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An Avian-Human Influenza Epidemic Model with Vaccination
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Abstract: A deterministic mathematical model to explore the impact of vaceination on the transmission dynamics
of avian influenza both in birds and humans is studied. Vaccinations are important prevention and control
measures for the spread of avian influenza. A reproductive number R for the model is defined and it is found
that the DFE (Disease Free Equulibrium) 1s stable provided R<1 and it is unstable if R>1 Also, if R>1 endemic
equilibrium point exists and it is locally asymptotically stable. By stability analysis of ordinary differential

equation, the criteria for global stability of DFE and endemic equilibrium are also obtained. By computer
simulation it is found that if the growth rate at which vaccine based immunity wane increases, the infective

human population decreases. Also, sensitivity analysis of the endemic equilibrium point 18 carried out.
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INTRODUCTION

Millions of people are affected each year by seasonal
out breaks of influenza (also known as flu) which kills
about 500000 individuals every year (WHO, 2007).
Human’s influenza viruses appear as 3 distinct serotypes:
A, B and C. Among these types, the virus A 1s
epidemiologically the most important for humans since, it
can recombine its genes with those of strains circulating
in animal populations (birds, swine and horses). The
mfluenza A viruses have been responsible for the vast
majority of epidemics and all recorded pandemics
(Ferguson et al, 2003) which usually results from
uncontrolled replication and spread of a single virus strain
(Alexander ef al., 2004, 2008). Influenza virus which
mfects usually only non human’s animals some time
infects humans. The spread of avian influenza in Asia of
late years is one of the examples. In Hong Kong (1997) the
news that a human was mfected with avian influenza from
birds was reported. After that, infection to human of avian
influenza occurred successively. Tt is known that already
133 human’s have been infected in Asia since late 2003
and killed 68.

It was formerly believed that the avian influenza virus
cannot infect humans but recent reports showed that the
avian influenza has now caused 385 human infections
(as of June 19, 2008) with an approximate 50% mortality
rate. In human’s, avian mfluenza virus causes the similar
symptoms as the other types of influenza. These include

fever, cough, sore throat, muscle aches, conjunctivitis and
in severe cases, severe breathing problems and
pneumorna that may be fatal. The severity of the infection
will depend to a large part on the state of the infected
human’s immune system and if the victims have been
exposed to the same kind of virus before and they have
partial immunity. Since, human-cells have receptor for
humen virus and avian-cells have receptor for avian virus,
it was formerly believed that avian influenza virus cannot
infect humans. Now, it is true that avian influenza virus
can mfect humans. These cases warn that a pandemic of
avian nfluenza may occur n the human world. Moreover,
the (highly pathogenic) avian influenza has a high death
rate which 1s about 100% for birds and >70% for humans.
This rate is extremely high simce, the death rate of
influenza virus in 1918 was several percent. Therefore, a
pandemic of avian influenza may cause the greater
influence to the human world than the pandemic of
influenza occurred in 1918. Fortunately, avian influenza
cannot be transmitted among humans yet. But if avian
influenza virus has the affinity for human cells, it denotes
the possibility that avian influenza can be transmitted
among humans. It 1s possible that avian influenza virus
may become to have the affinity for human cells.

When avian influenza mutates to be able to be
transmitted among humans, it is not clear whether mutant
avian influenza will have still high death rate or not.
However, it 1s predicted among experts that mutant avian
influenza which has the ability to be transmitted among

Corresponding Author: Manju Agarwal, Department of Mathematics and Astronomy, University of Lucknow,

226007 Lucknow, India

451



Res. J. Applied Sci., 5 (6): 451-458, 2010

human will occur. Several recent studies on influenza
modeling have focused on the influence of prevention
and control measures including vaccination, antiviral use
(Ferguson et al., 2003, Alexander et al., 2004, 2008).
Annually, the virus affects 25-30 million people with an
estimated 20-40 thousand mnfluenza-related deaths m the
United States (Regan and Fowler, 2002). Because of the
illness and high number of deaths associated with
influenza, particularly among the elderly (Cox and
Subbarao, 1999; Deguchi and Tagasugi, 2000) much
attention has been focused on preventive strategies
(Earn et al, 2002; Hak et al., 2002; Levin et al,
2004). Although, vaccmation has been an effective
strategy against influenza nfection (Blumberg et al., 1996,
Monto et al., 2001, Wood, 2001), current preventive
vaccines consisting of inactivated virions do not protect
equally. The vaccine based
protection 1s dependent on the immune status of the
recipient (Hethcote, 2000, Scherer and McLean, 2002) for
general references). Vaccination is an important control

all vaccine recipients

measure to reduce spreading of such diseases. Various
modeling studies have been made to study the role of
vaccination on the spread of infectious diseases
(Farrington, 2003; Naresh et al, 2008, Gumel and
Moghadas, 2003).
MATERIALS AND METHODS

The mathematical model: The model consists of 6
ordmary differential equation which specify the rate of
change of four categories of mdividuals mn the human
population and 2 categories of the bird population
over time. The human population consists of a class
susceptible individual (3,) a class of individuals under
Vaccimated (V) a class Infected Individuals (I,) and a
class of individuals who recover with tem porary immunity
(R,) while the bird population consists of a class of
susceptible population (S;) and a class of mfected
population. Suppose the human population N, where:

N, = §+V++R,
and the bird population N, where:

Ny =5,+1,

have constant mortality rates p and g, respectively. A
proportion € of the population is under chemotherapy
(i.e., given influenza prevention diugs) while (1-g) are not.
We let B,-P; be the effective contacts between susceptible
mndividuals eand infected birds population, individuals
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under vaccinated and infected bird population and
susceptible bird population and mnfected bird population,
respectively.

The effective contact rate between human and bird
populations may be defined as the average number
of contacts per given time that will lead to the infection
of one population if the other population is infectious. 6
1s the rate at which vaccine based immunity wanes; y 1s
the recovery rate from infection and o is the rate of loss of
immunity acquired by infection. The dynamics of the
disease 1s modeled by the following system of differential
equations:
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All the parameters in the model are positive.
Introducing the following fractions:
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Also using the relations r, = 1-v,-i;-s, and s, = 1-i; and
system Eq. 1 reduces to:

s, =m—(u+a)s —Psi, +©@-oc)v, —oi
v, =pe—Pyvi, —(u+ 8,

L =Bisi, + Byvi, — Oy + i,

1g = Balg (1-10) — g,

(2

where, T = u (1-€) + ¢ in the region, Q& = {(s,, v,, 1,
i)/ 0<s+v+H, <1, 0<ig<1}. The vector field of system on
the boundary of Q does not point to the exterior of Q, the
solution of the system remains in Q for all t=0 and thus,
the problem 1s well posed and biologically meamngful

RESULTS AND DISCUSSION

The system has 2 non negative equilibria:

E,(§,v,,0,0)andE, (E:i:i_lai)
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Existence of disease free equilibriaE, (5,%,,0.0) : Here §
and v are the solution of the following equations:
n—(u+a)§ +(B—6)V,=0 (3

pe—(p+o)v,=0 (4

clearly from Eq. 4, we get:

V. =

. >0o0rv,=¢=>0

(pu+O
Where:

LE
(p+6)

o=

also from Eq. 3, we get:

5= {m(ec)q)} o
(n+a)
Since T=nl-8+6 5o it can write 5=1-¢>0, so the
equilibrium point E (5.%.0,0) exists.

Existence of endemic equilibriag,.5,5,5): The non
trivial endemic equilibrium point E,(5,5,%.5) 18 the
positive selution of the following algebraic equations:

o o - B O o), - oi,= 0 Q)
pe— B;n':]n —(u+ O)vi=0 (6)

Bus, iy + By vidy — (7 + 1 = 0 ()
Bio(1-1,) pui, =0 )

now from the Eq. 8, we have:

Bain-(l_in)_pnin =0

:>in:0 OrBEIG :BS Mg

—i,=00ri, == (R -1
B:
Where:
B
Mg

R=

also from the Eq. 6, we get:
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ne—PB, v, — (u+ ©)v, =0

=vi= HE =b’ (say)
{Bz EL (R =14+ 6)
B
now from 5 and 7, we get:
w+o+pi,) if

So, 1t can write:

n+(0-a)v, fGin _ (y+ M, - B,v.i,

(hro+h, iu Bli_u
3;1 _ Blizn {n+(0- cs):, J:rB;,i:D (M+o+ Blizn}
{nro+Bi )y + W+ ol
©-c)+ 52%@{,1)
B AR -1 b :
] P [p,-s—c-&-Bl%(R—l)J
=i,- : =¢ (say)
{IJ-+G+ Blgu(Rl)j(}”r u)+c}
Since:

= n+{0-o)v, -oi
=

uro+pi,)
Now put value of v i, and i, we get:
n+(0-ohb —ac

“”RI}
{}HCHBIB (R-1)

3

Hence, non trivial endemic equilibrium pomt E, exists
if R>1.

Stability analysis: Now, we analyze the stability of
equilibria E, and E;. The local stability results of these
equilibria are stated in the following theorem.

Theorem 1: The equilibrium E, is stable provided R<1 and

it is unstable if R>1 and the equilibrium E, is locally
asymptotically stable if R>1.
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Proof: The varational matrix M, at
corresponding to the system is given by:

E (5.%,0.0) at

~u+o) (B-0) G ~Pisy
M, = 0 —(n+9 0 _‘Ble_
0 0 —ty+u) B P
0 0 0 (PBs — )

Then the characteristic polynomial of M, 1s given by:

POU=(Bs — 1y — M)y —p—2)
(u-8-M)p-—o-A)=pu(R-1-2)
CY-u-Rp-0-A)(pu-c-2)

Thus the eigenvalue of matrix M, are:
AM=R=L A, =—(y+p), A, =—{u+0), A, =—(u+ )

So, E, is stable if and only if the eigenvalues of the
varational matrix have negative real part i.e. if and only if
R<1 then E, is stable if and only if R<1 and R>1 then E, is
unstable because one eigenvalue of varational matrix must
be positive or zero. Now the varational matrix M, at
E,(5.%.1.4) corresponding to the system of Eq. 2 is given
by:

“(pro)Bi, (0-0) o B,
M, = 0: 7B2107£}1+9) 0 7[?2\!1 )
B,lo B;iu _(Y+“) B1SI+BQ v,
0 0 0 —u,(R-D)
The characteristic polynomial of M, 15 given by:
-G-4& (B-0) -—a
P()=(-u,(R-D-2) 0 —H-% 0
Bl P —Grw-R
Where:

G=(u+0) +Bidy, H=(u+ 0)+ By
P(?L):(HD(R D+ K) {(G +A(H+ M)y +p+A)— GBIID(H + 7\.)}

=(u(R=1)+ A} 2’ + A% +BA+C)

Therefore, the eigenvalues of the matrix M, are
-1, (R-1) and the roots of the polynomial:

qiA)=1" + AN + BA+C
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Where:

A:(QJ+G+Bli:U)+(Bzi:n +p+9)+(v+u))

o[ o B s 04 B e o Bi)
1+ 0+ B.iy) - 0By

C = (ot 0+ Buiy Bk 1+ )y + 1) — OB ) (Buly + 1+ €)

Here 1t 1s noted that A are always positive and B>0,
C=0if:

(p+ ) (= 0+ By +1+ 0+ B+ | -
i i > oByi,
(u+o+Pi) (U+O+pB,1,)

And:

L+o+ B1i_n)('}’ + 1) = GBliu,respectively
So for R>1 we have AB>C, A>0, B>0) and C>0 then
the following Routh-Hurwitz conditions for the
polynomial P, the state E, 1s locally asymptotically stable
for R=1.

Global stability

Theorem: For R<1 the state E (s1,w,0,00 is globally
asymptotically stable. Also, the state ,(,.v.i.i,) 1%
globally asymptotically stable with respect to the all
solution mitiating in the positive orthant if the following
inequalities are satisfied:

(0-0) < 1+ o+ B 6)
(B, - o) < S+ o= B (r+w)
(B3 <5+ o+ BiP,
(B < S )y 110

(B <5 OO,

(B +Bv)* <51+ 1P,

Proof: Now, it 13 considered the following Liapunov
function K =1, thus: K =1.

=K= Bty (1— 13— oy =— gl [I_E(I_iu )J—_ iy [1-R{1-1,)]
My

= K:_Hnin [Ri, +{1-R]]
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So, in Q and for R=1 we have K=0:
K=0=—p,i,[Ri, +(1- R)]=0
=IfR<l theni,=0andif R =1 then1,=0

Therefore, from the LaSalle invariance principle
(Ma et al., 2004) it follows that all trajectories satisfying in
€ approach E,for R<1.

It remained to show that global stability of E, so, it 1s
considered the following positive definite function about

Ez ={81, vy, ig) ©

.. 1 = 1 =
U (51=V1,11,1n):5(51 -8+ E(V‘ -1y +

~(, -1, ) {iu iy~ logl_”}
2 i

Now differentiating above equation with respect to t, we
get:

Y 1—s1>ds‘ l)— i ~1)

dt : o i

10) dlﬂ
dt

Also, derivative of U i.e., U can be written as the sum
of the quadratics:

dU = = = 1 =
E: 3 11(51 51)2+0~12(S1751)(V17V1)7§(V7V1)27
1 = 3 1. 7.,
0, (5, 8 0, (5,81,
3 3
1 = =... 1, T
5311(51—51) +a, (SI—SI)(ID—ID)—E(ID—ID) -
1 = 1. 7.,
gazz(“_vl) +0~23(V1 Vl)(ll 1)_5(11_11) -
- . h 1. N
—0(.22('\4’1 _V1)2+ 0‘24 (V1 - Vl)(ln _IU)_E(ID _10)2 -
- L h 1. B
~a,,(, -1+ o, (4, —1,)(, —1D)—§(1n i)
Where:

:Ba,
120 = (B3, + B,y ).

Oy =R+ 0+ Py ) oy =+ B0, = (¥ + 1), Gy
:Bzv

oy, =(0— 0,05, =B,10,0y

Oy :(Bli“ —o) o, =ps,

Then the sufficient condition for dU/dt to be negative
definite are:
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4 4 4
(a12)2<90‘"11 22’(0‘"13) <90’~11 33, (a14) <90‘"110"’44’

4 4 4
(a23)2<90‘"22 33’(0(' ) <90‘"22 44, (C(" ) <90‘"330"’44

Numerical simulation: In this study, there 1s presented
numerically simulation to explain the applicability of the

results discussed above. Researchers choose the
following parameter in model (Eq. 2) are:
pu=02¢e=020=0040=006,p =0.026,
B, =0.035, B, = 0.045,y = 0.09, , = 0.02

With these values of parameters it can be checked
that the endemic equilibrium E, exists and is given by:

=0.7896,v, =0.1431,1,=0.0489,1,=0.5556

Again with the set of parameters given, it can be
verified that the conditions in theorem 1 and 2 1s satisfied.
This shows that E, is locally and globally asymptotically
stable, respectively. The results of numerically simulation
are displayed graphically in Fig. 1 and 2 the effect of
various parameters i.e., Y, and B, on the infective human
population have been shown. It 15 noted that these
figures that as these parameters value increase, the
infective human population decreases and increases,
respectively. In Fig. 3 and 4 shows the effect of various
parameters ie, O and P, on the infective human
population. It 1s observed that these figures that as these
parameters value increase, the infective human population
decreases and increases, respectively.

For showing global stability simulation is performed
for different initial positions in Fig. 5. From this figure it is
clear that equilibrium state 13 globally asymptotically
stable provided that we start away from the other
equilibria.

Sensitivity analysis: Researchers now study sensitivity
of the endemic equilibrium to changes in the value of the
different parameters associated with the system. The
results are shown in Table 1. The purpose of this analysis
15 to identify the parameters which are sensitive;
estimation of these parameters in the field studies is to be
done with sufficient care. Sensitivity of the endemic
equilibrium point to changes in the parameter values is
shown in Table 1. Regarding sensitivity of the endemic
equilibrium level of susceptible population s, (t) the
following features are observed:

It is less semsitivity to changes in the value of

parameters p, B, 6, Bs, Ba, 1y
It 1s fawrly sensitive to changes in g, €, ¥
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Fig. 1: Variation of infective human population for
different growth rates of recovery
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Fig. 2: Variation of infective human population for
different effective contacts between susceptible
individuals and infected birds population

The equilibrium level of vaccmated population v, (t)
exhibits the following characteristics:

¢ Tt iz less sensitivity to changes in the value of
parameters {5, (s, 1,

o It is fairly sensitivity to changes n p, €, 0

* It 15 msensitive to changes in the values of the
parameter g, B, ¥

The equilibrium level of infective population i, (t)
exhibits the following characteristics:

* It 1s less semsitivity to changes in the value of
parameter €, 0
o Ttis fairly sensitive to changes in p, By, Bs, Ps, v, 0, 1y
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Fig. 3: Variation of infective human population for
different rate at which vaccine based mmmumnity
wanes
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Fig. 4: Variation of infective human population for
different effective contacts between susceptible
bird population and infected bird population

The equlibrium level of mfective bird population 1, (t)
exhibits the following characteristics:

» It 1s insensitivity to changes in the value of parameter

n 0, B0, By
s Tt is fairly sensitive to changes in B, g

Since, the spread of epidemic in the population is
direct outcome of endemic infective population size,
determination of the equilibrium level of the infective
population size is the primary problem and more attention
needs to be given to the estimation of those parameters to
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Table 1: Percentage changes in the endemic equilibrium corresponding to
different percentage changes in the parameters

Change
Parameters (%) ing (%)  inw (%) in i, (%) in i (%)
p=02 +50 0.6458 10.4822 -23.7219 0.0000
+20 0.3292 5.0314 -11.0429 0.0000
-20 -0.5192 -5.6387 14.1104 0.0000
-50 -2.0770 -22.0825 43.5583 0.0000
ag=0.04 +50 -8.9005 0.0000 -7.7092 0.0000
+20 -3.7614 Q.0000 -3.0674 0.0000
-20 4.0020 0.0000 3.2719 0.0000
-50 10.5623 0.0000 8.5889 0.0000
B;=0.026 +50 -3.1028 0.0000 36.6053 0.0000
+20 -1.2604 0.0000 14.9284 0.0000
-20 1.2917 0.0000 -15.1329 0.0000
-50 33054 0.0000 -38.8548 0.0000
2 =006 +50 1.7983 -1.3800 -0.4089 0.0000
+20 0.7598 -4.1229 -0.2044 0.0000
=20 -0.8358 4.5422 0.2044 0.0000
-50 -2.2289 12,0894 0.6134 0.0000
=102 +50 -9.2705 50.0349 24539 0.0000
+20 -3.7107 20.0559 1.0224 0.0000
-20 3.6980 -19.9860 -0.8179 0.0000
-50 92578 -49.94651 -2.2494 0.0000
B,=0.035 +50 -0.1266 -3.2145 8.5889 0.0000
+20 -0.0506 -1.3277 3.6809 0.0000
-20 0.0506 1.4675 -3.6809 0.0000
-50 0.1393 3.7735 -9.6114 0.0000
;=0.045 +50 -1.7223 -1.7470 24.1309 26.2599
+20 -0.8865 -0.9084 12,4744 13.3189
-20 1.3551 1.4675 -18.8139 -20.0144
-50 5.3951 5.6603 -75.2556 -76.5299
v =0.09 +50 0.1266 0.0000 -13.2924 0.0000
+20 0.0506 Q.0000 -5.7259 0.0000
-20 -0.0630 0.0000 6.5439 0.0000
-50 -0.1773 0.0000 182004 0.0000
g =10.02 +50 2.7482 2.8651 -38.2413 -40.0108
+20 1.0764 1.187¢ -15.1329 -16.0007
-20 -1.0638 -1.0482 14.7239 15.9827
-50 -2.6089 -2.6554 36.4000 39,9928
which mfective class size 1s more sensitive. In this

context, more care should be taken to estimate the
parameters “3 Bl: BZ: BS: Y) a, MU-
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CONCLUSION

Formerly, it was thought that human cannot be
infected with avian influenza. But in Hong Kong in 1997,
the news that a human was infected with avian influenza
from a bird was reported. After this, infections to humans
of avian mfluenza have been reported successively.

Fortunately, avian influenza cannot be transmitted
directly from humans to humans yet. However, it is said
among experts that mutant avian influenza which has the
ability to be transmitted among humans will occur. In this
study, researchers develop a mathematical model to
explore the impact of vaccination on the transmission
dynamics of mfluenza. Also, model deals with dynamics
of human infection by avian mfluenza both in birds and in
humans. There is proved the existence of an equilibrium
point with no disease; define a reproductive number, R if
R<1 then the DFE (Disease Free Equilibrium) 15 stable and
it 1s umstable if R>1. Also prove that an endemic
equilibrium point exists for all R>1 and it is also locally
asymptotically stable. By stability analysis of ordinary
differential equation, the criteria for global stability of DFE
and endemic equilibrium are also obtamed.

Tt is concluded from the computer simulation if the
growth rate at which vaccine based immunity wane
increases, the mfective human population decreases.
Also, growth of recovery rate and effective contacts
between susceptible individuals and infected birds
population increases, the infective human population
decreases. Sensitivity analysis of the endemic equilibrium
to changes in the value of the different parameters
associated with the system is done and it is found that
parameters L, By, P, Ps ¥, 0, Yy are the most sensitive
parameters to the infective population.
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