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Abstract: Continuous wavelet transform is used to analyze potential fields (magnetic, gravity, VLF, SP...) as
well as locating their related sources. Tt is possible to determine the location of a source edge by wavelet space
which 1s obtained by Poisson wavelets. When the source 1s perfectly homogeneous, the degree of homogeneity
1s also determined. In addition, more source homogeneity results in lugher accuracy of edge detection. The
effect of noise is also investigated. The wavelet transform removes high frequency noises automatically as it

acts as an upward continuation operator.
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INTRODUCTION

Recognition of the causative sources of potential
field is a long-standing topic and a number of techniques
have been proposed to sclve the problem. These
techniques generally consist of two categories:
processing and inversion. The latter one concerns the
methods for which the main goal 1s to recover the source
distribution responsible from the measured potential field
while the former one transfers the field data into a auxiliary
spaces such as the Fourier domain, reduction to the pole,
upward continuation, horizontal derivatives, vertical
derivatives and wavelet transform {rom which the source
parameters are easier to obtain

In this study we follow the processing approach and
transfer the potential field data into the wavelet domain
space. The wavelet transform has several advantages with
respect to the other methods. [t represents a local analysis
(time, space) of the measured field. This transform also
removes the high frequency noises as it acts as an

upward continuation operator (Baranov, 1957; Blakely,
19933,

Wavelet transform: There are numerous methods to
signal processing. Most well-known of these methods 1s
Fourier analysis. This analysis transfers the signal form
time domain to frequency domain In the frequency
domain only the frequency characteristics of signals are
existed and time characteristics are vamshed. It means we
cannot determine the time of a frequency event. Denis
Gabor utilized Furrier transform for equal and small parts
of signal to solve this problem. This technique
(windowing signal) called short time firrier transform.
Using a window with constant size all signal frequencies
1s not detectable. To recognize low and high frequencies,
large and small windows are used, respectively. Thus,
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Fig. 1: a) Short time Fourter transform and b) wavelet
transform for different scales of wavelet

some information on frequency is lost in order to
determine the time of event Wavelet transform 1s a
window technique which utilizes the method of changing
size of a window. Figure 1 shows the difference between
short time Fourier transform and wavelet transform. In
summary, this transform computes the correlation of
various parts of a signal with analyzing wavelet. The
amounts of correlation are called wavelet coefficients.
Wavelet coefficients are computed for different scales of
wavelet. Wavelet scale has a reverse relation with
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Fig. 2. Wavelet coefficients at various times and scales:
a) determining wavelet correlation with all parts of
the signal, b) wavelet displacement along the
signal until covering whole of the signal and ¢)
iterating the steps a and b with different scales

frequency. Then, the high scales show properties of a
signal in low frequency and vice versa. For obtaining
wavelet space of a signal, following steps should be
considered (Gibert et al., 1997):

*  Computing the correlation of wavelet with a part of
the signal

¢+ Displacing the wavelet along the signal and
computing correlation through all parts of the signal

* Iterating steps a and b for different window sizes
(various scales of wavelet)

Figure 2 shows the different parts of wavelet
transform. Finally, wavelet transform consists of
coefficients at various times and scales. Function P(t) can
be considered as a wavelet if and only if:

T\F( )|zdm )

The only constrain is:

T‘P(t)dx =0 (2)

Y{w) is Fourier transform of P(t).
MATERIALS AND METHODS

Wavelet transform of potential fields: Tet s and g are
considered to be complex valued functions over R® space.
Wavelet transform of s with respectto analyzing wavelet
g is defined as (Moreau ez al., 1999):

_x-b
wle, s]zjdxaing( V5(x) (3)

wlg, s]= | dx%g(b :‘)s(x) (4)

where, &3)=28%) and &% and is the conjugate complex
function of g The first formula expresses wavelet
transform in terms of a correlation function whereas
second one 15 a convolution. Dilation (D,) 1s defined as:

D s(x) = a’"s(i) (5)
a

Then, the wavelet transform can be written in terms
of convolution as:

(6)
WIg, s](b, a) = (D,gxs) (b)
For a signal of s(x) degree:
s(Ax) =A% (M
And:
wlg, s](hb, ha) = A% wlg, s](b, a) (®)

S(x) 18 considered as acquired signal on a profile such
that: @ (x, z=0) = s(x). The function @(x, z) 1s obtained
from Eq. &

ax,2) = wlp.sl(x.2) ©)
P 1s Poisson’s kemel and 1s defined as:

—(n+1)
10
p(x):cm+1(l+|x|2) 2 (o)

n denotes physical dimension. In two dimensional
physical spaces, n equals 1. If field @ is transferred
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Fig. 3: Schematic diagram of simple homogenous sources: a) point source (a = —3); b) mfimte horizontal line; ¢) infinite
vertical line; d) infinite thin vertical sheet and e) contact (Sailhac ef af., 2009)

to a wavelet space by Poisson wavelets, the
following relation is verified (Moreau et al., 1999):

Wlg. 90, 2)](b, a) =

a, a'+z
(=)'(
a

)v+n—c:—2

. (11)

a’+z
Wle, 20, 2)](b——, a
a

)

g 13 a wavelet in above relation Eq. 11 which i1s i place of
Poisson kemnel in relating Eq. 7 and 1s obtained from
dervative of Poisson kernel. v 1s the degree of dervative
(wavelet homogenous degree) and « is the degree of field
or source homogeneity. Equation 9 states that the points
(b, a) and:

I
a +z

(b ")

a+z

have the same phase m wavelet space. In other words, if
(b, a) becomes maximum, point:

I3
a+zZ .

(b a)

a+z

is maximuin, too. It is convenient to show if lines that
cross at these two purposed points in wavelet space
(extreme lines), they cross at point (0, -z). The equation of
this line 1s:

atz (12)
= -z
T

(0, -z) is the center of homogenous source potential or the
place of homogenous source. For all potential sources,
this point always gives the upper edge of source except
in case of sphere. In the latter case, the pomnt is sphere
center because sphere center 1s its homogenous center.
For an infinite vertical line, homogenous center is the
upper edge of it. This method is able to determine depth
of any potential source with good precision. Wavelet
coefficients variations at extreme points in wavelet space
relates with source homogeneity degree as (Gibert and
Moreau, 2000; Gibert and Passel, 2001):

Log(wufot") = Blog(a + z) +ote (13)

B is slope of above equation and z is depth. The relation
of B for magnetic field is p = a-y while for gravity field is
B = e-y-1 (Sailhac et o, 2009). This difference comes from
the fact that structural index for a magnetic shape 1s
greater than for a gravity shape by 1 (Bleakly, 1995). o 1s
homogeneity degree in these relations. Therefore, we
have found a solution for homogenous degree of a source
from which an estimation of source shape may be
obtained. Tt is emphasized that source should be
homogenous.

Degree of homogeneity for pomt source ¢ = -3,
infimte horizontal line ¢ = -2, infimte vertical line ¢ = -1,
infinite thin vertical sheet ¢ = -2 and contact ¢ = 0

(Sailhac et al., 2009) (Fig. 3).
RESULTS AND DISCUSSION

Infinite magnetic horizontal line: We consider an Infinite
magnetic horizontal line at depth z = 50 m which is
magnetized wuformly. Magnetic response of this model 1s
shown n Fig. 4.

For wavelet transform of signal above, 3th order
wavelet (y = 3) 1s used. Wavelet transform coefficients
related to 3 scales, 10, 30 and 50 are shown m Fig. 5.

In Fig. 5, it i1s seen that relative extremes around
x = 500 m have amplitudes greater than those points far
away from it. In Fig. 6, relative extreme points have been
drawn to scale equals 80. Red points are related to
maximum points while blue ones are minimal.

Wavelet space extremes around the source are placed
on lines which converge toward the source while far away
the source maximums and minimums are placed on each
other. One constraints for converging of extreme lines
relative to the source position is source homogeneity
(s(Ar)#A’s(r)). For homogeneity of source two conditions
should be satisfied: homogeneity of properties of the
source (magnetization, density or conductance) and
relation between amplitude of the field to distance from
source such that: @ (Ar)# A" O(r). In very low scales,
homogeneity condition 1s failed because field amplitude
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Fig. 5: Wavelet transform coefficients of the signal
resulted from infinite horizontal line at three
different scale

80 1 L Blue for fin;
70 - i Red foggmax

!

a(scales)

204
10 |

0 100 200 300 400 500 600 700 800 900 1000
b (position)

Fig. 6: Wavelet space extremes at points far away the
source coincides with each other and they do not
converge. At lower scales, there also exists a little
deviation

is not depended only on the distance. Consequently,
extreme lines have a little deviation. Thus, only higher
scales are considered. In Fig. 7, only extremes around
the source with scales greater than 10 have been mapped
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Fig. 7. Absolute extremes for scales >10 are drawn. The
lines are convergent at the source position
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Fig. 8 Determination of homogeneity degree

and the extreme lines converge at pomts x = 501.5 and
z=50.5 m) (Boukerbout ez al., 2003; Homby et al., 1999).

Variations of log (w/a’) in terms of log (otz) is
shown in Fig. 8. According to Fig. 8 as y =3 and p =- 4.9,
using relation p = ¢-v, the degree of homogeneity 1s equal
to -1.9 which is for an infinite horizontal line as we have
purposed. Variation of slope of the line in Fig. 8 is due to
the effect of low scales which occurs at scale R.

Dyke model (gravity example): A dyke is considered
with these characteristics: width = 200 m, upper
depth = 30 m and density = 2.5 g cc™'. Edges of
this model are at 400 and 600 m. Wavelet space
extremes of gravity field wavelet transform is shown
in Fig. 9. Extreme lines are seen near the edges and
the flanks. Latter ones converge and have weak
amplitude and are not related to position of the
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Fig. 9: Extreme lines of a dyke

source. The former ones converge which pomt to
edges and depth ofthe model x = 402.2 m, z = 26.1
mandx =5993 m, z=24.5m (Fig. 9).

Effect of noise: Consider a signal with noise defined as:
d(x) = By(x)+ v(x) (14)

V(x) indicates noise and P0(x) gives the signal caused by
the source. Conducting wavelet transform:

wlg, d](b, a) =wlg, &, Xb, a)+ wlg, v](b,a) (13

Equation 15 shows that the signal wavelet transform
comnsists of a definite part W[g, &J0](b, a) and a probable
part W[g, v] (b, a). Tt is noticeable that probable part is
dependent on statistical characteristic of noise.

If v(x) is Gaussian noise with the mean of zero value
and variance of 107, linearity of wavelet transform
ensures us that W[g, v](b, a) is Gaussian with variance
defined as (Moreau et al., 1999):

o} [ (D.g) ()dx =
- (16)

foo
a™g? Igz(s)da —a™'olE,

In which:

E, - [ gtexe

is wavelet energy. Equation 16 shows that the variance of
wavelet transform of W[g, v](b, a) is a** which changes
with scale. Consequently, wavelet transform 13 more
affected m low scales than high ones. We expect that from
a threshold scale, noise effect 15 sigmificant and vice
versa:
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Fig. 10: Absolute extreme points from a = 1-50
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Fig. 11: Absolute extreme pomts for a = 50-120
wig, dJ(b, a <<a,) = wig, v](b, a) a7

According to defimtion a, 1s correspondent to a scale
in which ratio of signal to noise is from order 1. We add
(Gaussian noise with mean of 0.05 and variance 5<10° nT
to the signal caused by infinite horizontal line. Noisy
signal is shown in Fig. 10 (Telford et al., 1976).

Plotting wavelet transform extremes in low scales and
at presence of noise has no clear result. In these scales,
noise amplitude 1s proportional to amplitude of the signal
and extreme lines are far from position of the source.

Figure 10 shows, for scales smaller than a, = 20,
relative extremes are not close to the source x = 500 m.
However, extremes mostly which are caused by noise are
at farthest pomts of the source. We have plotted extremes
for scales of 50-120 (Fig. 11). For these scales, all extremes
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Fig. 12: Albuquerque Basin inside Rio Grande and San Ysidro fault (Grauch et al., 2006)

are close to the source, because noise effects have been
reduced and the convergence point is at (501.4, -46.4 m).
To test the validity and accuracy of methodology, we
conducted the continuous wavelet transform to interpret
aeromagnetic data of San Ysidro fault of Rio Grande Ruft
in UUSA. The fault was studied in Grauch et ol. (2006). This
fault has a NNE-SSW striking and 1s a normal fault in
Albuquerque sedimentary basin (Hsu et al., 1996,
Woodward and Reutschilling, 1976). San Ysidro fault 1s
exposed mainly to the switace (Roy, 2013). Majority of the
aeromagnetic data 1s produced by Santa Fe group of
sediments (Grauch et al, 2006; Hudson et al., 1998).
Figure 12 shows the location of Albuquerque Basin inside
Rio Grande Rift and general site of San Ysidro fault.
Total Magnetic Intensity (TMI) is gathered on 10
profiles. Every profile is 1650 m long. Distance interval is
50 m. In prior studies, the fault has been detected on
profiles. Therefore, we regard their results to evaluate

ability of wavelet transform to detect San Ysidro
fault. Tt is worth mentioning that continuous wavelet
transform have not been employed to detect faults.

Figure 13a shows total magnetic intensity on profile
A. According to the figure, changes of TMI are not
smooth. Figure 13b also illustrates wavelet transform of
TMI. In Fig. 13a, b 1s the vertical axis showing the scale.

Also, b is the horizontal axis showing the number of
data on the profile. Depth and horizontal location of the
fault are calculated by multiplying 50 (distance interval) in
the values of a and b of convergence point, respectively.
Since, we multiply 50 in the values of a and b, therefore,
small change in the value of a and b may lead to a large
changes in results.

Figure 13b, the amounts of a and b are -10 and 700,
respectively. This means the depth of fault is 500 and
horizontal location of fault 15 at 850 m. According to
Temezpprofs’s swvey, depth of the fault is 50 m and its
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Fig. 13:a) TMI measured on the profile and b) wavelet
transform of TMI shows the location of the fault

horizontal location is at 700 m. This difference 1s due to
the distance mterval. It is rational that distance interval 1s
an important factor to approximate also the depth of fault.
The results of wavelet transform are affected by noise.
Thus, to improve results we conduct upward continuation
filter on data to reduce effects of noise.

The data set 13 filtered by upward continuation to a
specific level to obtan a Fig. 14a. After upward
continuation, the number of output data was more than
the number of 1nput data and distance nterval decreased
to 126 m. Thus, upward continuation has two
advantages. First, it reduces noise effects and improves
final results. Second, distance interval decreases. So, error
in depth approximation decreases from 50-12.6 m. Figure
14b, shows coefficients of wavelet transform after upward
continuation. In this situation the coefficients of wavelet
transform are more precise. However, they are not linear
like coefficients of synthetic models. Linearity state in
only pertained to the isotropic magnetic source. In this
state, to find convergence pomt, curves should be
extended. We carried this out by inserting black points in
14 b. The amounts of a and b are -5 and 65, respectively.
These values indicate that the depth 153 63 m and
horizontal location is at 820 m. These results are close to
the results of Jemezpprofs’s survey (Hudson ef al., 1998;
Kearey et al., 2002).

In next step, by averaging the output of upward
continuation filter, distance interval was decreased from
12.6-6.3 to reduce error of calculated a and b. m this state,
the diagram of signal 1s similar to 14a, only number of data
15 doubled. Figure 14c 13 diagram of coefficients of
wavelet transform. According to Fig. 14c, values of a and
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Fig. 14: a) TMI continued to a surface above ground; b)
wavelet transform of continued data determines
location of the fault precisely and c) wavelet
transform of the average of continued data yields
more precisely the location of the fault

b are -10 and 125, respectively. These amounts are
corresponding to 63 and 790 m for depth and horizontal
location, respectively.

CONCLUSION

In this research we employed wavelet transform to
detect two synthetic models and San Ysidro fault in USA.
Wavelet spaces pertaining to these sources yield the
values of depth and horizontal location of targets. Results
of wavelet transform are more exact in homogenous
ambiences. Method utilized i this research, approximated
edge of synthetic models as well depth and horizontal
location of the San Ysidro fault. To reduce error in field
example, upward continuation filter was conducted.
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