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Abstract: In this study, the radial Schrodinger equation for central coulomb potential using numerical Runge-
Kutta has been solved. Energy eigenvalues for hydrogen and positronium bound systems is derived -13.6056
and -6.803 eV, respectively. Numerical results of ground state modes of wave functions for hydrogen and
positronium R (r) and the presence probability function |R(r)* has been presented. These results are n good
agreement with analytical calculations of the hydrogen atom m modern physics and quantum mechanics.
Therefore, numerical methods can be very useful and effective in solving physical problems.
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INTRODUCTION

One of the most important eigenvalues equations in
physics 13 Schrodinger wave equation and for atomic
mass m in the potential V 1s:
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In which W(f}is particle wave function and E is an
energy eigenvalues (Gasiorowicz, 2003; Weidner and
Sells, 1973). For one-dimensional potential equation above
is as follows:

e
2m dx?

(2)

+ Vxw(x) = Ey(x)

This equation has the answer for the few analytical
potential functions and for many analytical potential it can
not be solved. So m quantum mechanics, numerical
solution of Schrodinger’s wave equation is very umportant
and so far, for the special cases has been solved
nmumerically (Simos, 2001; Tremblay and Carrington,
2004).

APPROPRIATE UNITS AND
BOUNDARY CONDITIONS

Before performing the numerical solution of this
equation, we need to note that the use of units and
appropriate boundary conditions. Planck's constant

h = 6.63x10""js in the metric system SI, the number is
too small to perform computation, therefore we use atomic
units in which the length is Angstrom, energy terms of
electron volts (eV):

fi=7.6199682 m_eVA® (3)

In the Eq. 3, m, is mass inertia of electron and m,c* =
0.51101x10° eV also the amount;

z
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g,
would be useful for the Coulomb potential. But boundary
conditions are continuity the Schrodinger wave function
and its derivatives at the boundary also the wave function
approaches to zero at infinity:

| : W)W (x)dx= 1 (4)

But the important point is that the boundary
conditions to convert the mmtial conditions for numerical
methods and this type of problem depend on the

symmetry potential.

SCHRODINGER EQUATION FOR HYDROGEN
ATOM AND POSITRONIUM

One of the most important problems of quantum
mechanics, analysis of two body systems such as
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Fig. 1: a, b) hydrogen atom, positronium atom
hydrogen atom and positronium in which electron is in the

Coulomb force constraint proton or positron (Fig. 1).
Radial Schrodinger equation for the central potential V (1)

as follows:
d* z2d 2u 11+ 1y’
o7 g RO+ B V- o IR(ry=0 (5)

In which p 1s reduced mass of two-body system, | 18
the orbital quantum number and R () is radial wave
function. However, the Coulomb potential in the
hydrogen atom is V (r) = e’/4me,r, thus:

d* 24

2u Ze' 10+’

— + =R+ =F[E+—— —R=0 (6)
dr* rdr i dng r 2ur
Where:
o e = For hydrogen atom
[HF"'[HE
__mm, _m, = For positronium atom too
p'_ma +m, T2

RUNGE-KUTTA METHODS

For the first time, the methods were presented by
Runge and Kutta two German mathematicians. These
methods were very accurate and efficient and instead
direct calculations of higher derivatives only function
used for different values.

In Runge-Kutta second order method, instead of the
Taylor series expansion up to second derivative for

{

The following formula was mntroduced:

numerical solution:

y' =f(x,y)
¥y )=y,

9
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k, =hf(x,.y.)
k, = hf(x, +ahy, + Pk,
Yn+1 = Yn + akl + BkZ

(8)

We note 1n this method L local error 15 defined as
follows:

L=y, )= Yo ®)

Thus a, b, & and P are selected so that the error is
small as possible. We have:

yix, )=y x, +h)=vx,)

h? (1m
+hy' (x_ )+ Fy" (X, )+...
With helping relationship Eq. 8, the results are:

Voo = ¥, +ahf(x, .y, )+ bhf an

((x, +ah)h +phf(x .y D

But we know:
2

f(x+h):f(x)+hf’(x)+h?f”(x)+... (12)

Now, consider the Taylor expand for the fimction
with two variables:

Flx+hy+K)=F(xy)+ h@+
X

2 2
K 8f (x,v) . h® 8 (x,y) . 2hk§&*f

(13)
Sy 2 8’ 28x8y
k'8 f
+ +
28y°
And finally put in the Eq. 11 we have:
Yaes = Yo +ahf, +Dbh
{fn + ath of, + Bhf, ng o(h”)
by By
Or
Vo =¥, +(@+bhf, +
(14)

obh’ %+ Bbh’f, % +o(h’)

If we write Eq. 10 also based on the partial
derivatives, the result is the following relationships:
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y' =1y
dx ox oydx 6x Oy
ym _ iyrf _
& s
h2
Y1) = YO+ B, y (e )+ =
O (x,,y(x, S (x,, y(x,
[w +fix,,yix, ))w] n 0(h3)
Ox Sy
And the error position is:
L=y )= Yan (16)

We try to choose a, b, « and B so that the left side of
this relationship is small as possible. In case of equality
including the first four we have:

Yo = ¥ix,)
{fa+blh=h—=a+b=1
():b*l
2 2 = -
abh2%+ Bbh’f, Zfﬂ _hoof b of, :
X y 2 0x 2 &y ab= L
2
("

From two recent relationships, three equations with
four unknowns are obtained so should the one unknown
arbitrary to select:

1
a=p== b=1 a=0
p-2, b1,

1 1

Og:B:] b=— a=— (18)
' 2! 2
a:B:g b:é a:l
3' 4' 4

In each of these selections, the local order 1s of order
o (h')y and is known as Runge-Kutta method of second
order. The two scientists had extended their previous
methods and now are famous as Runge-Kutta method of
fourth order and mostly are used m numerical
calculations:

Y., =Y, +ak +bk, +ck, +dk,

k, =hl(x,,¥y,)

k, =hf(x, + ch,y, + Bk}

k, =hf(x, +vh,y, +fk, +0k,)

k, = hf (x, + &h,y, +pk, +pk, +nk,)

(19)
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We obtain Taylor series expansion of y (x,th) up to
the fourth derivative order and Taylor expansion for
functions with two variables k,, k; and k, and put the
result mn y,.;. With compariseon of the two expansions, we
reach to 9 equations with 13 unknown and local error 1s
order of o (h%). Of course, we must first choose 4
unknowns as the desired unknown and nine other
unknown are calculated. A set of optional unknowns
include:

E:O,,p:O,cc:lp. (20)
2
In this case, the answer is the following result:
1
Your = ¥a +g(k1 +2k, +Zk, + k)
k= hf (x..y.)
k, = hf (x, +%h,yn +%kl) (21)

1 1
k. =hf{x +—h,yv +-k
3 (n 2 yn 2 2)

k, =hf(x, +h,y, +h;)

At the end of this study, a computer program for
Runge-Kutta method of fourth order that has been used
in numerical computations is presented.

NUMERICAL RESULTS FROM
RUNGE-KUTTA METHOD

Because the potential 1s proportional to the mverse
radius and is infinity at r—0, therefore, we use the initial
conditions:

R( |, ggos = 10°°
and

dR

dr |, o o001

=-1000

in Runge-Kutta method (Lamport, 1994; Lxaru, 1984;
Press et al., 1992). Near the coordinates origin, r= 0.00014
and wave function has a small amount of 10™°. But
because of severe changes in the wave function, we
consider a great value -1000 for wave function derivative.

Thus with choosing the imitial amount of energy with
try and error test until wave function will be convergent.
The answer obtained for 1 = 0 1e., ground state of
hydrogen (S wave) 1s -13.6056 eV and for positromum
atom 18 -6.803 eV which 1s half amount of hydrogen atom.
These results are mn good agreement with analytical
calculations for the hydrogen atom results in modern
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Fig. 2: Results obtained from numerical Runge-Kutta method for the ground state
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Fig. 3: The presence probability functions for atoms of
hydrogen and positronium i1n the Coulomb
potential well

physics and quantum mechanics (Gasiorowicz, 2003,
Weidner and Sells, 1973). Ground states of wave
functions for hydrogen and positronium and the presence
probability function are shown m Fig. 2. Also, the
presence probability function in Coulomb potential wells
for these atoms 1s shown m Fig. 3.

CONCLUSION

Numerical Runge-Kutta method to solve differential
equations in physics is very efficient and accurate and
can be very effective and is useful in solving physics
problems. Numerical results from this study are in good
agreement with analytical calculations for the hydrogen
atom results in modern physics and quantum mechanics.
Also, this method can be used in the analysis of quantum
systems with different potentials.

APPENDIX

C  Positronum atom bounding energy
dimension yscal(10),v(10),51(200),52(200)
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common e, L.
open(],file ='shor.dat’)
n=2
x=10.0001
y (1)=-1E-3
¥(2)=-1
write (*,*)'E=°?,L=7'
read(*,")E,1
eps = 0.01
yscal (1) =01
yseal (2) =01
htry =0.1
do 101=1,800
call derivs (x, y, dydx)
call tkqe(Y, DYDX,N,X,HIRY,EPS, YSCAL, HDID HNEXT)
¥l D=y L)
y2(H=y(2)
write (*,") %, y1 (i)
write (1,%) x,y1 (D)
continue
stop
end

10

subroutine derivs (x, v, dydx)
dimension ¥ (10), dydx (10)
common e,L.
dydx (1)=y (2
dydx 2) -2ty
{e+14. 39998/%)*y(1)*2/7.6199682
return
end

= (@yxtL®  ([LADYy  (DEN)-

C
SUBROUTINE
RKQC (Y,DYDX.N,X,HTRY,EPS, YSCAL,HDID,HNEXT)
PARAMETER (NMAX = 10,FCOR = .0666566667,
* ONE=1,SAFETY = 0.9 ERRCON = 6.5-4)
EXTERNAL DERIVS
DIMENSION
YN, DYDXN), Y SCAL(N), YTEMP(NMA X), YSA VINMAX) DYSA V(
NMAX)
PGROW =-0.20
PSHRNK =-0.25
XSAV=X
DO11I=1N
YSAVD =YD
DYSAV(D) =DYDX®D
CONTINUE
H=HTIRY
1 HH=05%H
CALL RK4 (YSAV,DYSAV,N,XSAV, HILYTEMP)

11
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X =XSAV+HH
CALL DERTVS(X,YTEMP,DYDX)
CALL RK4(YTEMP,DYDX N, X, HH,Y)
X=XSAV+H
IF(X.EQ.XSAV)PAUSE 'Stepsize not significant in RKQC.'
CALL RKA(YSAV,DYSAV.N.XSAV.H YTEMP)
ERRMAX =0.
DO121=1N
YTEMP() = Y(D)-YTEMP ()
ERRMAX = MAX(ERRMAX, ABS (YTEMP(I)/ YSCAL(L))
12 CONTINUE
ERRMAX = ERRMAX/EPS
IF(ERRMAX.GT.ONE) THEN
H =3 AFETY*H*(ERRMAX **PSHRINK)
GOTO 1
ELSE
HDID=H
IF (ERRMAX.GT.ERRCON)THEN
HNEXT = SAFETY*H*(ERRMAX**PGROW)
ELSE
HNEXT =4.*H
ENDIF
ENDIF
DO13I=1N
V() = YD+ YTEMP(D) *FCOR
13 CONTINUE
RETURN
END
SUBROUTINE RK4(Y, DYDX, N, X, H, YOUT)
PARAMETER (NMAX = 10)
DIMENSION
YNLDYDXN), YOUT(N), YT(NMAX),DYTINMAX).DYM (NMAX)
HH=H*0.5
He=H/6.
XH=X+HH
DO11I=1N
YT@) = YIO+HH'DYDX ()
11 CONTINUE
CALL DERIVS(XILYT.DYT)
DO121=1N
YT = Y({O+HE*DYTI)
12 CONTINUE
CALL DERIVS(XH,YT,DYM)
DO13I=1N
YT = Y{O+H*DYM(I)
DYM(D) = DYT(+DYMD
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13 CONTINUE

CALL DERIVS(X+H,YT,.DYT)

DO 4I=1N

YOUT() = Y(O+HS*(DYDX (DY T2, *DYM(D)
14 CONTINUE

RETURN

END
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