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Abstract: In this study, we present a new search direction known as the CG-Broyden method which uses the
search direction of the conjugate gradient method approach in the quasi-Newton methods. The new algorithm
is compared with the quasi-Newton methods in terms of the number of iterations and CPU-time. The Broyden’s
family method is used as an updating formula for the approximation of the Hessian for both methods. Our
numerical analysis provides strong evidence that our CG-Broyden method is more efficient than the ordinary
Broyden method. Besides, we also prove that the new algorithm is globally convergent.
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INTRODUCTION

Quasi-Newton methods are well-known methods in
solving the unconstrained optimization method which
uses the updating formulas for approximation of the
Hessian. These methods were introduced by Davidon in
195% and later popularised by Fletcher and Powell in 1963
but the Davidon-Fletcher-Davidon (DFP) method is rarely
used nowadays. However, in 1970 Broyden, Fletcher,
Goldfarb and Shanno developed the idea of a new
updating formula, known as BFGS which has become
widely used and recently the subject of many
modifications. Then, Broyden (1970) proposed a family
of quasi-Newton methods i 1970. In general, the
unconstrained optimization problems are described as
follows:

min f (x) 0

Where:
RrR® = An n-dimensional Buclidean space
f: R*=R = Continuously differentiable

The gradient and Hessian for Eq. 1 are denoted as g
and G, respectively. In order to display the updated
formula of Broyden’s family, the step-vectors and are
defined as:

def

Sp = Xy T X
def (2)
Y =8, ) —8x,) =8, — &
The Broyden’s algorithm for unconstrained

optimization problem uses the matrices B; which is
updated by the equation:

T T
B,, =B, - L‘TskskBk + —y;(Yk + cj)k(sZBksk)vkvE (3)
5. B, Y, S ¥

where, ¢ is a scalar and:

v _|: Ve __Bysy :|
k T TB
S, ¥r  BpD8y

The choice of the parameter ¢ is important, since it
can greatly affect the perfomance of the method
(Xu, 2003). When mn Eq. 3, we obtain the DFP algorithm
and ¢, = O we get the BFGS algorithm. But Byrd and
Nocedal (1989) extended his result to ¢pe(0, 1) Based on
{Chong and Zak, 2001 ), the Broyden’s algorithm 1s one of
the most efficient algorithm for solving the unconstrained
optimization problem. Tt’s also well known that the matrix
By, is generated by Eq. 3 to satisfy the secant equation
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B 3, =¥, 4

which may be regarded as an approximate version of the
relation. Note that it is only possible to fulfil the secant
equation if:

)

8, ¥, >0

which 18 known as the curvature condition. Realising
the possible non-convergence for general objective
functions, some researchers have considered modifymng
quasi-Newton methods to enhance the convergence. For
example, Li and Fukushima (2001) modify the BFGS
method by skipping the update when certain conditions
are not satisfied and prove the global convergence of the
resulted BFGS method with a “cautious update™ (which 1s
called the CBFGS method). However, their numerical tests
show that the CBFGS method does not perform better
than the ordinary BFGS method. Then, Mamat ez al. (2009)
and Ibrahim et al. (2010) proposed a new search direction
for quasi-Newton methods in solving unconstrained
optimization problems. Generally, the search direction
focused on the hybridization of quasi-Newton methods
with the steepest descent method. The search direction
proposed by Mamat ef al. (2009) 1s d, =-nB'g, - &, where
N=>0 and &>0. They realised that the hybrid method is
more effective compared with the ordinary BFGS in terms
of computational cost. Hence, the delicate relationships
between the comjugate gradient and the BFGS method
have been explored in the past.

In this study, motivated by the idea of comjugate
gradient methods we propose a line search algorithm
for solving (1) where the search direction of the
quasi-Newton methods will be modified using the search
direction of the conjugate gradient method approach. We
prove that our algorithm with the Wolfe line search is
globally convergent for general objective function. Then
we test the new approach on standard test problems,
comparing the numerical results with the results of
applying the quasi-Newton methods to the same set of
test problems.

MATERIALS AND METHODS

Iteration method: The iterative method is used to solve
unconstrained optimization problems in order to get the
minimal value of the function where the gradient 15 0.
Hence, the iterative formula for the quasi-Newton
methods will be defined as:

(6)

Ky = Xy + 0 dy

where the a, and d, denote the step size and the search
direction, respectively. The step size must always have a
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positive value such that f(x) is sufficiently reduced. The
success of a line search depends on the effective choices
of both the search direction d, and the step size a,. There
are a lot of formulas in calculating the step size which are
divided into an exact line search and an nexact line
search.

The ideal choice would be the exact line search
formula which is defined as a, = arg min (f(x,ta.d,) ¢=0
but in general it is too expensive to identify this value.
Generally, it requires too many evaluations of the
objective function f and also its gradient g. The mexact
line search has a few formulas which have been presented
by previous researchers such as the Armijo (1966) line
search Wolfe (1969, 1970) conditton and Goldstein
(1965) condition. Shi (2006) claims that among several
well-known mexact line search procedures, the Armio
line search 1s the most useful and the easiest to implement
in the computational calculation. It 15 also easy to
implement it in programming like Matlab and Fotran.
The Armijo line search is described as follows. Given
g0, e (0, 1), o (0, 1) and o, :max{s, S?\, SKZ’ } such
that:

(7

fix,)—fix, +o,d, )= —oogld,

k=20 1,1, 2, 3, ..The reduction in { should be
proportional to both the step size and directional
derivative g;d,. The search directions are also important
in order to determine the value of f which decreases along
the direction. Moreover, the search direction of the quasi
Newton methods often has the form:

d, =-B/'g, (8)

where, B, is a symmetric and non-singular matrix of
approximation of the Hessian (Eq. 3). Initial matrix By 1s
chosen by an identity matrix which subsequently is
updated by an update formula. When d, is defined
by Eq. 8 and B, i3 a positive definite, we have
dig, =-giB'g, <0 and therefore d, is a descent
direction. Hence, the algorithm for an iteration method of
ordinary Broyden is described as follows:

Algorithm 1 (Breyden method):

Step 0: Given a starting point %, and By = L,. Choose values for s, [ and o
Step 1: Terminate if Jetx, 1)ﬂ<10—6

Step 2: Calculate the search direction by Eq. 8

Step 3: Calculate the step size a, by the Armijo Line Search Eq. 7

Step 4: Compute the difference §, =%, —%, andy, =g, — 8,

Step 5: Update B, by Eq. 3 to obtain By,

Step 6: Set k =k+1 and go to Step 1

A new search direction: In this study, researchers will
discuss the new search direction for the quasi Newton
methods which will be proposed by using the concept of
the conjugate gradient method. The search direction of
conjugate gradient method is:
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k=0
k=1

0 - {gk ©)
—g. +B.d,

where, P, is a coefficient of the conjugate gradient
method. So, the concept of the conjugate gradient
method’s search direction will be mmplemented mto the
new search direction as introduced by Tbrahim et al.
(2014). Therefore, the new search direction for the
quasi-Newton method known as the CG-Broyden method
18!

k=0
k=1

B _B;lgk

- (10)
_B;lgk +hd,

k

where, &, =ng;s,/81d,, mdne (0,1 with these considerations
mm mind we shall now propose the algorithim for the
CG-Broyden method as follows:

Algorithm 2 (CG-Broyden method):

Step 0: Given a starting point x; and By =1I,. Choose values for s, [ and o
Step 1: Terminate if st +1)”<10’6

Step 2:Calculate the search direction by Eq. 10

Step 3: Calculate the step size o, by Eq. 7

Step 4: Compute the difference s, =x,,, —x, and y, = g;,, — &,

Step 5: Update B, by Eq. 3 to obtain By,

Step 6: Setk =k+1 and goto Step 1

Based on Algorithms 1 and 2 we assume that every
search direction d, satisfied the descent condition:

grd <0 (11)
for all k=0. If there exists a constant ¢,>0 such that:
2
ggdk ¢ Hgk H (12)

for all k>0, then the search directions satisfy the sufficient
descent condition which can be proof in Theorem 3.2.
Hence, we make a few assumptions based on the
objective function.

Assumption:

¢ H;: The objective function is twice continuously
differentiable

* H,: The level set 13 convex. Moreover, positive
constants and exist, satisfying for all and where 1s the
Hessian matrix for

(13)

c Hz”2 <z F(x)z< c, Hz”2

for all zeR" and xel, where, F (x) is the Hessian matrix for

f:
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¢ H. The Hessian matrix is Lipschitz continuous at the
point that 1s the positive constant exists, satisfying

HG(X)—G(X*)HSCB HX—X*H (14)

for all x in a neighborhood of x*. If the iterates {x,} are
conwverging to a point x*, it 15 to be expected that y, 1s
approximately equal to G(x*)s,.

Theorem 1 (Byrd and its proof): Let {B,} be generated by
the BFGS Eq. 3 where B, is symmetric and positive defimte
and where vis, >0 for all k. Furthermore, assume that {s,}

and {y,} are such that:

e -6)s]

<E,
2

for some symmetric and positive definite matrix G{x*) and
for some sequence {€,} with the property T e <o
k=1 )

Then:

limH(Bk 7G*)dk” _
]

(15)

and the sequences [[B, [} or {HB;H} are bounded.

Theorem 2: Suppose that Assumption 1 and 2 hold.
Then, condition (Eq. 12) holds for all K=>0.

Proof: From Eq. 9, we see that:

ged, = g, Bl'g, —Ngd,
gggk

gzqu

=g, Bg, N g, d,

and using the cauchy inequality we get:

ged, <-g;8,8, —Ng,8,
<=8, e[ -l

<ol

which 13 bounded away from

12 holds and the proof

where, ¢ =-(3, +n)
Hence, Eq.
completed.

Zero. 1s

Lemma 1: Under assumption 1, positive constants ¢, and
w exist such that for any x, and any dwith gd, <0 the
step size a,, produced by Algorithm 2 will satisfy either:
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T 2
fix, +o,d )~ 1, <—c, 7(‘%“(1“2) (16)
[
Or:
fix, + o d ) —f, <cg.d,
Proot:

Suppose that a,<1 which means that (Eq. 7) failed for step
size a’<a/T;

f(x, +od, ) —f(x, ) <wag.d, (17

Then, using the mean value theorem we obtain:
F(%,0 )~ () =8 (X —X,)

where, E=Vi(X) for some Xe(x,,x.,). Now, by the

Cauchy-Schwartz inequality, we get:

gT(XkH -X,) :gT(XkH —X )+ (g — 8 )T (Xpyy —X)
:gT(Xk+1 “X ) Hg*ng(an —X,)

<gi (X, —X “”an —X H2

<g"(a'd,) +u(a’d])’
Thus from H,:
(w-1)a'gid, <a'(g —g,) d, <M@'|d,[
which implies that:

.
a, =1a >l Jm)LdK

Substituting this mto Eq. 17, we have:

f(x, +00d, )~ f(x,) e, gkd

where, ¢ =®l-®)M which gives Eq. 16.

Theorem 3 (Global convergence):
Assumption 1 and Theorem 1 hold. Then:

Suppose that

lim|g, | =0

Proof: Combining the descent property (Eq. 12) and
Lemma 1 gives:

34

”ng
5 ()
fJa
Hence, from Theorem 3 we can define that

ldy|l< =¢, |g, |- Then, Eq. 18 will be simplified as:

Yl <=
k=0

Therefore, the proof is completed.
RESULTS AND DISCUSSION

Numerical result: In this study, researcher use a large
number of test problem considered by Andrei (2008) and
More et al. (1981) in Table 1 to analyse the improvement
of the CG-Broyden method with the Broyden method.
The dimensions of the tests range between 2 and 1,000
only.

The comparison between Algorithm 1 (Broyden) and
Algorithm 2 (CG-Broyden) uses the cost of computation
based on the number of iterations and CPU-time. As
suggested by More er al. (1981) for each of the test
problems, the initial point will take further away from the
minimum point X, and we analyse three of initial points of
each of test problems. In doing so, it leads us to test the

Table 1: A list of problem finctions

Test problem

N-dimensional

Sources

Powell badly scaled

2

Moreef al. (1981)

Beale 2 More et al. (1981)
Biggs exp6 6 Moreef al. (1981)
Cheby quad 4,6 More et al. (1981)
Colville polynomial 4 Michalewicz and Hartley
(1996)
Variably dimensioned 4,8 More et al. (1981)
Freudenstein and Roth 2 Moreef al. (1981)
Goldstein pricepolynomial 2 Michalewicz and Hartley
(1996)

Hirmmelblau 2 Andrei (2008)
Penalty 1 2,4 More et al. (1981)
Extended powell singular 4, 8 Moreef al. (1981)
Extended rosenbrock 2, 10, 100, 200, Andrei (2008)

500, 1000
Trigonometric 6 Andrei (2008)
Watson 4,8 Moreef al. (1981)
Six-hump camel back 2 Michalewicz and Hartley
polynornial (1996)
Extended shallow 2, 4,10, 100, 200,  Andrei (2008)

500, 1000
Extended strait 2,4,10,100, 200, Andrei (2008)

500, 1000
Scale 2 Michalewicz and Hartley
polynomial (1996)
Raydan 1 2,4 Andrei (2008)
Raydan 2 2,4 Andrei (2008)
Diagonal 3 2 Andrei (2008)
Cube 2, 10, 100, 200 More et al. (1981)
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Fig. 1: Performance profile in a log,, scaled based on iteration
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Fig. 2: Performance profile in a log,, scaled based on CPU time

global convergence properties and the robustness of our
method. For the Armijo line search, weuses =1, =0.5
and 0 = 0.1. In our implementation, the programs are all
written in Matlab. The stopping criteria that we used in
both algorithms are |g(x )| <107 The Euclidean norm is
used m the convergence test to make these results
comparable. The performance results will be shown in
Fig. 1 and 2, respectively using the performance profile
mtroduced by Dolan and More (2002). The performance
profile seeks to find how well the solvers perform relative
to the other solvers on a set of problems. In general P(t)
1s the fraction of problems with performance ratio T thus,
a solver with high values of P(T) or one that 1s located at
the top right of the figure is preferable.

Figure 1 and 2 show that the CG-Broyden methoed has
the best performance since it can solve 91% of the test
problems while the Broyden method only solve 86%.
Moreover, we can also say that the CG-Broyden method
15 the fastest solver on approximately 76% of the test
problems for iteration and 79% of CPU-time. Therefore,
the CG-Broyden method i1s better m solving the
unconstrained optimization problems compare to the
original Broyden method.
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CONCLUSION

We have presented a new hybrid method for solving
unconstrained optimization problems. The numerical
results for a small dimension of test problems show that
the CG-Broyden method 1s efficient and robust in solving
unconstrained optimization problems. The numerical
results and figures from the programming are reported
and analysed to show the characters of the proposed
method.

RECOMMENDATIONS

Our further interest is to ty the CG-Broyden
method with the coefficient of the comjugate gradient
methods Fletcher and Reeves (1964), Hestenes and
Steifel (1952) and Liu and Storey (1991) coefficient for

B
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