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Abstract: This study describes the analysis of fatigue road leading using the Moving Average approaches.
Thus, techmques for preserving data associated to the underlying probabilistic properties were introduced.
Fatigue damage cumulating 1s a random variable mn essence. The randommness comes from the loading process
and fatigue resistance of material. Seldom have models dealing with fatigue damage cumulating considered the
co-influence of the two aspects of randomness at the same time. This article has established a probabilistic
distribution model of moving average fatigue damage. In the model, the moving average trend can be estimated
by smoothing the data to reduce the random variation and randomness at fatigue resistance of material 1s
described by introducing a random variable of a variable amplitude loading sampled at 200Hz. This model can
calculate the fatigue damage cumulating distribution after moving.
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INTRODUCTION

A signal 1s a series of numbers that come from
measurement, typically obtained using some recording
method as a function of time (Meyer, 1993). In the study
of fatigue analysis, the signal consists of a measurement
of the cyclic loads, 1.e., force, strain and stress against
time. A time series typically consists of a set of
observations of a variable taken at equally spaced
intervals of time (Harvey, 1981). Today, most experimental
measurements, or data samples, are performed digitally.
And 1t 1s also known as a discrete time series, which 1s
formed as a function of time. The objective of tume series
analysis is to determine the statistical characteristics of
the original function by mampulating the series of discrete
numbers (New Land, 1993).

Many data mining applications deal with privacy-
sensitive data. The best means of obtaining unpredictable
random numbers 18 by measuring physical phenomena
such as fatigue damage, radioactive decay, thermal noise
in semiconductors and even digitized images of a lava
lamp. However few computers (or users) have access to
the kind of specialized hardware required for these
sources and must rely on other means of obtamung
random data (Yan et al., 2001).

The objective of this study is to observe a technique
for preserving data by randomly perturbmng the data
assoclated to the underlying probabilistic properties. This
has fostered the development of a class of data algorithms

(Agrawal and Aggawal, 2001) that try to extract the data
pattern without directly accessing the original data and
guarantees that the process. This approach tries to
preserve data privacy from random noise (Estivill and
Brankovic, 1999). Typically, these data are the used with
curve-fitting techniques to develop the average fatigue
behavior of the material over an appropriate range of
stress levels.

LITERATURE BACKGROUND

exhibit random or
which provide a
challenge to analysis using signal processing techniques
(Natrella, 1966). A signal representing a random physical
phenomenon cammot be described in a point by point
manner by means of a deterministic mathematical
equation. A signal representing a random phenomenon
can be characterised as either stationary or nonstationary.

A stationary signal 1s characterised by values of the
global signal statistical parameters, such as the mean,

Many signals in  nature
nondeterministic  characteristics

variance and root-mean-square, which are unchanged
across the signal length. Stationary random processes
can further be categorised as bemg ergodic or
nonergodic. If the random process is stationary and the
mean value and the autocorrelation function do not differ
when computed over different sample segments measured
for the process, the random process 1is defined as
ergodic. In the study of nonstationary signals the
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global signal statistical values are dependent on the
time of measurement (Tacer and Loughlin, 1998).
Nonstationary signals can be dividedmto 2 categories:
Mildly nonstationary and heavily non stationary.

Global signal statistics are frequently used to classify
random signals. The most commonly used statistical
parameters are the mean value, the standard deviation
value, the root-mean-square (r.ms.) value, the skewness,
the kurtosis and the crest factor (Bendat and Piersol,
1986).

For a signal with a number » of data points, the mean
value and 18 given by

(1)
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The Standard Deviation (SD) i1z mathematically
defined as

(2)

for the samples more than 30 (Bendat and Piersol, 1986).
The standard deviation value measures the spread of the
data about the mean value.

The r.m.s. value, which is the 2nd statistical moment,
is used to quantify the overall energy content of the
signal. For a zero-mean signal the r.m.s. value 1s equal to
the SD value. For discrete data sets the r.m.s. value 1s

defined as
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The skewness, which 1s the signal 3rd statistical
moment, is a measure of the symmetry of the distribution
of the data points about the mean value. The skewness
for a symmetrical distribution such as a sinusoid or a
Gaussian random signal is zero. Negative skewness
values indicate probability distributions that are skewed
to the left, while a positive skewness values indicate
probability distributions that are skewed to the right, with
respect to the mean value. The skewness of a signal 1s
given by

3)
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Kurtosis, which is the signal 4th statistical moment,
is a global signal statistic which is highly sensitive to the
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spikiness of the data. For discrete data sets the kurtosis
value is defined as

- Z( ) (5)

n(rms)

For a Gaussian distribution the kurtosis value is
approximately 3.0. Higher kurtosis values indicate the
presence of more extreme values than should be found in
a Gaussian distribution. Kurtosis 1s used m engineering
for detection of fault symptoms because of its sensitivity
to high amplitude events (Hinton, 1995).

The crest factor, which is commonly encountered in
engineering applications, is defined as the ratio between
the maximum value in the time listory and the r.m.s. value:

COF = |2 (6)

T.IM.5.

The crest factor value for sinusoidal time histories 1s
1.41 and the value approaches 4.00 in the case of a
Gaussian random signal of nfimte length

Since nonstationary data exhibits the random pattern,
the moving average is introduced as one of the
approaches used to smoothing the time series data. Tt can
be estimated by smoothing the data to reduce the random
variation (Qu and He, 1986). A range of smoothers 1s
available, but it begin with the simplest and oldest
smoother, a moving average. Moving averages have
several methods such as the simple moving averages, the
double moving averages and the weighted moving
averages (Makridakis ef af., 1998). Moving average model
15 also a dependence relationship to set up among the
successive error terms. The model which use past errors
as explanatory variable:

Y, =0,+0e_, +0,e_;+. .. €t € (M

Where Y, is the actual value of the data, 0, is the
constant, 0, 6,..., 0, are the linear regression
coefficients and e, is the error coefficient.

The 1dea of applying the simple moving averages
concept 1s related to the data observations which are
likely to be closed in value. By taking an average of the
points near an observation, it provides a reasonable
estimation of the data. Thus, it eliminates the randomness
of the data and producing a smooth trend with respect to
the original nonstationary data pattern (Holt er al., 1960).

The simple moving average method required an odd
number of observations to be included in each average
(Kendall et al., 1983). The purpose of this requirement is
to ensure the average (T,) was centered at the middle of
the data values being averaged, which 1s shown i the
following expression, 1.e.,
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Fig. 1: Criteria to determine the best moving average
model
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Where k is an odd integer and m = (k -1)/2. The
double moving averages can itself be smoothed by
another moving average. In fact, any combination of
moving average can be used together to form a double
moving average.

The weighted moving averages is a special case of
the weights which are set to 1/k where a weighted k-point
moving average is written as

T= > aY,,; ©)
j=—m

Where a; is the weight factor of the moving average
method.

MATERIALS AND METHODS

The moving average method had been applied to the
fatigue data in order to determine the best model based on
three criteria and it is illustrated in a diagram of Fig. 1.
From this figure, Mean Absolute Percentage Error
(MAPE) is the mean or average of the sum of all of the
percentage errors for a given data set taken without
regard to sign. It is one measure of accuracy commonly
used in quantitative methods (Qu and He, 1986).

PE, is the relative or percentage error is the
discrepancy between an exact value and some
approximation that need to be applied in the analysis. PE,
for MAPE is mathematically defined as following:

PE, = (ﬂj %100 (10)
Yt
MAPE :lZ|PE[| (1D
0
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Fig. 2: A variable amplitude fatigue strain time histories

The Mean Absolute Deviation (MAD) is the average
absolute deviation from the mean and is a common
measure of forecast error in analysis. The term mean
deviation is used as a synonym for mean absolute
deviation, to be precise it is not the same; in its strict
interpretation (namely, omitting the absolute value
operation), the mean deviation of any data from its mean
always zero (Qu and He, 1986; Makridakis et al., 1998;
Holt et al., 1960, Kendall et al., 1960). The MAD
mathematical expression is shown as following:

1 J—
MAD:HZ|SQ—Y| (12)

The Mean Squared Deviation (MSD) is the variance
measure, which is defined as the sum of squared
deviations divided by one less than the total number of
observation (Qu and He, 1986).

MSD :%Z(Yi ) (13)

Autocorrelation Function (ACF) is used to identify
the seasonality which is present in the given specific
situations and to determine if data are stationary. In
addition, the ACF is also being used to recognise
appropriate models for nonstationarity of the random
data. Partial Autocorrelation Function (PACF) is also used
in order to identify the extent of relationship between
current values of variable with earlier of that same variable
while holding the effects of all other constant. Thus, it is
completely analogous to partial correlation but refers to a
single variable.

RESULTS AND DISCUSSION

The data are which are plotted in Fig. 2 was
measured on the front left lower suspension arm of
an automobile which was traveling on public road
surface (mixture of smooth and irregular asphalt). It is
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Table 1: Global statistical parameter obtained for the analysed time series

Descriptive Statistical values
Mean [pe] 2.337
Standard deviation [j1] 25.466
Root-mean-square [11£] 0104
Minimuum [ue] -138.72
Maximum [pe] 167.13
Skewness Statistics 1.869
Standard error 0.010
Kurtosis Statistics 13.745
Standard error 0.020
MA (3) MA (2)

34% 33%

MA (1)
33%

MA (3) =34% MA(1)=31%

%J

MA(23)=35%

MA (3)
35%

MA (1)
28%

MA(2)
37%

Fig. 3: The pie charts showing the value of moving-
average according to the following approaches:
(a) MAPE, (b) MAD, (¢) MSD

sampled at 200 Hz for 45,000 data points, hence to
produce 225 sec of the record length.

The global statistical parameter values
calculated and the results were tabulated in Table 1.
Referring to these results in Table 1, lower vibrational
energy of the signal has been found based on the root-
mean-square value, 1.e, 0.104 microstrain. The kurtosis

WEre
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value of this data has been calculated at 13.743, hence,
the higher kurtosis value indicated that this data has
heavily nonstationary behaviour. In addition, the
loading showed the mimmum pomt at the wvalue of
-138.72 microstrain and the maximum point was found at
the value of 167.13 microstrain.

Equation 14-16 were then used
produce the stationary behaviour of this variable
amplitude fatigue loadings. These equations were
produced by applying the this data in the SPSS software.
Then, the data set need to be applied with the moving
average approach in order to produce the stationarity
pattern.

m order to

Y, =2.336+ 0935, +e (14)
Y, =2.335+0.498e,_, +0.920e,_, + & (15)
Y, = 2.335+ 0325¢,_, + 0.564¢,_,+ 0.80le,_, + ¢, (16)

Using the Mean Absolute Percentage Error (MAPE)
criteria, it showed that MA(1) gave the lowest error
compared to MA(2) and MA(3), 1.e, at the level 32.9%.
This result can be referred in Fig. 3a. With the application
of the method of Mean Absolute Deviation (MAD), as
shown 1n Fig. 3b, it was found that the MA(1) approach
gave the lowest error compared to the MA(2) and MA(3),
i.e, 31%. The data was finally analysed using the Mean
Squared Deviation (MSD) and it was showed the MA(1)
approach again gave the lowest error compared to MA(2)
and MA(3). From this analysis, it was found that the error
calculated using the MA(]) was 28%, which is shown in
Fig. 3c. Based on the results, it is found that the best
moving average model 13 MA(1), whuch gave the lower
error value. The MA(1) is lower than MA (2) and
MA (3) because the data for MA (2) and MA (3) is
cumulated each other. Tt means that the best model
18 MA(1) whichi1s Y, = 2.336 + 0.935¢,, + e,

Figure 4 shows the theoretical ACF (Fig. 4a) and
PACF (Fig. 4b) for the MA1 model with 6 = -0.935. Tt
shows that correlation between every two points is $3.5%.
Finally, the distribution exhibited an exponential decay
pattern  and there were many non-zero partial
autocorrelation can also be found in this distribution plot.
Thus, it is suggested this data set should be performed
with more than 15 moving average segments in order to
produce a stable and stationary behaviour of the data.

The plots of Fig. 5a and b showed the theoretical
ACF and PACF for the MA(2) models, respectively. For
both moedels, the 6 value was found to be at -0.920. The
plot also gave a finding in the correlation coefficient



Res. J. Applied Sci., 2 (5): 600-605, 2007

ACF of residuals for T1
(with 5% singificance limits for the autocorrelation)
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Fig. 4: (a) ACF for MA(1), (b) PACF for MA(1)
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Fig. 5: (a) ACF for MA(2), (b) PACT for MA(2)

for every 2 points, i.e., at the value of 92%. Finally, the
distribution exhibited an exponential decay pattern and
there were many non-zero partial autocorrelation can also
be found in this distribution plot. Thus, itis suggested
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Fig. 6: (@) ACF for MA(3), (b) PACF for MA(3)

this data set should be performed with more than 15
moving average segments in order to produce a stable
and stationary data behaviour.

Figure 6 shows the theoretical ACF (Fig. 6a) and
PACF (Fig. 6b) for an MA(3) model with® = -0.801. It
shows that correlation between two points is 80.1%.
Finally, the distribution exhibited an exponential decay
pattern and there were many non-zero partial
autocorrelation can also be found in this distribution
plot. Thus, it is suggested this data set should be
performed with more than 19 moving average
segments in order to produce a stable and stationary
behaviour of the data.

Based on the autocorrelation analysis of the
moving average approaches, it is observed that the
MA(1) show the highest correlation with each points
than MA(2) and MA(3). The autocorrelation values for
MA(1), MA(2) and MA(3) are 0.935, 0.92 and 0.801,
respectively. Therefore, it is suggested that that the
MA(1) model is found to be more correlated compared to
MA(2) and MA(3).

CONCLUSION

The random number generator described in this paper
has proven to be relatively portable across different
systems, provide a good source of practically strong
random data on most systems and can be set up to
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function independently of special hardware or the need
for user or programmer input, which is often not available.
From the analysis, finally, it is suggested that MA 1 is the
best model because it produced lower error value
compared to the values produced from MA 2 and MA 3.
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