Research Journal of Applied Sciences 9 (3): 154-159, 2014
ISSN: 1815-932X
© Medwell Journals, 2014

Fault Tolerant Middleware Framework to Improve QoS in Distributed Systems

1A Samydurai and *A. Shanmugam
'Department of CSE, Dhanalakshmi College of Engineering, Chennai, Tamil Nadu, India
*Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India

Abstract: Tn distributed computing environment there are several servers and quite a few number of middleware.
This concept takes into account the load, object’s memory usage, object’s function execution duration and CPU
usage of the middleware in handling remote method calls thus providing fault tolerance and improving QoS.
Traditionally, the middleware performs an analysis over the parameters to ascertain the resource availability and
to entrust the task to the appropriate server. So far, due consideration has not been given to the identification
of the right middleware to manage such remote method mvocations. This study focuses in particular on
choosing an appropriate middleware for a given scenario and also performing sufficient data replication at
chosen middleware to improve high availability and fault tolerance of data thus improving QoS of the
distributed systems. Choosing the middleware with deliberate attention to vital parameters of QoS can impact
mn significant performance improvements and high reliability can be achieved through fault tolerance than
merely being tied to the one prefixed by default.

Key words: Distributed systems, fault-tolerance middleware, Quality of Service (Qo8), reliability, appropriate

INTRODUCTION So, a middleware 1s needed in a distributed

Distributed computing 15 a potentially powerful
approach for accessing large amounts of computational
power. Distributed computing refers to computational
decentralization across a number of processors which
may be physically located in different components,
subsystems, systems or facilities (Armendariz et al., 2006).
These processors may be general-purpose computers
with data/application sharing capabilities, they may have
an architecture that enables collaborative processing
focused on a specific task and/or each may be optimized
to efficiently execute particular tasks or control specific
subsystems. The processors may include small
microprocessor, workstations, mimcomputers and large
general purpose computer systems. A distributed system
must provide various mechamsms for process
synchronization and communication for dealing with the
deadlock problem and for dealing with a variety of failures
that are not encountered in a centralized system (Goel and
Buyya, 2006). Building a distributed system 1s really
more difficult and expensive than building a centralized
one. The programming in heterogeneous distributed
environment is made difficult by the following factors:

+ Exchange of complex data

+ Dafferent encoding of data types

+ Synchronization and real parallelism
* Need for atomic sequence operations

system environment. Middleware is a set of common
business-unaware services that enable applications and
end users to interact with each other across a network. In
essence, middleware 15 the software that resides above
the network and below the Business-Aware Application
Software (Poza ef al., 2009). Object Oriented Middleware
(OOM) offers synchronous, typed communication
between components of a distributed program. Developed
out of a need to extend the object-oriented programming
paradigm to distributed systems, the middleware typically
consists of a mechamsm to allow methods to be invoked
on remote objects, plus services to support the naming
and location of objects in a system-wide manner.
Examples of OOM are Java RMI/JINI and CORBA. Both
scientific and business applications today are generating
large amount of data. Typical applications such as high
energy physics and bicinformatics will produce petabytes
of data per year. In many cases data may be produced or
required to be accessed/shared at geographically
distributed sites. Sharng of data mn a distributed
environment gives rise to many design issues, e.g., access
permissions, consistency issues, security (Murray ef af .,
1998). The reason for such a widespread interest is
due to followmg facts: increased availability, mcreased
performance and Enhanced reliability (Natarajan ef al.,
2000).

As distributed systems become more and more a
house hold technology and also support mission critical

Corresponding Author: A. Samydurai, Dhanalakshmi College of Engineering, Anna University, Chennai, India

Res. J. Applied Sci., 9 (3): 154-159, 2014

application systems, the reliability of these systems
becomes a crucial issue. When researchers talk about
reliability of middleware in distributed systems, two
contradicting facts become apparent. Since, middleware
systems are distributed in more than one system, if there
1s single pomt of failure, the services can still be availed
from other middleware or component. But since there is
more number of components, the probability of failure of
any single components also increases. When the system
developers provide transparent system services in a
distributed system, unless special care has been taken,
there 1s a higher chance of failure of serving clients
relying on a particular middleware (Dumitras and
Naragimhan, 2007).

Traditionally, CPU usage, bandwidth, queue length
of waiting instructions of the server and priority of the
task determines the server to be deputed for the call
received. The middleware performs an analysis over the
above parameters to ascertain the resource availability
and to entrust the task to the appropriate server. Remote
method calls are scrutinized through a prefixed middleware
and then 1t gets directed to the appropriate server hosting
the remote object that encapsulates the method. This
process 18 done with the intent of ensuring optimal
resource utilization and speedy completion of tasks.
So, far due consideration 1s not been given to
the identification of the right middleware to manage such
remote method mvocations.

Researchers have proposed a new framework to
mnprove QoS in distributed systems. The proposed
framework combines fault-tolerance of middleware and
replication of data on the server side for high availability
and better performance to improve the reliability and QoS
of distributed system. The proposed framework analyses
various parameters in each of the available middlewares
and find the one which can fimsh the present task within
the shortest time. Fault tolerance is intrinsic in the
proposed solution because, the middleware that
consumes above normal computation time are not
assigned any task. The parameters probed are the load,
object’s memory usage, object’s function execution
duration and CPU usage of the middleware m handling
remote method calls.

LITERATURE REVIEW

Geol and Buyya (2006)’s replication is used in
distributed environment. Here, data 1s stored at more
than one site for performance and reliability reasons.
Replication algonthms for distributed storage are
discussed. A replication strategy suitable for a certain
application or architecture is not suitable for other.
The important difference in replication protocols is

155

consistency requirements. If strict consistency is
followed, performance 1s reduced. If it uses read
only queries than performance can be increased.
Natarajan et af. (2000) describe the patterns mto the
DOORS fault-tolerant CORBA used to improve its
performance and fault-tolerance. The fault tolerant
CORBA defines a standard set of interfaces, policies to
provide high reliability. The FT-mechanism used to detect
and recover from failure. Fault detectors used for
detecting faults. Armendariz ef al. (2006) discuss about
the development in the replication concept of architecture
innovations. Researchers require different replication
strategies and business services. For this researchers
must choose a efficient protocol for the middleware. It
also presents new middleware architecture for enhancing
the availability, fault tolerance and consistency of
business information systems in the framework of a
distributed infrastructure as part of the solicited project
CONFTA.

Marculescu et al. (2003) have proposed pre-copying
with remote execution as a novel. Their technique can be
part of a design method for extending the lifetime of
variety of applications under various types of faults
despite scarce energy Improving code
migration and remote execution is done by Pre-Coping
with Remote Execution (PCRE) that derives ideas from
both. Kim (2001) conversed some major issues in
realization of fault tolerance m RT OO DC Systems and
give a new decade, the Real-Time (RT) computing
application market 1s no longer a negligible market even
for major platform vendors. This scheme explains us the
potential and 1ssues of objects oriented real time
programming. There are many faulty that develop in
middleware-kervel-hardware platforms. Technically
middleware approach 1s tougher but enjoys a related
position with others. They were discussed various
techniques in RTOOQ System that helped in constituting
a cost effective technology for the faulty tolerance
realization.

Schantz and Schmidt (2002) construct new computing
and information systems. Middleware was invented in an
attempt to help simplfy the software development of
large-scale, network-centric computing systems and bring
those capabilities within the reach of meny more
developers than the few experts at the time who could
master the complexities of these environments.
Distributed Object Computing (DOC) has emerged as a set
of software protocol and service layers that help to solve
the problems. Murray et al. (1998) describes a middleware
technology which aims to realize this promised benefit
of distributed systems by offering high availability
abstractions. High availability is an application-dependent
issue. Some rsault automates process replication, failure

TesOUrces.

Res. J. Applied Sci., 9 (3): 154-159, 2014

detection and failure recovery. Tt can be plugged into an
ORB to realise the goal of replication transparency, at
least on the client side. Tt has two major iterations of
algorithm design, implementation and optimisation.
Gokhale ef al. (2004) provides three contributions to the
study CORBA middleware for performance-sensitive DRE
Systems. They evaluate strategies for FT-CORBA help for
mission-critical DRE Systems a reality. CORBA
middleware provide an overview of FT-CORBA. DRE
System focuses on developing and deploying standard
CORBA middleware whose performance guarantees to
applications even even faults occurs.

Kim et al. (2006) proposes is going to work upon the
semantic middleware architecture to reason out the
problem of errors. Tts cause and solutions to its solving in
unicom environment. Researchers have created models
m ontology to describe service faulty and their
functionalities. Three overarched are defined that breaks
the service for better flexibility and scalability. The use of
faulty tolerant semantic middleware called wapee gives a
meaning to the service and fault ontology in faulty
application. Poza et al. (2009) proposed the structure in
distribution system which talks about the commumcation
or interaction of QoS levels with different control layers.
Researchers talked about the component application of
the middleware m the control system. They also
mentioned the drawbacks and the latest application
components in the system.

QOS OF DISTRIBUTED SYSTEMS

This study elaborates the framework that focuses on
improving the QoS of distributed systems. The proposed
framework combines the fault-tolerance of object-oriented
middleware and the replication of data on the server side.
The proposed framework analyses various parameters in
each of the available middleware and find the one which
can finish the present task within the shortest time. This
process ensures that the task initiated always gets
directed to the middleware with comparatively minimum
amount of load and has the best of computing power.
Analyzing the computation time that will normally be
consumed for the waiting objects in a queue not just
resolves the middleware that can fulfill the request with
the minimum waiting time but also inherently resolves the
differences in computing power of individual middleware.

This 13 because the time that i1s required for
computing depends primarily on the computing power of
the analyzed middleware and hence it is ensured that the
middleware with the best computing power and least
amount of waiting instruction in queue will win the chance
to receive the task mitiated. Figure 1 depicts the general
architecture of distributed systems with multiple
middleware’s.

156

"ACKINAK ACK/NAK
._..._, Ms
N

____‘——_

" T

ACK —p Positive delivery acknowledgements
NAK— Negative delivery acknowledgements

Middleware

Fig. 1: General architecture of distributed systems with
multiple middlewares

QoS metrics: A set of metrics are framed for the
middleware operation.

Fault tolerance: The process of the middleware to
withstand the parameter faults of the middleware.

Response time: The time taken by the middleware to
service the request of the client and the server.

Monitoring: The ability of the middleware to monitor the
transmission and reception of data between servers in the
system.

IMPROVING FAULT-TOLERENCE
OF MIDDLEWARE

Here, researchers concentrate on raising the fault
tolerance aspect of middleware with an objective of
improving QoS of the system. The algorithm proposed
here identifies the apt middleware by scrutinizing vital
parameters and improves the fault tolerance. The
parameters probed are the load, object’s memory usage,
object’s function execution duration and CPU usage of
the middleware in handling remote method calls.

Client logs: Client logs file mamtains all the requests from
the client to the middlewares. The requests are maintained
in the following format: date-time, port, server-Id, object
name and function name.

This file is used by M, to identify and process the
recent requests given to M;. When M, is dead for example
consider a situation where a client sends a request at time
09:01 which is logged in the client-logs file, received and
processed by M, for the next second 09:02 when client
sends next request it 13 logged in client logs file as usual
but is not processed by M, since M, is dead at 09:01 and
simultaneously M, receivers NAK from M, and now M,
reads the log file to process the recent request to M, to
continue the process.

Res. J. Applied Sci., 9 (3): 154-159, 2014

Fault detection protocol

ACK/NAK X
X

Fig. 2: Fault-free middleware

Middleware

Data Replication in Middleware (DRM): Data replication
is a mechanism of replicating data’s such as port-number,
object name, function name, server-Id in all neighbor
middleware’s after processing each request in regular time
intervals and also ACK and NAK messages are
transmitted and received among neighbor middlewares to
know their alive status.

Fault-detection protocol: The mechanism of fault
tolerance helps the middleware to continue work even
after partial failwe. Figure 2 show the design of fault-free
middleware. Fault-Detection Protocol (FDP) 1s used to
provide reliable communication between middlewares on
the basis of ACK and NAK messages transmitted and
received among neighbor middlewares.

The particular middleware 1s detected faulty, if its
fails to response to the are you alive message from the
neighbor middleware for M, time in M, period. Then, the
detected middleware 1s shunned where it 1s removed from
the cluster and the cluster updates its view to balance the
load and client interceptors thereby avoiding the dead
node.

Assumptions:
Mry~Middleware maximum time to wait for response
My~ Middleware maximum number of tries
Ms—Middleware M, is removed from cluster
for each middleware in Ny,
If (MTO = 2000)
M, has missed “are-you-alive” message My times
M, is shunt and it sends NAK to M, and dies
end
end

Design of the fault tolerance middleware system: The
fault-tolerant middleware mechanism describes the
method of choosing the next middleware based on the
shortest path between middlewares found using Dykstra’s
algorithm and the availability of mdividual middleware
memory and required memory Np. remote function calls
of the objects. Figure 3 shows the design of the fault
tolerance middleware system where a client requests an
object from server in which the request is logged m log
file and from their request is forwarded to the server
through a middleware. The main objective of the
middleware 1s to check the load balance of various servers
and to find the appropriate one which 1s able to satisfy the

157

Fig. 3: Fault tolerance middleware system

request of the client. When a middleware is identified as
fault based on fault detection protocol which monitors all
the middlewares then the process is taken over by the
next neighbor middleware that 1s 1dentified based on the
fault tolerance protocol.

Assumptions:
Ny~Numnber of available middlewares
S Size of available memory in a middleware
AgyrSize of required memory by the W geremote finction calls of the
objects.
Md;-Weight of edges between i and j middlewares. MD;™-Weight of
minimum cost path between i and j middlewares.
for each middleware in Ny,
/1 shortest path using Dijkstra’s algorithm
MD; 0 for all i, Mdy™ = =, for i=j;
Form=0to N-1

{
MD**! =0, for all i,
for i=j;
MDEH = min <{MD("')Jer } fori=j
i K ik i ¥

}

end
If (Middlewarel — failure)
for each middleware in Ny
IF (8> Spw)
Call next Suitable M,
end
end
end
end

EXPERIMENTAL RESULTS

Researchers implemented the proposed approach in
Tava to test the efficiency. Researchers had some servers,
middlewares and clients. The memory consumed by the
objects and the time consumed by every method calls
were stored in the databases.

All the remote calls of methods were monitored and
information like called object, method, total time, elapsed
time and memory occupied were also stored i the
database. Figure 4 shows the one of the clients request to
middleware through the log file. Figure 5 shows the
process of current middleware in which the following
details are displayed:

Res. J. Applied Sci., 9 (3): 154-159, 2014

AWINDOWS\system32\cmd. exe

IC:~fom~srcrjava Client 8881
serverlp : localhost port

"localhost"
8881

one sum .

C:xfomsprcr_

Fig. 4: Client’s request to middleware

ot Select C:\WINDOWS!system32\cmd. exe - java MiddleWare
time = @ id : 8683
Selected Memory ID is : 8883

8 32
25
68
b

-0.30830813596545161
Id : 8082 time : 7

-0.5026288565618129

memory : 32

memory @ 25

Fig. 5: Current middleware’s process

INDOWS\system32icmd. exe - java Server BOB1

881
0hj name = one
Function : sum
select time from Punction vhere ohjectname = ? and function = ?
select Memory from Memory where Object = 7
et ElapsedTine = 1 vhere [d = 8881 and Ohject = 'one
= 8881 and Ohject = 'one’

= 8881 and Ohject = 'one’
e = 4 vhere [d = 8881 and Ohject = 'one’
d = 8881 and Ohject = 'one’
et ElapsedTine = 6 wher = 8881 and Ohject = 'one’
et ElapsedTine = 7 vhere [d = 8881 and Ohject = 'one
et ElapsedTine = § vhere [d = 8881 and Ohject = 'one
update Middlewareld set Elapsedlime = 9 vhere [d = 3881 and Ohject = 'one
update Middlewareld set ElapsedTime = 18 where Id = 8681 and Ohject = 'one

et ElapsedTine = 2 vhere [d
et ElapsedTine = 3 where [d
d

et Elapse
et ElapsedTine = 5 wher

Fig. 6: Server’s operation

Time taken by the server to complete the current task
and the server Id

Based on above said details the server (8083) is
selected

Continuous update of server details such as Id, time
consumption and memory capacity

CPU usage value that is being updated for every
1000 msec. Figure 6 shows the performance of the
current server’s operations based on the input from
the middleware

CONCLUSION

Probing the vital parameters of a middleware such as
fault tolerance, response time and replication and
monitoring before designating it for handling a request

proves worthwhile. Significant are the performance

158

improvement and fault tolerance ratio in experimental
study. Considering the parameters that identifies the
fastest/fittest among a group of middleware ensures
optimal resource utilization and helps speedy completion
of any task. Researchers have also handled the replication
1ssues on the middleware side. With proven experimental
results, the importance of appraising a middleware before
delegating it for a task becomes indispensable.

ACKNOWLEDGEMENT

The comments from the reviewers have added quality
to this study and their research ought it be received with
words of appreciation.

REFERENCES

Armendariz, J.E., H. Decker and F.D. Munecz-Esco1, 2006.
Boosting the availability of mformation system by
data replication. http:/Aweb.iti.upv es/~armendariz/
pubs/pdf2006/CAISE poster.al .pdf.

Dumitras, T. and P. Narasimhan, 2007. Got predictability?:
Experiences with fault-tolerant middleware.
Proceedings of the 2007 ACMAFIP/USENIX
Tnternational Conference on Middleware Companion,
November 26-30, 2007, Newport Beach, CA.

Goel, S. andR. Buyya, 2006. Data Replication Strategies in
Wide Area Distributed Systems. In: Enterprise
Service Computing: From Concept to Deployment,
Qu, R.G. (Ed). Idea Group Inc., Hershey, PA, USA,
pp: 211-241.

Gokhale, A.S., B. Natarajan, K. Joseph, C., Douglas and
C. Schmidt, 2004. Towards real-time fault-tolerant
CORBA middleware. Cluster Comput. T, 7: 331-346.

Kim, K.H., 2001. Middleware of real-time object based
fault tolerant distributed computing systems: Issues
and some approaches. Proceedings of the 2001
Pacific Rim International Symposium on Dependable
Computing, December 17-19, 2001, Seoul, Korea,
pp: 3-8.

Kim, Y., EK. Kim, B.J. Jeon, LY. Ko and 8.Y. Park, 2006,
Wapee: A fault-tolerant semantic middleware 1n
ubiquitous computing environments. Proceedings of
hte EUC 2006 Workshops: NCUS, SecUbig, USN,
TRUST, ESO and MSA, August 1-4, 2006, Seoul,
Korea, pp: 173-182.

Marculescu, D., N.-H. Zamora, P. Stanley-Marbell and
R. Marc-Culescu, 2003, Fault-tolerant techniques for
ambient mtelligent distributed systems. Proceedings
of the International Conference on Computer Aided
Design (ICCAD'03), San Jose, CA.

Res. J. Applied Sci., 9 (3): 154-159, 2014

Murray, P.T., R.A. Fleming, PD. Hamy and Poza, I.L., I L. Posadas and I.E. Simo, 2009. QoS-Based

H.P. Laboratories, 1998. Somersault: FEnabling Middleware Architecture for Distributed Control
Fault-Tolerant Distirbuted Software Systems. Hewlett Systemns. Springer, Berlin Heidelberg, New York,
Packard Laboratories, USA, pp: 98-81. Pp: 587-595.

Natarajan, B., A. Gokhale, S. Yajnik and D.C. Schmidt, Schantz R.E. and D.C. Schmidt, 2002. Research advances
2000. Applying patterns to improve the performance in middleware for distributed systems. Proceedings
of fault tolerant CORBA. Proceedings of the 7th of the IFIP 17th World Computer Congress-TC6
mternational Conference on High Performance Stream on Communication Systems: The State of
Computing, ACM/AEEE, December 17-20, 2000, the Art, August 25-30, 2002, Montreal, Canada,
Bangalore, India, pp: 107-120. pp: 1-36.

159

	154-159_Page_1
	154-159_Page_2
	154-159_Page_3
	154-159_Page_4
	154-159_Page_5
	154-159_Page_6

