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Abstract: Model-based functional approximation techniques are being used on in-line mixing processes affected
by controlled variables which depend strongly on complementary physical variables. The aim for such type of
nonlmear control problems 1s to compute the proportions of input product flow rates yielding a final product
thus satisfying as much physical properties as manipulated input flow rates exists. The core of the contribution
1s based on functional approximation implemented by means of backpropagation neural networks associated
to the computed multivariable control strategy on a viscosity control problem.
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INTRODUCTION

An important particularly aspect of conventional
control was the idea of controlling the variables that are
of real interest by computing its values from other
measurements (Luyben, 1990). Conventionally, some
mixing problems were solved successfully by means of
conventional computational methods and means. With
the help of modem computational methods, much more
complex types of computed variables can now be
calculated. Several variables of a process can be measured
and all the other variables can be calculated from a
rigorous model of the process or from virtual sensors
based on soft-computing techniques. For instance, the
neamess of flooding m distillation columns can be
calculated from heat input, feed flow rate and temperature
and pressure data. Another application 1s the calculation
of product purities m a distillation column from
measurements of several tray temperatures and flow rates
by the use of mass and energy balances, physical
property data and vapour-liquid equilibrium information.

The use of available and sophisticated computational
methods made these rigorous estimators feasible. Tt opens
up a number of interesting possibilities in the control field
without hmitations in applying such powerful methods
even with the scarcity of engineers who understand both
control and chemical engineering processes well enough
to apply them effectively.

A typical class of mixing problems involve linear
models such the problem of thermal mixing where the
problem is to control the temperature of an output flow
from a tank by proportioning the input flow into the tank

or the problem of concentration mixing where two fluids
of different concentrations are mixed to produce a desired
concentration by varying the input flow rate. In both
cases, the material-balance and energy-balance equations
are the basis of process modelling.

Some other mixing problems are not linear such those
problems involving temperature, pressure, viscosity,
conductivity, pH (Mahuli et al, 1992) composition, etc.
For mstance, the liquids used in hydraulic systems
generally exlubit large changes n viscosity with relativity
small changes in temperature. The relative changes in
viscosity per degree is called the temperature coefficient
of viscosity C; and 1s expressed as:

oo 1)
pdT
Where:
T = The actual temperature
i = The absolute viscosity

Pressurized liquids tend to mcrease viscosity where
this phenomenon is particular evident in oils. At low or
moderate pressure this increase 1s relatively small but at
high pressures, the wviscosity increases quite rapidly
(Stern et al., 1958). The exponential relationship between
viscosity and pressure is given by the expression:

= pe” (2)
Where:
¢ = The pressure coefficient of viscosity
Py = The viscosity at atmospheric pressure
P = The viscosity at pressure P
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Equation 2 is actually only a rough approximation,
since the pressure coefficient ¢ is not a constant but is
dependent on pressure, temperature and type of liquid
(liquid  components). Because of this rough
approximation, precision control problems require another
alternative modelling method.

The continuous mixing control problem: In the
implementation of composition control systems in-line
mixers are often considered. Properly applied, these
devices are effective but careful attention to the following
design criteria 1s required: reagent delivery hysteresis,
loop gain and neutralization stage interaction (Hoyle and
MecMillan, 1995). An m-line mixer can be a dynamic mixer
such as a centrifugal pump or a baffled section of pipe
called a static mixer as shown in Fig. 1. The static mixer
provides radial mixing but little backmixing. It can be
considered to be a plug flow process dominated by dead
time. Disturbances and noise pass through the mixer
unattenuated. With such a mixer, the best controller
response to fast disturbance and noise is no response at
all because any corrective action will arrive too late and
will create yet another disturbance. The advantages
of in-line mixers are its small dead tume, loop period and
recovery time. Conventionally, control structures based
in the combination of feedback, feedforwared, cascade
and ratio control are used.

The mixer extubits certain pure time delay due to the
inherent transport lag. This time lag D is described as the
linear function of flud flow rate g, the net cross section of
the pipe A and the length of pipe L. from the control
valves to the end of mixer which in time domain yields:

L-A
q
So that the inherent time lag is &™

T =

3)

Fluid inlet 1 Q—

"
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Fig. 1: Continuous mixer structure
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The aim of this analysis obeys to two main reasons:

Avoid the effect of time lags on feedback control
which suppose an important disturbance on mixing
control loop

Sumplify mentioned conventional control structures.
In order to achieve such topics, model based
computing variable control methods are proposed
The proposed multivariable control strategies
consists of two open loop control schemes:

Computed variable Feedforward-Cascade Contro (FCC) 1:
Consists in compute the manipulated variables as
function of the desired controlled variables and input
process variables.

Computed variable Estimated Feedback Contro (EFC) I:
Consists in compute the process variables as function of
marpulated variables and process characteristics.

MODELLING THE PROPOSED IN-LINE
MIXER PROCESSES

When analytical models based in physical laws (first
principles) such as energy or material balances does not
provide an acceptable or satisfactory solution, model
based functional approximation 1s proposed. In-line mixing
processes affected by controlled wvariables such as
conductivity, pH, viscosity which depends strongly on
complementary physical variables such as temperature
and pressure variations are appropriate candidates to be
solved using functional approximation.

For instance, the fact of mixing two products of
known characteristics such as flow rate, pressure,
temperature and viscosity denoted as (g, p,, T,, ) and
{(dz, P T M), yields a final product (g, p, T, p). By the fact
of acting on the input flow rates (two variables) it 1s not
possible to control the output product whose
composition depends on four variables. For this type of
nonlinear control problem, the aim is to compute the
proportions of mput product flow rates to aclhieve a final
product satisfying as much physical properties as
manipulated mput flow rates exists using some mnnovative
methodologies.

Functional approximation implemented on the basis
of backpropagation neural networks associated to the
described control strategies (FCC and EFC), conforms the
core of the contribution.

Using conductivities on concentration mixing problem:
The conductivity of a mixed fluid can be a measure of the
concentration. In fact, the mixture of two fhuds of different
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conductivities where the individual conductivities are
function of its respective temperatures can be expressed
as:

(q,C.T) =1(q,,9;,9;, T,, T,,T,,C,.C,,C;) (4)

The two modes of computed variable control are:

(4p-Cp. T, ) =10, 95,9, T, T,. T,.C,.C,.C.) (5)
(q1(sp):q2(sp):q3(sp)): (4. Gy, T.T, T, T, C L C,.Cy)

For the nonlinear mixmg process described by Eq. 4
some functional dependences from physical properties are
estimated as:

q = f{q;.q,)
T=1(q,.q,.T,.T,) ®)
C=HT,C.C,) =1(q,.q,. T, T;,C,,C;)

The open loop control problem by computed variable
control strategies consists in computing the setpoints of
a number of mampulated variables (flow rates) to satisfy
the required values of a number less or equal of controlled
variables.

It means to compute g, Qyep such that by means of
an in-line mixing process, it will be possible to achieve a
final product thus satisfying desired characteristics such
as flow rate qp and conductivity Cp, or temperature and
conductivity C, According this definition, Eq. 18 for the
case of two degrees of freedom, yields:

(4p,Cp) = £(q,,4,, T, T5,C,,C,) (7
(T5,Cp) =1(q,,4,, T, T,,C,, C;)

The definition and application of the appropriate
mverse model when applicable because direct models are
also wseful provides a (Wachira et al., 2005) function
suitable to specify the desired final product (qp, Cp) as:

(ql(sp):qz(SF)): g, Cp, T, T, CLC) &)

So that the functional approximators given by Eq. 6
and 7 can be implemented on the basis of
backpropagation neural networks as shown m Fig. 2.
Figure 3 shows the computed variable control strategy for
both computed variable by FCC and computed variable by
EFC.

Viscosity mixing problem under variable temperatures:
The problem of mixing two fluids of different viscosities
and temperatures 1s described by direct model:

(@) )
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Fig. 2: Computed variable control algorithm based on
functional approximation applied to an In-line
mixer. (a) Algorithm for FCC (b) Algorithm for EFC
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Fig. 3: Computed variable control strategy based on
functional approximation applied to an In-line

mixer. (a) Computed variable by FCC (b)
Computed variable by EFC
qa}'LaT = f(qlaqzanTz:Mpl'Lz) (9)

Proceeding according last mixing problem they are
achieved both control algorithms by means of an mverse
model: computed variable by FCC and computed variable
by EFC as:

(‘L(sp):qg(sp)) = 1(qp, My ks ) (10)

QpsHp = f(qusmaqz(smvupuz) (1

Viscosity mixing control problem under variable
temperature and pressure: The problem of mixing two
fluids of different viscosities, different temperatures and
pressure variations is described by a direct model as:

T P 0 T T B Bl 12)
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This mixing control problem is solved as in the last
case through an inverse model but the function must
include the variable pressure yielding:

(quD): f(qpqz:“‘l:*u‘z) (13)

(ql(SF)7q2(SF)): £00 s ks 5 1) (14

APPLICATION ON DIESEL ENGINE
SPEED CONTROL

This application deals with the task of supplying the
necessary Fuel O1l (F.O) to a Diesel engine to get the
required power in terms of engine speed (rps). In order to
supply a demanded fuel flow rate at a required viscosity
without heating the fuel (that 1s at ambient temperature),
two fuel lines at different viscosities (heavy F.O and light
F.O) provides the required amount of fuel at the proper
viscosity by means of an in-line mixer controlled on the
basis of proposed control strategies.

So that Eq. 10 and 11 solves the problem of mixing
control which i1s shown m Fig. 4 and 5, respectively.
Figure 4 shows the computed variable control by
feedforward-cascade strategy while in Fig. 5 it is shown
the computed variable control by estimated feedback
strategy.

Next step of design procedure deals with controller
design, validation and implementation. As stated before,
controller is implemented on the basis of functional
approximation. The function approximators will be
mnplemented by means of feedforward neural networks
(Demuth and Beale, 2000; Hagan et al., 1996).

Neural network controller implementation: Feedforward
networks are the most suitable architectures to be used as
general functional approximators.

The basic Backpropagation training algorithm in
which the weights are moved in the direction of the
negative gradient 1s used as trammg algorithm for
feedforward networks. The term Backpropagation refers to
the manner in which the gradient is computed for
nonlinear multilayer networks.

There are a number of variations on the basic
algorithm that are based on other standard optimization
techniques such as conjugate gradient and Newton
methods.

Backpropagation was created by generalizing the
Widrow-Hoff learning rule to multiple-layer networks and
nonlinear differentiable transfer functions (Widrow and
Hoff, 1960).

Input vectors and the corresponding target vectors
are used to train a network until 1t can approximate a
function, associate input vectors with specific output

277

Gy
| 1, (ool ia)

Heavy FO

N
1, (@ Motk B2)

SRS

Light FO

Fig. 4 Computed variable control by feedforward-
cagcade strategy on an in-line mixer to achieve a
required viscosity and flow rate
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Fig. 5: Computed variable control by estimated feedback
strategy on an in-line mixer to achieve a required

g

viscosity and flow rate

vectors or classify input vectors in an appropriate way as
defined by you Properly trained Backpropagation
networks tend to give
presented with inputs that they have never seen.
Typically, a new input leads to an output similar to the
correct output for input vectors used in traimng that are
similar to the new mput being presented.

This generalization property makes 1t possible to train
a network on a representative set of input/target pairs and

reasonable answers when

get good results without training the network on all
possible input/output pairs. Generally, the four steps in
the training process are:

Assemble the training data

Create the network object

Tram the network

Simulate the network response to new inputs

The
backpropagation algorithm adjusts the weights in the
steepest descent direction (negative of the gradient). In

Conjugate  gradient  algorithms: basic

this direction the performance function decreases most
rapidly. Tt must be noted that, although the function
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decreases most rapidly along the negative of the gradient,
this does ensure the fastest convergence. In the
conjugate gradient algorithms (Hagan and Menhaj, 1994),
(Powell, 1977) a search is performed along conjugate
directions which produces generally faster convergence
than steepest descent (Beale, 1972),
(Charalambous, 1992).

In most of the training algorithms, a learming rate 1s
used to determme the length of the weight update (step
size). In most of the conjugate gradient algorithms, the
step size 18 adjusted at each iteration (Moller, 1993). A
search is made along the conjugate gradient direction to
determine the step size which minimizes the performance
function along that line (Andrasik et al., 2004).

directions.

Fletcher-reeves update (traincgf): All of the conjugate
gradient algorithms start out by searching in the steepest
descent direction (negative of the gradient) on the first
iteration (Fletcher and Reeves, 1964).

Po =8 (15)

A line search is then performed to determine the
optimal distance to move along the cumrent search
direction:

(16)

X = X T 0Py

Then the next search direction is determined so that
1t 1s conjugate to previous search directions. The general
procedure for determining the new search direction is to
combine the new steepest descent direction with the
previous search direction:

P =8, + By (17)

The various versions of conjugate gradient are
distinguished by the manner in which the constant is
computed. For the Fletcher-Reeves update the procedure
18!

B, = :c_::’rkTgk (18)
8i-18k-1

This is the ratio of the norm squared of the current
gradient to the norm squared of the previous gradient
(Fletcher and Reeves, 1964; Hagan et al., 1996). The
conjugate gradient algorithms are usually much faster
than variable learning rate Backpropagation, although
the results will vary from one problem toanother. The
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conjugate gradient algorithms require only a little more
storage than the simpler algorithms, so they are a good
choice for networks with a large number of weights.

Achieving a representative database: The Number of Data
Sets (NDS) has its origin in the general expression ﬁRD1
where RD1s the range division of each variable. -

So that database focused on NN traming is achieved
using 256 datasets covering the ranges shown in Table 1
where NDS =T[®D, = 4x4x4x4 = 256 datasets.

These datasets were achieved by measuring the
viscosities of both input fluids (light Diesel o1l and heavy
Diesel oil) at different temperatures and viscosities,
yielding the necessary flows (q, and q;) to achieve the
desired viscosity i, and flow rate qp under the structure
shown in Table 1. The ranges of mixing process input
variables are shown in Table 2.

Training with matlab neural toolbox: Several feedforward
NN structures has been tested against performance to
solve the proposed problem.

Acceptable results were achieved using the neural
networks structure shown in Table 3 where neural
network toolbox of Matlab has been used. Table 3 shows
also the specified training characteristics. Training results
are shown in Fig. 6 and 7. Performances of 0.0015 and
0.007 are achieved with 300 epochs. Training
characteristics were varied to test different NN
architectures such as [8, 1], [10, 1], [6, 6, 1], [8, 8, 1] and
finally [10, 10, 1] whach 1s the one used m this research
work.

Structure of the engine speed controller: The operating
curves for an engine indicate that the output shaft speed
w is a nonlinear function of both the fuel flow rate Q and
the load torque T,,,.

w=1{(Q,T,)

Nevertheless, the fuel flow rate demand Qp 1is
determined by the required engine speed using a PID
control loop where the in-line mixer control module is
embedded in series with the PID feedback controller.
Thus, the block diagram of the engine speed control loop
1s shown m Fig. 8. The forward path contains the in-line
mixer FCC or EFC controller.

Validation by means of the in-line mixer simulation: In
order to show the performance of the proposed
feedforward-cascade strategy on the In-line mixer that
means given the known variable wvalues Qp, Lp, Wi, My,
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Table 1: The partial 64 datasets of the database corresponding to pp =4.5

Ho 2] Ha 9o q1 9z o |20} Ha do q 92
4.5 4.0 15 1 0.9545 0.045 4.5 4.0 7 1 0.833 0.166
4.5 4.0 15 2 1.9100 0.010 4.5 4.0 7 2 1.660 0.340
4.5 4.0 15 3 2.8640 0.136 4.5 4.0 7 3 2.500 0.500
4.5 4.0 15 4 3.8180 0.182 4.5 4.0 7 4 3334 0.666
4.5 31 15 1 0.8820 0117 4.5 3.1 7 1 0.640 0.360
4.5 31 15 2 1.7650 0.235 4.5 31 7 2 1.280 0.720
4.5 31 15 3 2.6470 0.353 4.5 31 7 3 1.920 1.070
4.5 31 15 4 3.5300 0.470 4.5 31 7 4 2.560 1.440
4.5 2.5 15 1 0.8400 0.160 4.5 Z.5 7 1 0.550 0.450
4.5 2.5 15 2 1.6800 0.320 4.5 2.5 7 2 1.110 0.890
4.5 2.5 15 3 2.5200 0.480 4.5 2.5 7 3 1.667 1.333
4.5 2.5 15 4 3.3600 0.640 4.5 2:5 7 4 2.224 1.776
4.5 1.9 15 1 0.8000 0.200 4.5 1.9 7 1 0.490 0.510
4.5 1.9 15 2 1.6000 0.400 4.5 1.9 7 2 0.980 1.020
4.5 1.9 15 3 2.4000 0.600 4.5 1.9 7 3 1.470 1.530
4.5 1.9 15 4 3.2000 0.800 4.5 1.9 7 4 1.960 2.040
4.5 4.0 10 1 0.9160 0.083 4.5 4.0 5 1 0.500 0.500
4.5 4.0 10 2 1.8330 0.166 4.5 4.0 5 2, 1.000 1.000
4.5 4.0 10 3 2.7500 0.250 4.5 4.0 5 3 1.500 1.500
4.5 4.0 10 4 3.6670 0.333 4.5 4.0 5 4 2.000 2.000
4.5 31 10 1 0.7970 0.203 4.5 31 5 1 0.263 0.736
4.5 31 10 2 1.5900 0.410 4.5 31 5 2 0.530 1.470
4.5 31 10 3 2.3900 0.610 4.5 31 5 3 0.790 2.210
4.5 31 10 4 3.1900 0.810 4.5 31 5 4 1.060 2.940
4.5 2.5 10 1 0.7330 0.266 4.5 2.5 5 1 0.220 0.780
4.5 2.5 10 2 1.4670 0.533 4.5 2:5 5 2 0.400 1.600
4.5 2.5 10 3 2.2000 0.780 4.5 2:5 5 3 0.600 2.400
4.5 2.3 10 4 2.9300 1.060 4.5 28 5 4 0.800 3.200
4.5 1.9 10 1 0.6800 0.320 4.5 1.9 5 1 0.160 0.840
4.5 1.9 10 2 1.3600 0.640 4.5 1.9 5 2 0.320 1.680
4.5 1.9 10 3 2.0400 0.960 4.5 1.9 5 3 0.480 2.520
4.5 1.9 10 4 2.7200 1.280 4.5 1.9 5 4 0.650 3.350
The ranges of mixing process input variables are shown in Table 2. q, =1f; (up, W, Mo, o) @ =6 (Up, W, P, ap)
Table 2: Ranges of variables for construct the training database 10 Petformance is 0.00150562, Goal is 0
B Ha Ho 9o
4 15 5.0 1
1 5 3.5 4

o
Table 3: Training characteristics g
NN based function approximator 1 NN based function approximator 2
p = Four column vector p =Four cohumn vector [pl, p2, p3, pd]; 10
[pL, p2, p3, p4]
T1=A column vector [t1] T2 = A column vector[t2] g
Net = Newff(minmax (p), net = Newff{minmax(p),[10,10,1] [_|
[10,10,1] {tansig, tansig, {tansig, tansig, purelin},traincgf)
purelin}, traincgf)
Net trainParam.show = 50 net.trainParam.show = 50
Net.trainPararm. epochs = 200 net.trainParam.epochs = 200
Net.trainParam. goal = 1e-3 net.trainParam.goal = le-3 10° ' . y v . ;
[net,tr] = train{net,p,T1) [net.tr] =train(net, p, T2) 4] 50 100 150 200 250 300
Gensim (net, -1) gensiminet,-1)

300 epochs

achieve q, and q, by applying functional approximation,
a simulation block diagram has been constructed with the
neural networks achieved by means of traming algorithm
(traincgf or the comjugate gradient Fletcher-Reeves) of
Matlab.

The Block diagram of simulation task i1s shown in
Fig. 8. Signals Qp, Ly, L, W, enter both neural networks
providing the fuel flow rate setpoints q;p, qyp tnder the
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Fig. 6: NN1 Training evolution for function 1

structure of Fig. 9. The inputs to the simulation task are
variable to investigate the effect of disturbances due to
the inputs. The viscosity setpoint remains in the nominal
value which is 4.5 cts.

The blocks simulating the neural networks NN1_10-

10-1 = fi(qp pp Wy Mp) and NNZ 10-10-1=£,(qp pp 1y ps)
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197 Performance is 0.00717633, Goal is 0
g loﬂ-
g 10’1_
=
10;!-
197 T T T T T 1
0 50 100 150 200 250 300

300 Epochs

Fig. 7: NN2 training evolution for function 2
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Fig. 8: Engme speed feedback control associated to a nonlinear multivariable feedforward-cascade controller: the in-line
mixer controller
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Fig. 9: Simulink block diagram for In-line mixer controller simulation
provides the setpoint flow rates ¢ and qyge. Necessary the actual viscosity p is illustrated in centistokes (cts).
to achieve the desired flow rate and viscosity at the In-  The value 1s into the range of 4.35-4.65 under changes in

line mixer output. The results are shown in Fig. 10 where of input variables or disturbances along its full ranges.
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Fig. 10: Input-output signals of In-line mixer controller simulation

CONCLUSION

Multi-variable control strategies to solve efficiently
linear and nonlinear in-line mixing problems have been
presented.

These contributions are based on two computed
multi-variable control techniques: Computed multi-
variable control using the developed FCC strategy
Computed multi-variable control using the developed
EFC strategy Model based functional approximation
was 1mplemented on the basis of feedforward neural
networks tramed by means of a Backpropagation
training  algorithm: the
Fletcher-Reeves.

conjugate  gradient of

With regard to results, the value of wviscosity
achieved by the In-line mixer shown in Fig. 9 1s mto the
range of acceptable and expected results. Extensive
simulation tests on EFC strategy yields the same results
as FOC which 1s shown

With
precision and robustness under changes (disturbances)
of input variables are the main topics. A relevant
advantage that can be pomted out is the sake of the
lack of a conventional mixmg tank and the lack of

regard to performance, rapid response,
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feedback measuring devices due to proposed strategies,
minimum time delay on the mixing process control 1s
achieved.
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