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Abstract: To study the steady-state solutions for the exothermic chemical reactions (two-step Arrhenius
reactions), taking the diffusion of the reactions in a slab mnto account and assuming an Arrhenius dependence
with variable pre-exponential factor to determine the effects of Frank-Kamenetskii parameter and some thermo
physical properties on temperature of a giving system. Steady state energy equation was transformed to non-
dimensional form. Numerical solutions of the resulting equation were done by the use of shooting method. We
discovered that there are certain values for n, m, r and  can accommodation for solution to be stable. Similarly,
Frank-Kamenetskii parameter 8,, 8, must not exceed some values for the solution to exist and at the same time
stable. Finally, the Frank-Kamenetskii parameter must not exceed the critical value for the solution to have
physical implication or application and r must not be large for convergence of the solution (1.e., r<1). The results
of thus study will serve as baseline information to combustion engineering n designing combustion equipments
or manufacturing of chemical to aid complete combustion reactions and to burn fuel more efficiently to avoid

knocking of engines.
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INTRODUCTION

The present discipline of combustion draws on the
field of chemical Lkinetics, fluid
mechanics and transport processes. In nature and
particularly m industry, rapid exothermic reaction
processes which take place with the evolution of large
Such
processes have long been called combustion processes.
The classical examples of combustion are those related to

thermodynamics,

amount of heat are considerably important.

carbon with
atmospheric oxygen i.e., the combustion of wood, coal

oxidation of organic substances or

and petroleum.
The equation for the temperature T(x) of a one-
dimensional slab, with boundaries lying in the

coordinate planes x = 4a, may be written in terms of
physical variables

d*T kT )

vhp
kT | E, _
+pQZB[V—hpj exp[— AT]—O
(1

Where all the variables and parameters are clearly
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defined 1 the nomenclature.
We take as the boundary conditions:

T=T,onx=+a

Where T, 1s the mutial temperature.

In this model, we neglect the consumption of the
combustible material. If Q, = 0, it has been shown
experimentally that the model 15 able to predict the critical
1gmition temperature for variety of combustible material
(Bowes, 1984; Dainton, 1966). By using the non
dimensional variable defined by

E:%, 9—(T—TD)(%T;]=
_RT, :E/
B E =",

on Eq. 1 and 2 the governing equation are (bar

dropped)

% +8,(1+p8)" exp (6/1+p8)

+8,(1+P06)" exp(r6/1+p6) =0
(3)
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In Eq. 3 &, and & ;are the Frank-Kamenetskii
parameters which are the measures of the exothermicity of
the reactions.

We noted that the that control the
thermal ignition of combustion materials consisting
of the mathematical Eq. 3 and 4 is the fundamental
importances in  many industrial processes (Bowes,
1984).

Infact, the greatest temperature for which a low

factors

temperature steady distribution 1s possible i1s known as
the critical ignition temperature or criteria storage
temperature (Kenneth, 2005). At temperature higher than
the critical ignition temperature, thermal 1gnition will occur
(Olanrewaju, 2005; Buckmaster and Ludford, 1982).

Tt has been shown for this problem when Q, = 0 in the
limit of large activation energy (B-0) by Frank (1969) that
Eq. 3 possesses simple closed-form solution in the form

8=8_ + Insech’ (Di,}Sl exp(6 , /2x) ),

Where B, is the dimensionless temperature at the
centre of the slab and D is a constant of integration. On
employing the boundary condition (4), we have

8, = 2xp (-6,) {cosh‘ (e’(p[e?]}

In comnection with Eq. 3 when Q, = 0,n=0, it in well
known that the reactive-diffusive equation admits
perturbation solutions under physically reasonable
assumptions (Bowes, 1984; Ward and Velde, 1992) and
numerical solutions are available for some realistic
conditions (Burnell et al., 1989). In Billingham (2000) a
new set of asymptotic and numerical solutions were
constructed for some Biot numbers. Within the admissible
parameters range, asymptotic solutions and numerical
solutions agree with each other.

Obviously a realistic mathematical description of
thermal explosion needs to include the effects of

(3)

(6)

734

Arrhenius temperature dependence with variable pre-
exponential factor (Ayeni, 1982; Ckoya, 2002).

Here the principal aim of this study 1s to extend the
work of Okoya (2004) to a two-step reaction and to
establish that the new problem has a unique solution
when n, m = -2 corresponding to the sensitized reaction.
Okoya (2004) becomes a special case of Hg. 3. We also
determine numerically the transitional values of &, , &,, B,
m,nandr.

MATERIALS AND METHODS

Equation 3 and 4 posses no closed form solution.
We employ numerical method called shooting method so
as to transform the boundary value problem to an mitial
value problem.

We let
X, X
X,y = o (7)
X o'

By differentiating Eq. 7, we have

1
X, X,
x| = 2
12 7[[51(1+BX2) exp(x2/1+Bx2)J
X, _
+8,{1+Px, ) exp(mx,/1+PBx, )]
(8)
Satisfying the initial conditions
x,(-1) -1
x,(-1) = 0 9)
r

Where T' = 0'(-1), the guess values for shooting
method.

RESULTS AND DISCUSSION

The results of the numerical analysis generated were
used to plot the curses below.

Figure 1 shows the curve of temperature against
position x for 8, = 0.3064, §,= 0.5721,p =0.001,r=0.5 and
the shooting guess value [ = 1.18124 for Eq. 3 and 4. Tt is
observed that the solution is symmetry and 6, occur at
the centre 1.6 0, = 0.6341.

Figure 2 shows the graph of temperature 6(x) against
position x for &, = 03064, §,=0.5721, p=0.001,r=08
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Fig. 1: Graph of temperature against position x for 8, =
03064, 8,=05721, p=0.001,r =05
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Fig. 2: Graph of temperature against position x for 8, =
0.3064, &, =0.5721, p=0.001,r =08
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Fig. 3: Graph of temperature against position x for 8, =
0.3064, 8, = 05721, B 0.001 and various
values of r

and the shooting guess value for the solution to be
umque 1s|[ =1.3945. The solution is symmetry as well
as the 6, =0.7751.

Figure 3 shows the graph of temperature 0(x) against
positionx for the same values of 8, = 0.3064, §,=0.5721,
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Fig. 3: Graph of temperature against position x for 8, =
0.3064, 8,= 05721, B
values of p

0.001 and various

p = 0.001 and various values of r. It was shown that at
r = 0.8, we have the highest temperature (0, The
temperature gradient increase as r increases.

Figure 4 gives the graph of temperature against
position x for the same value of 8, = 0.3064, &, = 0.5721,
r = 0.5 and various values of . It 1s shown that the
solution is symmetry and we have the highest temperature
{(i.e B ,at -0 and p = 0.001), we observed that both have
the same turming point. Similarly for B~0 we have the
highest value of temperature gradient.

CONCLUSION

Reactive-diffusive equation with wvamable pre-
exponential factor for two-step Arr3henius reactions was
exarmened in this research. The investigations were
conducted numerically by using shooting technicque. The
method was used to convert the boundary value problem
to an initial value problem.

We further established that the solution exist and is
unique (when the derivative is presenbed) for some
values of d,, d;, m, n, r and p. For sensitized reaction
where m, n = -2, we established that for some r, the
solution 1s not stable.

Nomenclature

A

Thermal conductivity of the material

Q, = The heat of reaction n step one
Q, = The heat of reaction in step two
A = The rate constant in step one

B = The rate constant in step two
m,n = The exponent

E;i=1,2 = The activation energies

The ratio of the activation energies
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= The vibration frequency

= The plank’s constant

= The density

= The umversal gas constant

= Characteristic length

= The Frank-Kamenetski parameter
= Activation energy parameter

= Temperature maximum

= Shooting guess value

8
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