(an+3 + an+2 + an+v + Ifn+1 + ‘]f}

where

F=v(354- 127v)(2- v)(v- 1

G =3v(303- 138v)(3- v)(v- 1)
H=-162

[ =9v(10- v)(3- V)(2- V)

J=(8v- 27)(3- V)(2- v)(v- D)

Taking the values of v in (16) and (17) are taken at three
points 5/4, 3/2, 7/4, in the interva (Awoyemi, 1992;
Awoyemi and Kayode, 2002) to obtain the following
discrete schemes:
For v = 5/4:
h2
Yoez = 2n+2 “ You + M(l%fnw +1890fn+2

-512f  +595f,, - 284f,)

n+2
4

of order P= 5, error constant C,,, » - 0.002292 (18)

1 h
==(y..,- +——(3905F, ,, +
yﬂ:+3 h (yn+2 yn+1) 12600( n+3

18270f,,, - 13824f , +11025f ,, - 476f )

n+>
4

Order P=5,C._,., = 0.006344 (19)

p+2
For: v =23/2
h2
Yoez = 2n+2 “ You + _(13fn+3 +

180
168f,.,- 32f ,+33f, - 2f)

n+=

n+2

Order P = 5, Error constantC,, , » - 0.002083 (20)

1 h
yﬂ:+3 = F(yn+2 - yn+1) + %(109fn+3 +
576f ., - 288f , +153f - 10f )

n+=
2

Order P =5, Error constant C,, » 0.005407  (21)

forv=7/4:
h2
=2,5" +——(147f ,, + 2170f
yn+3 n+2 yn+1 2100( n+3 n+2
-512f  +315f,, - 20f )

n+-
4

Order P=5, Error congtant C,,, » - 0.001875  (22)

s = (Voo Vo) + o
n+3 h n+2 n+1. 12600

- 13824f , +3465f, ,, - 260f,)

(3689f ., +25830f

Order P =5, Error constantC,, , » 0.004469  (23)

Starting values for the methods: The set of implicit
discrete schemes (18), (20) and (22) and their respective
first derivatives (19) (21) and (23) are not self-starting.
Thus to be able to implement them, some starting values,
of the same order p = 5 and their derivatives are
developed using the same technique for the main method
(13). Thusat t = 1 and r = 5/4, 3/2, 7/4, the main starting
values are;
For v = 5/4:
2
Yooz = ?ymz +§yn+l - STj-yn +2hT40(495fn+2
-512f | +1990f ,, +127f )

n+>
4

having order p=5and C,,, » 0.012239% and  (24)

1 h
=—{-757 +1538 - 781y Y+ —
Y3 > 4h{ Yos2 Y i1 Yol =200

{45585, - 65024f  +248410f, ., +16129f }

n+z
p=5,C,,, »-0.054671 (25)

For v =3/2:

y __2y +12y -E’y +h—2
n+3 2 n+2 n+l 2 n 24 (26)

(51f,,, - 32f  +150f,, +11f,)
n+E

of order p=5andC,,, » 0.011458

1 h
=—{-105 + 214 -109y } +—
y¢.s 4h{ Y ne2 Yo Vot 720 (27)
{4749f ,, - 4064f ,+18618f ,, +1397f }

n+=
2

and of order p=5,C_,, » - 0.051364

p+2
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For7/4:

B, B, 2K

g me " 4yn 336

- 512f , +1638f,, +127f,)
4

Yoz =
(847,

n+l "

(29)

of order p=5andC,,, » 0.01015625 and

527y} +

yﬂ:+3 =
{83377 .,

1
—{-503y.,, +1030y,,, -
24h{ yn+2 yn+1 100080

+16129f,}

(29)
- 65024f  +201978f ,
r|+Z

asoof order p=5andC,,, » - 0.0458519

Other starting values fory,.»Ymz » Yosw Yoewr Yers Vo1 €
obtained to be

Yo =2y - Y, +h . p=2, cp+2=0.0833 (30)

n+l 7

1 h
yg+2 = F(ynﬂ - yn) + E(llfnﬂ an)

p=2, cp+2=-0.375

(31)

Theinitial valuesy,, y, are obtained in the given problem.

2 (2): 202-207, 2007

The initial valuesy,, y', are obtained in the given
preblem.

NUMERICAL EXPERIMENT
The accuracy of the continuous method developed

for the direct solution of second order ordinary differential
Eq tested with the following problems

yo=2yy(1)=1,y'(1) =-1,

Theoretical solution: y(x) = 1/x.
y0 = y+xe*
Theoretical solution: y(x) :M .
32exp(- 3x)
_ (4x-3 P
y&x) 32exp(- 3x) v 6)
1 P, 3 1
=—y(—)=—,h=—
4y( 6) 2 40

Theoretical solution is given asy(x) = Sin’x.

YO0-x(y")* =0, y(0) = 1, y'(0) = 1/2; h1/40

. jh)? ih)
Yasj =Yn +(Jh)y$¥+¥fn +%
1 o .0 ' (32)  Theoretical solutionisy(x) = 1+_|n{(§+x)}
e rygler, a0t (2-)
T'ﬂxn y, "y ﬂ%
RESULTS
h
y8., =yt Gr, + 00 |
(33) The absolute errors obtained from the method (15)
1 LI 9 f, +f T, U +O(h3) for k = 3 are compared with those obtained from the
T‘ﬂx ﬂyg?ig method for k = 2 in Kayode (2004) for the problems
()-(iv). Theresults are shown in the Table 1 and 2 below.
wherej:],E p— The accuracy of the results is further illustrated
4'2 4 graphicaly in the Fig. 1-4.
Table 1:Comparison of errorsfor problems (i) and (ii) fork =2, 3
Kayode (2004) New Method (15) Kayode (2004) New Method (15)

for problem (i) for problem (i)

for problem (ii) for problem (ii)

Errorsfor k =2 Errorsfor k =3

11 0.5373197D-06 0.5263931D-08
12 0.4142659D-06 0.3720895D-08
13 0.3260932D-06 0.2704051D-08
1.4 0.2612683D-06 0.2012022D-08
15 0.2125477D-06 0.1527879D-08
1.6 0.1752254D-06 0.1180986D-08
17 0.1461539D-06 0.9271881D-09
1.8 0.1231736D-06 0.7380502D-09
1.9 0.1047692D-06 0.5947730D-09
2.0 0.8985620D-07 0.4846371D-09

Errorsfor k =2 Errorsfork =3

0.1 0.9056176D-08 0.2086753D-09
0.2 0.8640876D-07 0.1923770D-09
0.3 0.2167778D-06 0.1391324D-09
0.4 0.4277919D-06 0.2508468D-10
0.5 0.7599223D-06 0.1857944D-09
0.6 0.1287868D-05 0.5588885D-09
0.7 0.2073414D-05 0.1157671D-08
0.8 0.3250983D-05 0.2107025D-08
0.9 0.4998729D-05 0.3578957D-08
1.0 0.7571481D-05 0.5822924D-08
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Table 2:Comparison of errors for problem (iii) and (iv) fork =2, 3
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Kayode (2004) New method (15) Kayode (2004) New method (15)
for problem (iii) for problem (iv) for problem (iii) for problem (iv)
X Errorsfork = 2 Errorsfork = 3 X Errorsfork = 2 Errorsfork =3
11 0.5025381D-05 0.2282106D-05 11 0.1053972D-06 0.8047086D-07
12 0.6249908D-05 0.2893084D-05 12 0.2131542D-06 0.1625604D-06
1.3 0.7288316D-05 0.3453509D-05 13 0.3258333D-06 0.2480160D-06
1.4 0.8112927D-05 0.3954212D-05 14 0.4463340D-06 0.3387987D-06
15 0.8700464D-05 0.4384330D-05 15 0.5781210D-06 0.4372248D-06
1.6 0.9032439D-05 0.4731177D-05 16 0.7294657D-06 0.5490446D-06
17 0.9095639D-05 0.4980477D-05 17 0.8987956D-06 0.6725762D-06
1.8 0.8882690D-05 0.5116961D-05 18 0.1097337D-05 0.8153498D-06
1.9 0.8392690D-05 0.5125297D-05 1.9 0.1336004D-05 0.9842053D-06
2.0 0.7631870D-05 0.4991312D-05 2.0 0.1630750D-05 0.1188939D-05
6.00E-077 1.00E-05
9.00E-06
3-00E-077 8.00E-06 -
7.00E-06 A
4.00E-07 1
6.00E-06 1
3.00E-07 - 5-00E-06 1
& Errors for k=2 4.00E-06
-4 Errors for k=3 i
2.00E-07 - 3.00E-06
2.00E-07 & Errors for k=2
2.00E-06 1 -4 Errors for k=3
1.00E-07 H 1.00E-06 -
000E+OG T T T T T T 1) T T T 1
0.00E-00 P S W Y L S S S C——— 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8§ 9 10

Fig 1: Comparison of errorsfor problem (i) fork =2, 3
8.00e-067
7.00e-06
6.00¢-06 1
5.00e-061
4.00e-061
3.00e-06

2.00e-061

& Errors for k=2

1.00e-06 -4 Errors for k=3

0.00e-00-

Fig 2: Comparison of errorsfor problem (ii) fork =2, 3
CONCLUSION

This study has considered the development of
a continuous hybrid numerical method with step
number k = 3. A set of discrete schemes of the
same order p = 5 are obtained from the continuous
method. The major predictors for the methods are
constructed to be of the same order p = 5 with the
methods. The efficiency of the method is
compared with existing order four method (Kayode
2004; 2006).
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Fig 3: Comparison of errorsfor problem (iii) fork =2, 3
1.80E-06
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4.00E-07
2.00E-07
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Fig 4: Comparison of errorsfor problem (iv) fork =2, 3

The comparison of the absolute errors obtained
from the results for the test problems above are
shown in Table1land 2 and asoin Fig. 1 and 4. These
errors show a considerable improvement in accuracy of
the new method over Kayode (2004).
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