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Modelling Stock Market Return via Normal Mixture Distribution
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Abstract: Previous studies proved that the distributions of stock returns exhibit fat-tail and skewness. The
normal mixture distribution provides a practical extension of the normal distribution for modelling stock marlket
returns with the above mention stylized facts. Tt has been successfully applied in financial time series modelling
and the application 1s still expending not only in asset-return modelling but in other applied fields. In this study,
normal mixture distribution is proposed to accommodate the non-normality and asymmetry characteristics of
financial time series data as found in the distribution of returns for Bursa Malaysia index series namely the FTSE
Bursa Malaysia EMAS Shariah Index (FBMS) from October 2006 until July 201 2. Empirical analysis is conducted
across frequencies (monthly, weekly and daily) to demonstrate the proposed method. Firstly, we present the
basic definitions, concepts and distribution properties of normal mixture distribution. Tn support of determining
the number of compeonents mn the mixture, we use the mformation criterion for model selection The
goodness-of-fit measures provide supporting evidence m favour of the two-component normal mixture
distribution at all frequency levels. For parameter estimation, we use the most commonly used Maximum
Likelihood Estimation (MLE) via the EM algorithm to fit the two-component normal mixture distribution. Also,
the empirical results indicate that the normal mixture distributions offer a plausible description of the data. Tt
also shown to be more superior compare to the use of other distributions.

Key words: Behaviour of financial time series, stock marlet rehurn modelling, normal mixture distribution, model

selection criteria, EM algorithm

INTRODUCTION

Previous research on financial assets returns is
devoted through the approximately normally distributed
assumption. The normal distribution is commonly used in
the 1700°s especially when it has been successfully
applied to astronomical data analysis by Karl Gauss in the
1800. However, from the late 1960°s, the empirical finance
analyses failed to support the normality assumption on
estmating the financial assets returns distribution.
Mandelbrot (1963) and Fama (1965) have pointed out the
existence of excess kurtosis and heavy tails in financial
assets returns and established the empirical evidence on
the non-normality in returns. Later, strong evidence by
numerous empirical finance studies has indicated that
most of the financial assets return distributions are
non-normal where normality 1s overwhelmingly rejected in
many returns distribution (Esch, 2010; Tan and Chu,
2012).

Thus, the financial assets distributions such as stock
market returns are poorly represented by the normal
distribution, especially for ligh-frequency dataset. It 13 a
stylized facts that returns exlubits non-normality and
asymmetry characteristics where it have thick tails are
skewed and leptokurtic relative to the normal distribution
(Eijgenhuijsen and Buckley, 1999, Cont, 2001; Behr and
Potter, 1998). Thus happened because it have more values
near the mean and in the extreme tails (Hall et al., 1989)
and dramatic falls and spectacular jumps appear with
higher frequency than predicted (Frances and van Dijk,
2000). Stylized facts as defined by Cont (2001) are
statistical properties of financial time series, common
across a wide range of instruments, markets and time
periods.

Therefore, returns
distribution plays a very vital role m both financial

assumption regarding the

modelling as well as in its applications. For example, one
may underestimate the occurrence of extreme financial
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events such as market crashes if ally with a wrong
distributional assumption. It is very important to find an
accurate distribution that empirically fits the observed
returns. The form of the retums distribution 1s a very
crucial assumption.

One way to accommodate the above-mentioned
stylized fact is to introduce a more flexible distribution
model. Normal mixture distribution has gain increasing
attention in various disciplines of knowledge. The earliest
recorded application of normal mixture distnbution was
undertaken by Simon Newcomb in his study in
Astronomy 1 1886 followed by Karl Pearson mn his classic
worlc on Method of Moments in 1894. In empirical finance
applications, the use of normal mixture distribution to
handle fat tails was first considered by Newcomb
(1886). Gridgeman (1970) proves that a normal mixture
distribution is leptokurtic, when all regimes have the
same mean. There exists a long history of modelling asset
returns with normal mixture distribution (Peters, 1991,
Praetz, 1972; Clark, 1973; Blattberg and Gonedes, 1974).
Kon (1984) examined the daily returns from 30 different
stocks m the Dow-Jones industrial average, estumated
normal mixture distribution with two up to four
components which were found to fit appropriately and
showed that the normal mixture distribution has more
descriptive validity than Student t distribution. Others are
Hall et al. (1989), Tucker (1992) and Tran (1998). And the
lists of literatures continue to emerge until at this moment.

Some attractive property of normal mixture
distribution 1s that it i1s flexible to accommodate various
shapes of continuous distributions and able to capture
leptokurtic, skewed and multimodal characteristics of
financial time series data. Also it is believed that
normal mixture distribution is appropriate in order to
accomumodate certain discontinuities i stock retumns such
as the ‘weekend effect’, the ‘turn-of-the month effect’ and
the ‘Tanuary effect” (Klar and Meintanis, 2005).

A good mtroduction to the theory and applications
of normal mixture distribution can be found by Everitt and
Hand, Titterington, McLachlan and Basford, Lindsay and
MecLachlan and Peel. Meanwhile, various applications of
normal mixture distribution in empirical finance are
documented by Fruhwirth-Schnatter and Alexander.

Fitting mixture distributions can be handled by a
wide variety of techniques such as graphical methods,
method of moments, mmimum-distance methods,
maximum likelihood and Bayesian approaches for an
exhaustive review of these methods. Considerable
advances have been made in the fitting of mixture
models especially via the maximum likelthood method.
The maximum likelihood method has focused many
attentions and by far has been the most commonly used
approach to fitting the mixture distributions mainly
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due to the existence of an associated statistical theory
and since the advent of the EM algorithm. The key
property of the EM algorithm has been established by
Dempster et al. (1977). The EM algorithm is a popular
tool for simplifying maximum likelihood problems in
the context of a mixture model. The EM algorithm
has become the method of choice for estimating the
parameters of a mixture model, since its formulation leads
to straightforward estimators.

Determining the number of components, k 1s a major
1ssue 1in mixture modelling. Two commonly employed
techmques m determiming the number of components,
k are the information ecriterion and parametric
bootstrapping of the likelihood ratio test statistic values
(McLachlan, 1987). Majority of the estimation techniques
assume that the number of components, k in the mixture
is known at a priori where it is known before the
estimation of parameters is attempted.

This study paves the way for an easy applied
estimation of returns distribution using normal mixture
distribution through its flexibility. The significance of this
study lays in the accurate distributional assumption of
returns for modelling purpose and its application. Also,
the purpose of this study is to provide evidence on the
descriptive validity of normal mixture distribution as a
statistical model for stock returns.

Our motivation 1s that it 1s vital to understand the
pattern and distributional properties of Malaysia stock
market indices as there are tremendous growth and
increasing interest of investors towards investment in
Malaysia stock market. Our goal 1s to find a best model in
describing the Malaysia stock market indices based on its
time series patterns. We investigate FTSE Bursa Malaysia
EMAS shanah index across frequencies, 1e., monthly,
weekly and daily series. These stock market indices
encompass of stock market crises such as Asian financial
crisis and subprime crisis. In this study, we focus both on
the statistical and financial properties of the normal
mixture distribution.

STYLIZED FACTS OF MALAYSIA STOCK
MARKET RETURNS

In this study, we provide stylized facts and
descriptive evidence on the distribution of the FTSE
Bursa Malaysia EMAS shariah index (FBMS) monthly,
weekly and daily returns.

The FTSE Bursa Malaysia index series was officially
launched on 26 June, 2006 (http:/www . bursamalaysia.
com). The data set used in this study is the closing price
covers a 6 years period from October 2006 to Tuly 2012 for
Malaysia stock market index namely the FTSE Bursa
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Fig. 1: Tumne series and returns plot of FTSE Bursa Malaysia EMAS shariah index; a) monthly series; b) weekly series

and c) daily series

Malaysia EMAS shariah index (FBMS) as obtained from
DataStream. It 1s a benchmark index based on the Main
Market. This index comprises the Shariah-compliant
constituents of the FTSE Bursa Malaysia EMAS index
that meet the screening requirements of the Securities
Commission’s Shariah Advisory Council (SAC). The
series 1s denominated in Malaysian Ringgit (MYR).

Prior to analysis, the series is analyzed in return
which 1s the first difference of natural algorithms
multiplied by 100 over the whole period. This is done to
express things m percentage terms. Let P, be the observed
closing price of market index i on day t,i=1, .., nand
t=1, .., T. Therates of return 1s defined as the percentage
rate of return by:

Figure 1 depicts the time series plot of stock market
imdex of Buma Malaysia together with the returns of

1t

Vi =100><10g{P (M

1,t-1
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Bursa Malaysia stock market index plot for the time span
10/2006 to 7/2012. From Fig. 1, it can be seen that the price
rise and fall over time. There are periods of quiet and
perieds of wild vanation m the retums. The period
analyzed can be characterized as a period of market
instability as it reflects the uptumn and downtun of
Malaysia stock market. It can also be seen that the growth
pattern in Malaysia has not been smooth at all times.
Malaysia undergoes sequence of upward and downward
economical episodes due to global crisis. Just to mention
a few; in 1997, Malaysia experienced a reduction in
economic growth due to the Asian financial crisis where
the rapid growth in Asian economies had come to a halt;
The September 11 attacks had a significant economic
impact on world market; bird flu epidemic especially in
Asia in 2003; subprime mortgage crisis in 2006; the price
of petroleum spiked in 2008 as well as the rapid increase
in food price on the same year and HINT1 attacks in 2009.
Those can be identified as shocks in the stock market of
Malaysia (Cheng, 2003).
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Fig. 2: Histogram with corresponding normal curve; a)
monthly series; b) weekly series and ¢) daily series

Figure 2 depicts the histogram of the returns with the
corresponding normal cuve with same mean and standard
deviation. From Fig. 2, it can easily be seen that the
empirical distribution is higher peak and has heavier tails
than the normal distribution. Also note that the return
distributions with thicker tails have a thinner and higher
peak in the center compared to normal distribution. The fit
of the normal curve to the histogram is poor.

Table 1 reports the descriptive statistics and tests for
the stock prices over the whole sample period. First, the
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Table 1: Statistical properties of FTSE Bursa Malaysia EMAS shariah

index
Statistics Monthly Weekly Daily
N 68 299 1415
Mean 0.7081 0.1897 0.0401
Median 1.5734 0.3583 0.0897
Maximum 16.8037 9.8535 4.0747
Minimum -19.6753 -9.9771 -11.3205
Std. Dev. 5.6573 2.3031 0.9556
Skewness -0.7471 -0.5133 -1.5840
Kurtosis 5.7956 5.7382 19.6562
Jarque-Bera 26.7939 106.5375 16948.3800
Probability 0.0000 0.0000 0.0000

means of the series in general not significantly different
from =zero. Second, there is evidence of negative
skewness. Third, 1t has been found that stock returns
in financial market have excess kurtosis. And the
Tarque-Bera test rejects the null hypothesis of normality
for the Malaysia stock market retuns at all frequency
level.

Thus, the returns of FTSE Bursa Malaysia EMAS
shariah index (FBMS) are poorly described by normal
distribution not only at high-frequency level (daily series),
but also at medium-frequency (weekly series) and
low-frequency level (monthly series).

DISTRIBUTTIONAL FITTING

In this study, we present the distributional fitting for
FTSE Bursa Malaysia EMAS shariah index (FBMS)
monthly, weekly and daily returns.

Using our historical data, assuming that historical
patterns hold and that history tends to repeat itself then
it can be used to find the best-fitting distribution with
their relevant parameters (Mun in 2010). We perform the
distributional fitting (30 continuous distributions) using
Risk Simulator Software (www.risksimulator.com ).

The statistical ranking method used
distributional fitting routines 1s Kolmogorov-Smirnov
test. Kolmogorov-Smirnov is a non-parametric test for the
equality of continuous probability distributions and can
be used to compare a sample with a reference probability
distribution, making it useful for testing abnormally
shaped distributions and non-normal distributions.

A hypothesis test coupled with the maximum
likelihood procedure with an internal optimization
routine 1s used to find the best-fitting parameters on each
distribution tested and the results are ranked from the
best fit to the worst fit (Mun 1n 2010). The null hypothesis
is the fitted distribution is the same distribution as the
population from which the sample data to be fitted come.
The higher p-value, the better the distribution fits the
data.

Figure 3 depicts the distributional fitting plot.
Table 2 reports the distributional fitting results using

in
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Fig. 3: Distributional fitting for FTSE Bursa Malaysia
EMAS shariah index; a) monthly series; b) weekly
series and c) daily series

Table 2: Distributional fitting results for FTSE Bursa Malaysia EMAS
shariah index

Frequency Distribution KX test statistic p-values
Monthly Gumbel minirmum 0.06 0.9656
Weekly Laplace 0.03 0.9408
Daily Laplace 0.02 0.3577

Table 3: Parameter fitting results for FTSE Bursa Malaysia EMAS shariah

index

Frequency Distribution Parameters Results

Monthly Gumbel Minirmum Mode o 2.83
Scale 371

Weekly Laplace Mean ¢ 0.33
Scale 1.63

Daily Laplace Mean ¢ 0.07
Scale [ 0.66

Probability density function (pdf) of: Gumbel Minimum distribution:
) = (lfﬁ)e%e-% and Laplace distribution: £ = (172 expl-|x-eaf /)

Risk  Simulator. The results also show the
Kolmogorov-Smirnov test statistics and p-values of the
best-fitting distribution of FTSE Bursa Malaysia EMAS
shariah index (FBMS). From Table 2, Gumbel minimum is
the best-fitting distribution for monthly return, Laplace is
the best-fitting distribution for weekly and daily returns.
Meanwhuile, Table 3 reports the parameter fitting results.

NORMAL MIXTURE DISTRIBUTION

In this study, first, we mntroduce the normal mixture
distribution. Next, we present the model selection criteria
to determine the number of components k in the normal
mixture distribution. We then present the Maximum
Likelihood Estimation (MLE) via the EM algorithm to fit
the mixture and study the case of k-component univariate
normal mixtures.

As discussed earlier, we know that the assumption of
normally distributed returns 1s not valid. Two features that
account for non-normality m finance and economic
serles are; one 1s the presence of big shocks or outlying
observations or rare events, another 1s abrupt regime
changes over different sub-periods. The worst part of the
assumption of a normal distribution 1s particularly with
respect to the tail behaviour of the series where the tails
of a normal distribution taper very rapidly, hence, the
normal assumption will exclude the possibility of extreme
returns where such events are frequently seen in financial
markets. Moreover, according to Bidarkota, normal
distribution has tails that are too thin to accommodate
shocks m financial markets.

Most financial markets returns are both skewed and
leptokurtic. Based on the above analysis, the FTSE Bursa
Malaysia EMAS index is no exception; the monthly,
weekly and daily log return 1s far from being normally
distributed. Hence, a number of altematives skewed and
leptokurtic distributions have been applied. The normal
mixture distribution is by far the most extensively applied
and the simplest case is a mixture of two univariate normal
distributions may be considered as the most widely
applied. A flexible and tractable alternative of departures
from normality is a mixture of two normal distributions. A
mixture of two log normal distributions fit financial data
better than a single normal distribution. Fama (1965)
claims that a mixture of several normal distributions with
same mean but different variances are the most popular

approach to describe long-tailed distribution of price
changes.

One of the most appealing features of the normal
mixture distribution for modelling assets returns is
that it has the flexibility to approximate various shapes
of contimuous distributions by adjusting its component
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weights, means and variances (Tan and Chu, 2012). Other
advantages of using normal mixture distribution are they
mamntain the tractability of normal have finite mgher order
moments, plus can capture excess kurtosis (Tsay, 2005).
Besides, normal mixture distribution can capture the
structural change both in the mean and variance and it
can be asymmetric. Also the normal mixture distribution
are easy to interpret if the asset returns are viewed as
generated from different information distributions where
the mixture proportion can accommodate parameter
cyclical shifts or switches among a finite number of
regimes (2{u and Wirjanto, 2010). A mixture of two normal
densities 13 defined by:

g(x) = me (x)+{1-m)p,(x), 0<m<l (2)

where, @, and @, are two normal densities with different
expectations and variances. In general, the cumulative
distribution function (¢df) of a mixture of K normal random
variable X can be represented by:

F(x) = in}b{){;—“‘} (3)

where, @ is the cdf of N(0, 1). Therefore, its probability
density function (pdf) is:

)i
f(x)= Y mo(x 1, 0,) )
i=1
where, fori=1, ... K:
(X*u;)2
o(x 1, 0,) = o

2ns,

)

1=1

m,=1and 0<m <1

If X is a mixture of K normals with pdfin (Eq. 3), then
its mearn, variance, skewness and kurtosis are:

5)
Zﬂ [30 qoeny

= g;m [3Gf+6(u, ) o)’
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Alexander defines finite mixture distribution as a
probability-weighted sum of other distribution functions
where the density function of a mixture distribution is the
same probability-weighted sum of the component
density function. Tn normal mixture distribution, the return
distribution 1s approximated by a mixture of normal each
has unique mean p, standard deviation o; and weight
(sometimes also called as
parameter) ;.

The mixture setting, according to Alexander is
design to capture different market regimes. The typical
interpretation of a mixture of two normal distributions 1s
that there are two regimes for retums. One where the
return has mean i, and variance ¢} another where the
return has mean p, and variance o,’. The weight is the
probability © which the first regime occurs while the
second regime occurs with probability 1-m. For example,
1n a two-component mixture (k = 2), the first component,
with a relatively high mean and small variance may be
interpreted as the bull market regime, occurring with
probability ©, whereas the second regime with a lower
expected return and a greater variance, represent the bear
market.

Wang showed an illustration of a normal distribution
model that is quite inappropriate for fitting market data
since 1ts density does not take mto accounts the fat tails
and skewness. Dias (2007) discuss how skewness and
excess kurtosis n financial time series can be deal using
finite normal mixture distribution? and illustrate why
mixtures of normal models provide a flexible way of
dealing with skewness and kurtosis?

Thus, the {ive parameters (T, p,, W;, 0., 0;") of normal
mixture distribution allow a very flexible definition of
departures from symmetry and normality. Therefore,
normal mixture distribution has the ability to deal with
skewness and kurtosis in analyzing financial time series.
By using normal mixture distribution, we can obtain
densities with lugher peaks and heavier tails than normal
distribution.

probability or mixing

MODEL SELECTION

Determining the number of components k is a major
1ssue 1in mixture modelling. Two commonly employed
techniques in determining the numbers of components k
are the information criterion and parametric bootstrapping
of the likelihood ratio test statistic values (McLachlan,
1987). Majority of the estimation techmques assume that
the number of components, k, in the mixture is known at
a priori where it 15 known before the estimation of
parameters is attempted.

First, we did the calibration checking for the normal
mixture distribution. Figure 4 depicts the calibration plot
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distribution model; a) monthly series; b) weekly
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for the two-component normal mixture distribution.
Examining the two-component normal mixture distribution
plot, it does look satisfactory.

Next, we do cross-validation to confirm the selection
of number of the components for the mixture model. We
do simple data-set splitting, where a randomly-selected
half of the data is used to fit the model and half to test.
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Fig. 5: Log-likelihoods of different sizes of mixture
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and evaluated on the other half of the data for
testing; a) monthly series; b) weekly series and c)
daily series

The basic idea is to split a data set into train and test.
We fit the model using the traiming pomnts and then
calculate the log-likelithood of the test points under the
model. We pick the number of component which
maximizes the likelihood of the data. Table 4 and Fig. 5
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Table 4: Log-likelihoods of the 10 fold cross-validation for FTSE Bursa
Malaysia EMAS shariah index

k Monthly Weekly Daily

1 -114.0325 -345.6042 -965.5971
2 -111.3669 -335.1962 -917.7421
3 -113.8726 -342.3016 -921.1646
4 -125.7174 -338.6399 -922.7361
5 -118.4525 -338.8286 -923.3435
6 -135.2373 -341.0202 -922.5892
7 -134.3250 -343.5147 -921.7902
8 -144.9777 -363.5299 -925.6190
9 -144.2491 -371.1937 -925.2779
10 -123.1648 -362.7534 -929.4505

depict the log-likelihoods of the 10 fold cross-validation.
The boldface entry confirms the two components to the
mixture model.

Since, a two-component normal mixture distribution
seems good, we should not consider using more
components as by going to three, four, etc., components,
we 1mprove the in-sample likelihood but we could expose
ourselves to the danger of over-fitting. Besides, having so
many parameters 1s not always desirable. It can lead to
estimation problems and over-fitting the data can lead to
specification problems.

PARAMETER ESTIMATION

Fitting the parameters of the normal mixture
distribution is one of the oldest estimation problems in the
statistical literature. A variety of approaches have been
used to estimate the normal mixture distribution as
discussed earlier. The Maximum Likelihood Method
(MLE) 1s the most commonly preferred method for the
estimation problem of normal mixture distribution.
Unfortunately, the MLEs have no closed forms, hence,
they have to be computed iteratively. However, the
computation becomes straightforward
Expectation-Maximization (EM) algorithm.

The EM algorithm is widely used as it is an easy and
implementable method as well as a popular tool for
simplifying difficult maximum likelihood problems plus has
shown great performance in practice where it has the
ability to deal with missing data, unobserved variables

using  the

and mixture density problems. The EM algorithm waill
find the expected value as well as the current parameter
estimates at the E step and maximizes the expectation at
the M step. By repeating the E and M step, the algorithm
will converge to a local maximum of the likelihood
fumetion. Various EM-type algorithms can be found in the
literature.

Denote 6 the parameters of the function to be
optimized. The algorithm consists of iterating between
two steps, the E-step and the M-step. In the Expectation
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(E) step, the current estimates of the parameters are used
to assign responsibilities according to the relative density
of the training points under each model. Next, in the
Maximization (M) step, these responsibilities are used n
weighted maximum-likelihood fits to update the estimates
of the parameters. The E-step is repeated, updated with a
new value as the current value of 8 and then the M-step
again provides a further updated value for 8. Thus, the
algorithm proceeds, iterating between the E-step and the
M-step until convergence is achieved.

Hastie et al. (2005) introduce a simple procedure of
the EM algorithm for the special case of normal mixture
distribution:

Expectation (E) step:

(x,; Wy, 03)

T = fort=1..T
Como (X b, 07 ) (1m0, (x,0 1y 07
(6)
»  Maximization (M) step:
_ 211(1-'\(t)xt - le(l—yt)(xt—ul)z
W= —=7—7—:-0, ~ T »
thl(l_yt) thl(l_yt)
— ijlytxt 62 — E;lyt(xt'p‘z)z (7)
2

>

u .
: E-trzl £ 2:-:1 it

_ Y,
= 23:1%

As an illustration, we apply the maximum likelihood
method via EM algorithm to fit the normal mixture
distribution with two components to the Bursa Malaysia
return. Table 5 depicts the summary of two components
normal mixture using the EM algorithm. There are two
components with two weights (), two means (u), two
standard deviations (o) and the overall log-likelihood
(logL.).

Several important observations may be drawn from
Table 5. First, in general the low-variance component has
a higher probability. The second component has a lower
variance. The high-variance component has the smaller
probability for all series. This indicates that the first
normal 1s a low mean high variance regime and the second
normal 1s a lugh mean low variance regime. Meanwhile,
the weights indicate that the second regime is the more
prevalent regime for the FTSE Bursa Malaysia EMAS
shariah index.

Normal mixture distribution has an mtuitive
interpretation when markets display regime-specific
behaviour. Markets are stable when the expected return
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Table 5: Summary of five parameters two-component normal mixture distributions model using EM algorithm for FTSE Bursa Malaysia EMAS

Shariah index
Frequency MLE Statistics ™ T 1y i g, o
Monthly Estimate log-1: Estimnate 0.3959 0.6041 -1.0019 1.8871 65.2078 7.3139
-207.2483 Std. Err. 10.0445 0.6036 1.7394 0.0527 0.3635
Ratio 0.0394 -1.6599 1.0849 1237.3397 20,1208
95%LCL -0.0684 -5.0319 0.5395 6.0277 -3.5997
95%oUCL 0.8602 3.0281 3.2348 124.3879 18.2275
Weekly Estimate log-1: Estimate 0.2602 0.7398 -0.6430 04826 13.1709 2.1837
-651.9003 Std. Err. 21.2023 2.1809 81777 0.4326 3.4005
Ratio 0.0123 -0.2948 0.0590 30.4459 0.6422
95%oLCL 0.0809 -1.7430 0.2218 6.5656 1.3302
95%UCL 0.4395 04569 0.7433 19.7763 3.0372
Daily Estimate log-1: Estimate 0.1974 0.8026 -0.2021 0.0997 3.1380 0.1974
-1775.0290 Std. Err. 55.9009 8750 48,2822 3.4368 47.8478
Ratio 0.0035 -0.0231 0.0021 0.9131 0.0041
95%LCL 0.1261 -0.4450 0.0573 2.2435 0.2793
95%UCL 0.2687 0.0407 0.1420 4.0325 0.4149

is relatively small and positive and the volatility is
relatively low but market crash as the expected return is
relatively large and negative and the returns volatility is
larger than when markets are stable.

Figure & depicts the plot of two-component normal
mixture distribution. We plot the histogram of the data
and the non-parametric density estimate. Then, we add
the density of a given component to the current plot but
scaled by the share it has in the mixture, so that it is
visually comparable to the overall density.

MODEL COMPARISON

In this study, we present model comparison between
the best-fitting models versus normal mixture distribution
model.

Using the same arguments with distributional fitting
mn study, we employ the Kolmogorov-Smimov test for
model comparison. We compere their test statistics
and p-values m order to choose the best model. We
choose model with ligher p-value.
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Table 6: Model comparisons for FTSE Bursa Malaysia EMAS shariah

index
Parameters Monthly Weekly Daily
Distribution Gumbel min Laplace Laplace
K8 test Stat. 0.0600 0.0300 0.0200
p-value 0.9656 0.9408 0.3577
Distribution Normal mixture distribution
K8 test Stat. 0.0556 0.0281 0.0235
p-value 0.9770 0.9724 0.4165

Table 6 reports model comparison between the
best-fitting models with normal mixture distribution model.
The results show that normal mixture distribution model
1s more superior compared to the best-fitting models at all
frequencies for FTSE Bursa Malaysia EMAS shariah
index.

CONCLUSION

In this study, we present the empirical evidence on
the stock market return of FTSE Bursa Malaysia EMAS
shariah index based on its time series patterns. Our goal
15 to find the best model in describing the series. First, we
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perform distributional fitting using risk simulator where
Gumbel mmimum distribution 1s the best-fitting model for
monthly return Laplace distribution is the best-fitting
model for weekly and daily returns. We also propose
normal mixture distribution which 1s a flexible family of
distribution to accommodate the non-normality and
asymmetric characteristics of financial time series data as
found in the distribution of monthly, weekly and daily
rates of returns for the FTSE Bursa Malaysia EMAS
shariah index from October 2006 until July 2012. We define
the normal mixture distribution and explore some of its
distribution properties. In support of determining number
of components 1 normal mixture distribution, we use
two selection criterions where the measures provide
supporting evidence i favour of two-component. Thern,
we fit the two component normal mixture distribution to
data sets using the maximum likelihood estimation via EM
algorithm. Lastly, for model comparison, we found that
Normal Mixture Distribution Model 18 more superior
compared to the best-fitting model (Gumbel minimum
distribution and Laplace distribution) for monthly, weekly
and daily series. We may conclude from the above
analysis that using the two-component normal mixture
distribution can fit Malaysia stock market returns well and
can captures the stylized facts of non-normality and
asymmetry characteristics.
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