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Abstract: Simulated ammealing algorithms are evolutionary processes that may well be applied to solve
optimization problems under some hypotheses such as non-convexity and non-differentiability, ete. However,
premature convergence is an intrinsic trait of such simulated amnealing that makes them incompetent of
searching best solution of the problem domain. In order to evade this problem, a new simulated annealing
method for solving inverse electromagnetic problem is proposed. Adaptive simulated annealing 1s used as the
new method in electrical engineering for solving the parameters identification problem. With the target as the
metal under test, the calculation of the eddy current densities produced between the coil and the material is also
detailed. Here the aim of the research explains the calculation procedure for the reactance and resistance of the
eddy current sensor exited by voltage supply using a fast semi analytical method called coupled circuits
method. Both the Coupled Electromagnetic Circuits Method (CECM) and the new approach (ASA) are used
to estimate the electric conductivity and magnetic permeability of a circular material under test. To have the
quality of this method, the performances of ASA are compared with other algorithm such as Genetic Algorithm
(GA) mn term of accuracy of the solution and computation time.
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INTRODUCTION

The  Simulated Annealing Algorithm (SA)
(Yang et al, 2000) and Genetic Algorithm (GA)
(Chen et al., 2001) have been extensively used to solve
the optimization of electromagnetic problems. Among the
principals advantages of these methods are the ability to
avoid many difficulties such as the calculated gradient
and local minima solution. However, it should be expected
that GA may be better suited for some problems than SA
(Glover and Kochenberger, 2003).

Also, m optimal electromagnetic field where the
functions are frequently nonlinear and multimodal, the
simulated annealing cannot afford the adequate fidelity of
the electromagnetic inverse problem because the
convergence to an optimal solution cannot theoretically
be guaranteed after a number of iterations and function
evaluations.

Generally, simple simulated annealing always takes
much computation time in finding a globally optimal
solution which is not acceptable for many engineering
applications (Glover and Kochenberger, 2003). To unprove
the convergence of SA to some area, many supplementary
methods have been proposed (Renyuan et al., 1996). SA

using Gaussian distribution had been shown that the
convergence 18 fairly slow (Drago et al., 1999). Tasllis and
Stariolo (1996) planned a rapid SA using Cauchy
algorithm. If the field computation using fimte element
modelling of an optimization problem takes several
minutes, it is difficult to apply these methods to it for their
long running time (Glover and Kochenberger, 2003). To
overcome these difficulties for the best minimum, adaptive
simulated annealing has been developed for solving the
inverse electromagnetic problem. Recently, the adaptive
simulated annealing algorithm is widely used because
they are efficient and have both the ability to find large-
scale solution and evade premature convergence. The
algorithm 13 plammed so that facilitates a global search and
escapes the local minima. This improved algorithm can be
worked adequately when the cost function 1s multimodal
and under some hypotheses such as non-convexity
and non-differentiability.

This study deals with the identification of material
parameters using an inverse strategy. The method
based on the use of coupled electromagnetic circuits
method (Mohdeb et al, 2009a, b, Cheriguen and
Mekideche, 2003) and adaptive simulated annealing
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algorithm. The identified material parameters are the
relative permeability and electric conductivity. In order to
quantify the quality of the agreement between the
measured and calculated responses, an objective or cost
function has to be defined.

MATERIALS AND METHODS

Sensor description and equations

Description of the system: The test configuration chosen
for the evaluation of the new optimization method is
shown in Fig. 1. The simplified 2D configuration is a
circular conductive plate placed underneath a flat spiral
coil where the optimization target 1s to 1dentify the electric
conductivity and magnetic permeability from the coil
impedance measurement. The flat spiral coil is constituted
of a bobbin with Nw wires (in our problem two wires). The
bobbin is supplied by a sinusoidal voltage source with
constant amplitude U and pulsation w. The forward
problem predicts the coil impedance calculation wite more
excitation frequency using the coupled electromagnetic
circuit (Mohdeb et al, 2009a, b; Cheriguen and
Melkideche, 2003).

Electromagnetic field computation: The axsiymmetrical
model is based on the Coupled Electromagnetic Circuits
Method (CECM) which permits to calculate the coil
impedance. The CECM analysis is used to calculate the
coil impedance and the eddy currents from the magnetic
potential vector. Generally, this method is suitable for
some hypothesis:

¢ The geometry of system is axisymmetric
¢ The materials are linear and homogeneous
+  The regime 1s quasi-static harmonic

In this research, researchers exploitd the CECM for
solving materials properties determination inverse
problem because this model is fast-running. The CECM
consists in associating the integral form of the solution to
a subdivision in elementary coils. In CECM only the
conductive regions are meshed. The current densities are
the unknown vector in the inductive coil and the load.
The materials are discretized in elementary loops for
determine these unknowns. The bobbin and load are
represented by Nb and Np elementary coaxial loops,
respectively (WNb; Bobbin and Np; Plate). Each elementary
loop is in magnetic interaction with itself and with the
other ones. Each loop is discretized in several elements
(Ne discretizations). So, the total number of unknowns is
Nb + Np. The CECM mesh generated for the regions
conductive is shown in Fig. 2b for 2 wires. The
relations between 2 loops can be explicated with the
electric transformer model (Fig. 2a). The discretization
scheme is an extension of this electric transformer model
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Fig. 2: Model of coupled electromagnetic circuits

method (a) Equivalent electric circuits, (b) CECM
discritization

(Cheriguen and Mekideche, 2003; Mohdeb et al.,
2009a, b). Maxwell’s equations are a set of equations
stating the relationship between the fundamental
electromagnetic quantities. We are going to search
from Maxwell’s equations and the Ohm’s law an equation
that describes the electromagnetic phenomena in an
elementary circular loop (Fig. 3). This equation is the
basis formulation of the coupled electromagnetic circuits
method (CECM).

The magnetic and induction effects between the
different domains in axisymmetric devices are represented
by the Maxwell’s equations. Then The mathematical
model with 2D axisymmetrical case for quasi-static
problem can be written from Maxwell’s equations as
follow:
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Fig. 3: Representation of an elementary circular loop
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Fig. 4 Distribution of eddy current in load at frequency

3kH=z
1 oA - -
Rot(—Rot(A))=—c—— Grad( V)3, (1)
i ot
Where:
V = The scalar potential due to the voltage U applied to

one circle of the inductive loop (Fig. 4)
i = The magnetic permeability

0 = The conductivity of the investigated material (in
this case is subdivided in o, and o for the source

coil and the load, respectively)

The gradient of the potential in the circular reference
1s shown by Gradd Grad(V)gé, = -U/2nr. In the problem the
excitation varies sinusoidally with time then 3/t can be
written as jo. From both the Maxwell’s Equations and the
Ohm’s law and considering the simplified notation of the
gradient of the potential in the circular reference, the
combination of electromagnetic system and the voltage
supply in elementary loop p is shown by:

UGp) = 2m(p)(%

+ jAPY (2)

To calculate the potential vector magnetic A at point
p generated by the current densities T (q) at q point,
researchers used Biot Savart’s law. This law 1s written as
follow:

&7

A= [ c.aipa (3)

2

By simplification of this equation, the sum magnetic
vector potential A in a known pomt p with the current
densities, 13 expressed as:

AR = L3 sasa) /%G(p,q) @
Note that:
i) - 2K 26,0 )

k

Where S is the gross section of the elementary loop
p. r and z are cylindrical coordinates. The functions E; and
E, are the Legendre fimction of the first and second kinds.
When applying circuit’s laws the equation above 1s
simplified (after elimination magnetic potential in our
system) in a linear system as:

[z][7]=[B] )
Where:
I = The vector of current densities in the coil and the
plate
B = The vector of the voltage at elementary loops. But
the dimension of the square matrix
Z = The total number of the elementary loops m the

source and the load and represents physically the
impedance of the system

Eddy currents calculation: Once the magnetic vector
potential has been determined, all electromagnetic field
quantities can be calculated. The current densities in the
conducting plate are expressed as:

1(p) = — JoGA(p) (7

The total impedance of the exciting coil can be
calculated from the voltage supply and the current
densities in the loops. In that case, the expression is:

3 2m(p) -+ joAp)

s ®)
> s

Z

coil —
where, Z.; 18 the coil impedance of the eddy current
sensor.

Adaptive simulated annealing method: Simulation
optimization by simulated ammealing was first described
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by Glover and Kochenberger (2003) and is based on
research by Yang (2000) in the area of statistical
mechanics. A simulated ammealing optimization starts with
a metropolis Monte Carlo simulation for state-space
variables at a high temperature.

This means that a relatively large percentage of the
random steps that result an increase in energy will be
accepted. After a sufficient number of Monte Carlo steps
or attempts, the temperature is decreased. The acceptance
of the novel result is according to the Metropolis’s
condition based on the Boltzman's probability
(Glover and Kochenberger, 2003). SA algorithm contams
two steps: the 1st, perform search while the temperature
is decreasing. The 2nd determine the acceptance. The
acceptance probability of solution point 18 defined by:

P = exp(Ej’ —Ej/KT) )
Where:
K = The Boltzman’s constant
T = The temperature of the heat bath
Ej’ = The current energy state for the system and Ej is a
subsequent energy state

If, B1’-Ej<0)° 18 accepted as a starting point for the
next iteration, otherwise solution j° is accepted with
Boltzman’s probability. The above procedure is repeated
time until temperature T 15 reduced. The aim of the
Metropolis’s succession 1s to authorize the system to
attain thermal equilibrium. Tt should be noted that classical
optimization algorithm only accept improved design and
never accept a worse design. In simulated annealing, the
condition Ej*-Ej 20 gives the algorithm a chance of get out
of a local minimum.

In practice, a geometric cooling schedule 1s generally
utilized to have SA settle down at some solution in a finite
amount of time. It has been proved by some reseachers
that by carefully controlling the rate of cooling of the
temperature, SA can find the global optimum. However,
this requires infinite time. Fast annealing and Very Fast
Simulated Reannealing (VFSR) or Adaptive Simulated
Annealing (ASA) are each in turn exponentially faster and
overcome this problem.

The first simulated annealng employed Gaussian
distribution as a generator and was proposed by
Kirkpatrick. Glover and Kochenberger (2003) proposed
a fast simulated annealing by using Cauchy/Lorentzian
distribution. Another modification of the SA, the so-called
adaptive simulated annealing was proposed by Ingber
(1993, 2003) and was designed for optimization problem
in a constrained search space. For x* a parameter in
dimension i at annealing time k with rang x"e(x™", x™) the
new value 1s generated by:
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X = AT X (10)

Where:

x™ and x™ = The maximum and minimum of ith domain.
This is repeated until a legal x; between
%™ and x™ 18 generated

A, (€[-1, 1]} the random variable generated by the
following generating function:

g(l,):]i[ !

1=1 2(

1 (11)

k1+Ti|)ln{1+—}
T

1

The i values T, and are identifies the parameter index
and temperature. To find A; one most find the normalized
cumnulative probability distribution of g (4). The
cumulative probability distribution can be defined as:

[
In| 1+—
1, sign) | T,
2 2
h{l + i}
T,

i

(12)

glh)=

To simplify this generating function A; for a uniform
distribution is preferred. A normal uniform distribution is
defined as follow:

Uu) =1 (13)
where, u, (€ [0, 1]} 1s the uniform distribution function and
is the cumulative of a uniform distribution. Each parameter
is generated using a cumulative function. In this case by
the idea of Ingber it can be seen to choose g (A,) = u,.
Then, to calculate A according to the preceding
distribution, researchers applied this formulation:

2, =sign(y, —0.5)1{(1+§)|2““1 —1} (14)
The new generation distribution function in ASA has
much fatter trails than Gaussian and Cauchy generation
function. Temperature T is a key element in the cooling
system in the ASA algorithm. After every generated
poimnts, ammealing takes place with a new annealing
schedule. A global optimum can be obtained statistically
if the annealing schedule is:
Ti (k) = Ti(0) exp (-cik™) (15)
Where:
¢; = User-defined parameter whose value should be
selected according to the guidelines in reference
Tasllis and Stariolo (1996)
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n = The dimension of the space under exploration. The
same type of annealing schedule should be used for
both the generating function and the acceptance
function 141 + P)

Reannealing in ASA algorithm periodically rescales
the generating temperature in terms of the sensitivities s
calculated at the most current minimum values of the cost
function. After every acceptance pomts, reannealing
takes place by the first calculating the sensitivities:

S, = 9/ 0x, (16)

The annealing time is adjusted according to g based
on the heuristic concept that the generating distribution
used in the relatively insensitive dimension should be
wider than that of the distribution produced in a
dimension more sensitive to change.

Genetic algorithm: The Genetic Algorithm (GA) 1s an
optimization and search technique based on the principles
of genetics and natural selection (Haupt, 1995). The
method was developed by John Holland over the course
of the 1960s and 1970s and finally popularized by one of
his  students, David Goldberg (Rahmat-Samii and
Michielssen, 1999), who was able to solve a difficult
problem mvolving the control of gas-pipeline
transmission for his dissertation. Genetic operators are
used to explore a solution space through the generation
of new individuals from existing ones. There are two
major genetic operators: mating and mutation (Glover and
Kochenberger, 2003). Mating operators generate new
solutions by exchanging the genetic mformation among
two or more individuals from the population. Mutation
operators generate new solutions by randomly changing
the genetic mformation of singles individuals. The genetic
operators deal with the individuals in a population over
several generations to improve their fitness gradually.
Individuals standing for possible solutions are often
compared to chromosomes and represented by strings of
binary numbers. Like the other method, GA is also
expected to find the global minimum solution even in the
case where the objective function has several extrema
mcluding local maxima, saddle points as well as local
minima. The details of genetic algorithm are discussed by
Chen et al. (2001 ), Glover and Kochenberger (2003) and
Rahmat-Samii and Michielssen (1999).

RESULTS AND DISCUSSION

The geometry of the problems considered is shown
schematically in Fig. 3b. Considering the symmetry, the
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Table 1: The results from the coupled circuits method

Results from CECM
f({Hz) 100 400 1500 9000 30000
Impedance
7 (k) 1.612 1.898 3.997 21.037 69.042

Current density (A m™)

Fig. 5: Distribution of eddy curent in load at frequency
10kH=

model 18 only designed for the half. The amn of the
simulation study is to calculate the coil impedance from
the eddy current densities in the all system (bobbin). The
parameters used in the computation for harmonic
excitation are inner radius of the coil (r,= 2.5 mm), outer
radius of coil (r; = 3.5 mm), coil width (1, = 1 mm), the
distance between coils 15 1 mm (12), relative permeability
(u, =1 for coil and air, 100 for load), conductivity of half
space (0,= 5.7¢7 3 m~" for coil (copper) and = 7.6e6 3 m™
for load (steel)), laft off (e = 1 mm). Frequencies used for
excitation of the coil are 0.1-30 kHz. The piece to testis a
cylinder of 0.80 mm thickness (1,) and the dimension of it
is 14 mm length (1). The coil with two wires has been
energized by voltage supply with U = 30V at several
frequencies. The model of the probe coil is shown in
Fig. 2b.

Table 1 shows the variation of the coil impedance
with several frequencies: f1 = 0.1 kHz, {1 = 0.4 kHz,
fl1 =1.5kHz, f1 =9.0kHz {1 = 30.0kHz The Fig. 5 and 6
show the distribution of the current densities in the load.
Tt is important to select an adequate mesh to represent
correctly the electromagnetic phenomena and then to
reduce the numerical errors that can influence the
convergence of the identification process.

In this case, every coil of this sensor contains 64
elementary loops distributed m 8 following the axial
direction and 8 following the radial direction and
researchers have considered 320 loops in the load
(40 along the radial direction and 8 in the axial direction).
The experiment was run on a Dell which contam an Intel
Pentium 4, 3.6 GHz CPU and 256 Mb RAM. The program
was 1mplemented in MATLAB 7.1.
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Fig. 6: Methodology of mverse problem procedure

mulation using
forward problem

When a voltage supply 1s used to excite a coil, a
magnetic field 15 produced and magnetic lines of flux are
concentrated at the center of the coil. Then as the coil 1s
brought near an electrically conductive material, the
magnetic field penetrates the material and generates
contimuous, circular eddy currents. Larger eddy currents
are produced near the test surface. As the penetration of
the induced field increases, the eddy currents become
weaker. The induced eddy currents produce an opposing
(secondary) magnetic field. This opposing magnetic field,
coming from the material has a weakening effect on the
primary magnetic field and the test coil can sense this
change. In effect, the impedance of the test coil is reduced
proportionally as eddy currents are increased m the test
plece.

The model in voltage source driven gives the
possibility to compute the inductive current and therefore
the impedance of the system that is interesting for solving
material properties determination inverse problem whule
using as observables the coil impedance of the eddy
current sensor.

For identification parameters of the real parameters,
a lot reiterate are required for predicting the permeability
magnetic and the electric conductivity. In this step,
researchers described the implementation of the ASA
algorithm in parameters identification approach. Figure &
shows the scheme of electromagnetic inverse problem.
The proposed methodology can be summearized as
follows: Choose a true experumental test and used for the
identification procedure and saving the measured Z™.
Generate randomly the input parameters.

The forward problem or the model program is applied
to simulate the output vectors Z*%. Optimization analysis
by ASA algorithm simulation. This step is performed by
the calculation of the error function for new materials
parameters X Verification of the ASA results with
original measured parameters X™. The new results Z* is
calculated by using the model code CECM and compared
its values with original measured results 2™
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The Fig. 6 shows the identification procedure in the
case of non destructive evaluation of a parameter o, and
p, from the measured (or true) impedance Z,,, and the
calculated impedance 7., If the calculated values are
generally different from than that of measured values the
algorithm are used for minimized this difference margin.
Researchers performed the estimation approach of the
electric conductivity and the relative permeability of the
material under test while solving an inverse problem. Here,
the inverse problem to analysis, 1s expressed as follow: To
find

(u.0.) giving Z_, (1,.0,)=Z,, (an

where, 7.4 is the impedance calculate and 7, is the
impedance measured. In this study, the measured values
are replaced by those gotten, while using the direct model
{Coupled Electromagnetic Circuits Method CECM).
Researchers defined the error function as the
properties
calculated values by the coupled circuits method. Then,
the identification 1s considered as nonlinear problem to
find a solution x that minimizes the function, as follows:

difference between the measured and

P %Ef‘“{(xcal,mm,,q) X Ry 6, R,

(18)
where, R, and X_; denote the resistance and reactance
calculated by the CECM approach, R, and X, are the
resistance and reactance measured at the mth point due to
a frequency. This function (Eq. 18) is minimized by using
the new hybrid CECM-ASA. The values of 1L and o, are
predicted through minimization of this cost function. The
first experiment involved the use of additive noisy data to
examine the proposed method Two cases are
investigated; the same parameters geometric and physic
are used. The material properties of cases are respectively
set as:

Case 1: 0,=7.6e6and =100

Case 2: 0, = 8.0e6 and = 200

It should be mentioned that these material properties
are used only to provide the simulated measurements of
impedance responses using CECM code and to check the
accuracy of the material properties determined by the
inverse analysis (CECM-ASA) using these simulated
measurements.

Minimal and maximal mtial values of the matenals
were respectively for o, (1e6-15e6) and n, (50-200). The
bounds on the materials parameters are required to define
a finite search space for the ASA. Tn engineering practice,
a narrower range 1s always preferred for accuracy



Res. J. Applied Sci., 5 (2): 65-72, 2010

Table 2: The parameters for the new approach

Table 4: Sirmulation results for various search algorithims

Problem Two tests
Termination tolerance tol le-20
Maximum number of iterations 2000
Markov chain 4
Function evaluations 1000
Table 3: ASA results with different noise levels
Obtained
Noise free Noise 4% Noise %%
Error Error Error

Expected Obtained (%) Obtained (%)  Obtained (%0)
Test N° 1
=100 99,999 0.01 98359 1.65 106,872  19.66
a=17.6e6 7.600e6  0.04 7.58e6 348  T.7le6 50.23
Test N° 2
L, = 200 200.00 0.00 203.89 836 20910 34.56
g=8.0e6 8.00e6 0.01 7.91e6 7.65 7.88e6 19.95

n inverse solution and for computational efficiency. The
setings of parameters used in this method for the two
tests are shown in Table 2. Noise is inevitably involved in
the measured data in practice. A few test cases were also
run considering noisy data.

The results are shown in Table 3. In order to
simulate the measured impedance, a Gaussian noise
defined by traditional equation (t, & where T is a random
number in the range [-1, 1] and represents the standard
deviation of the measurement errors) 1s directly added to
the coil impedance responses and then the noise-
contaminated responses are used as inputs for the
identification. To investigate the sensitivity and stability
of the present mverse procedure to the noise level, two
noise levels of 4 and 9% are considered.

The presence of noise can make the identification
much more complicated compared to the noise-free case.
If the noise is too large, a local optimum could be found as
the true results rather than the global optimum. Tt has
been found that when the noise 18 >9%, the true results
were not 1dentified. If the noise 15>4%, the true results can
still be found as shown in Table 3 and the characterized
result remains stable regardless of the presence of the
noise.

With ASA optinization, the convergence to an
optimal selution can theoretically be guaranteed after a
number of iterations. Interestingly, when a combination of
adaptive simulated annealing and the semi analytical
method was applied and even better result was achieved.
This can be explained with the fact that the ASA method
has different strength. The adaptive simulated annealing
is very good at finding the correct area of the solution,
tolerant of local maxima and mimma and the new
generation function 1s excellent at refimng a solution
systematically to the nearest maximum or mimmum (best
solution).

Obtained
Results using CECM-ASA ASA GA
Test N°1 (Expected)
1, =100 100.00 99.95
o, =7.6e6 7.5%06 7.57e6
Cost function 9.39¢-15 1.24e-10
CPU time (8) 845 3232
Tterations 36 150
Test N°2 (Expected)
1, =200 200.02 199.74
0. = 8ebd 8.00e6 7.8%0
Cost function 6.81e-20 1.28e-12
CPU time 854 4223
Iterations 70 250

The new algorithm 1s better equipped for global
optimization because 1t 13 more aggressive in the
exploration of the search space. This algorithim can be
worked adequately when the cost function is multimodal
and not derived for the design parameters. Now the
researchers compared this new method with other
optimization method such as Genetic Algorithm (GA) that
determines the identification parameters in any problem.
Table 4 shows the values of parameters of the maternal
under test and the results of optimal computations, using
the ASA and GA for the noise-free case.

For this optimization method, the code has been
programmed in MATLAB 7.0 with the Genetic algorithm
Toolbox (MATLAB 04). The parameters used for the
genetic algorithm are selected as follow: The test start
with number of population equals to 60 with 20
generations. Each generation stores the best fitness string
and at the end gives us the best candidate. A binary
encodmng 1s used. The crossover probability 15 equal 0.61
for the test. The mutation probability was 0.001. Also, the
method of tournament selection 1s used.

As observed for this problem, the ASA method
resulted in the optimal solution close to global optimal
solution but the GA solution was stuck 1n local optima.
The performance of the ASA was the best among genetic
algorithm. As such, not only can the global optima be
ensured but results can also be obtained at a reasonably
fast speed (Table 4). The other advantages of ASA are
the capability to escape from the local optima (Table 3).
When compeared the CECM-ASA with the CECM-GA, the
numerical results show that the adaptive sumulated
annealing gives us an excellent convergence in a minimal
CPU time (Table 4). Tt is evident from the above results
that adaptive simulated annealing is superior to on this
problem both in terms of optima found and speed
COIV eIgence.

CONCLUSION

A new stochastic optimization based on adaptive
simulated annealing algorithms was carried out for solving
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inverse electromagnetic problem. A new Simulated
Annealing Algorithm (ASA) is an extension of the
traditional simulated annealing algorithm. Tt uses a new
function generation to reduce the likelihood of the
premature convergence.

When used to solve the optimization problem mn
the parameters identification of a eddy current sensor,
which its objective function is under some hypotheses
such as non-convexity and non-differentiability, adaptive
simulated annealing can not only obtain the global
optimal solution but also the convergence history showed
that the ASA converged to the optima faster than the
Genetic Algorithm (GA). The results proved satisfactory
i terms of the best identification parameters for eddy
current sensor showing a good behaviour of the Adaptive
Simulated Amnealing Algorithm (ASA) m optunizing the
analyzed problem.

Finally, the new ASA algorithm can be extensively
used in any other situation to solve different optimization
problems of electromagnetic devices.
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