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Designing a Variable Step Size For the Successful Implementation of
P(EC)" and P(EC)"E Mode
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Abstract: The successful implementation of P(ECY* and P(EC)"E mode otherwise known as block
predictor-corrector methodsis solely dependent on the principal local truncation error of both predictor and
corrector methods of the same order. The development of this platform is built on formulating a class of P(EC)*®
and P(EC)"E mode that possesses the same order but different k-step. Nevertheless, designing of a variable step
size on P(ECY* and P(EC)"E mode attracts a lot of computational benefits which guarantees convergence, step

size control, tolerance level and error minimization.
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INTRODUCTION

Tmagine that there is a need to evaluate the standard
initial value problem by an implicit multistep method. So
then at each step of evaluation for y,,, the implicit system
1s stated as:

k-l

1
Voot EotijJ =hB, f (X, + Vo)t hz Bf,. 1

=0 =0

Commonly, this is carried out by the fixed point iteration:

k-1 k-l
Yo+ XY B (XY ) TR, (o)

j=0

vl arbitrary, v =0,1,...

which by h<1/(|p,JL|) will converge to the unique solution
of Eq.1 with the understanding that:

1

"R

Where, L 13 the Lipschitz constant of f with regards to
y. For non-stiff problems, this limitation on h is not very
important; in practical application, circumstances of
accuracy position a majorly more protective restraint on
h. Though Eq. 2 will converge for discretional y",,,, a
piece iteration requests for single appraisal of the function
f and computing can evidently be preserve if there is
estimable hypothesis as potential for y”,.,. This is done

in a convenient manner by utilizing a distinguish explicit
multistep method to supply the initial hypothesis
g

Thusly, the explicit method, the predictor and the
implicit method the corrector, the two umtedly constitute
a predictor-corrector pair. This tums out to be vantage in
possessing the predictor and corrector of the same order
which ordinarily means that the stepnumber of the
predictor has to be peachier than that of the corrector.
Preferably than address the ramification of possessing
two distinct stepnumbers as sited in (Lambert, 1973,
1991).

According to Dormand (1996), it is very important
that a numeric process shall obtain dependable solutions
to differential Equations. The practical application of
step size control established on local error estimates has
departed a long way towards achieving this target.
Numerous trial problems do give global errors relative to
defined local error tolerance and thus, in virtually
pragmatic examples, there may be sure-footed of the
elongation of this property. Not with standing in some
positions, it 1s favourable to have a straight estimate of
the global error of the numeric solution. Virtually numeric
analysts consider this as cumbersome and/or a
computational costly process.

More methods have been formulated to offer global
error estimation. A distinctive procedure, frequently
adopted when local error control i1s apply 1s named
tolerance reduction. This relies on the presumption of
tolerance proportionality being rectify. Resolving the
differential equations above the sort after interval, a novel
solution 18 found employing a reduced or mcreased
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tolerance. The variance in the solution, acquired at like
points can be utilized to estimate global
Subsequently changing step-sizes do not eventually give
corresponding result pomts 1f not dense result s used the
technic is sometimes practiced rather inexpertly. All the
same the technic 1s rather effectual for non-stiff systems.
A more taxonomic approach is the classical Richardson
extrapolation scheme which demands a second solution
with halved or with double step-sizes. This method is
reasonably dependable but pricy.

Peradventure the most dependable procedure for
global error computing is established on a parallel
solution of an associated system of differential equations.
These are built to possess a solution met by the real
global error of the principal system of equations
(Dormand, 1996). Moreover, for sensible convergence of
computing methods, the differential equation problem:

CITOT.

¥y (x) =f(xy), y@=axe[a bl 3)
and f:RxR™ - R"™

Must possess a unparalleled solution. Therefore, the
assumptions 18 adopted as stated below. The
computational solution to 1s mostly written as:

Zj:laiynﬂ = hz::I Bifnh (4)

where, the step size 15 b, o =1,¢a,1=1, .7, [ are
unknown constants which are uniquely fixed such that
the formula 1s of order j as discussed in (Akinfenwa et al.,
2013; Oghonyon et al., 2015 a, b). According to Lambert
(1973, 1991) a solution to 1s sought after and assume that
feR 1is sufficiently differentiable on x €[a, bland satisfies
a global Lipchitz condition, i.e., there is a constant .0

such that:

, Vv, yeR

‘f(x, y)—f(x,?)‘ <Lly-y

Under this presumptuousness, FEq. 3 assured the
existence and uniqueness defined on x € [a, b] as well as
regarded to fulfill the Weierstrass theorem, see for
example (Gear, 1971; Lambert, 1973; Xie and Tian, 2014) for
details. Where a and b are finite and y* [y, v%,, ...,
yO 'fori=0(1)3 and f= [f, £, ..., ], originate in real life
applications for problems in science and engineering such
as fluid dynamics and motion of rocket as presented by
(Mehrkanoon et al., 2010).

MATERIALS AND METHODS

Definition (global error): The global error of the numeric
solution is specified as:

£, =V, -y(x,).n=01_,N (5)

and a numeric procedure for resolving is said to be

convergent if:
lim [mm{ Ie.| ) 0
h—0

O=n=H

Thusly, in a convergent procedure, the global error
will mcline to zero together with the step size. From a
pragmatic viewpoint, this connotes that the global error
will decreased as the step size is decreased (Dormand,
1996).

Definition (local trumncation error): Assuming the
numeric method (one-step method) has an increase
equation:

Yout = Yo THOGK, ¥, T

which may be put into new order as:
0=y, h (. ¥, h)- ¥,

This equation is not fulfilled by replacing the
differential equation’s analytic solution value y (x,) for
y, and the variance 1s specified to become the local
truncation error:

t., =y(x,) +h¢(xn, y(x,), h) -y (%)

So, therefore the local truncation error is the measure
by which the analytic solution runs out to fulfil the
numeric formula. The local truncation error, or numerical
error of a mumeric method is used in the analysis of the
global error of the procedure. Nevertheless, a more
pragmatic measure from a computing viewpeint is the
error per step or local error (Dormand, 1996).

Agreemng with (Uni and Linda, 1998) like the
Runge-Kutta methods errors arrived at each step are often
not difficult to approximate than the global error. Hence,
even if the global error is more significant, the local
truncation error 1s the one that general-purpose multistep
ciphers normally approximate in order to control the
step size and to determine the order of the method to be
used. The local truncation error 1s associated to the local
error by:

+o(n*"))=[1,| (1+ O(h,))

h, (|d,

Hence, to control the local error, multistep ciphers
attempt to estimate and control h, d,. In the practical
application of the multistep method, selecting a suitable
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value for the steplength is the most cumbersome problem.
A limit for the global truncation error does not, n general,
supply enough basis for selecting h. Rather, the idea of
discovering an interval for h which ascertamns that the
global truncation error does not mcrease in a defimte
sense. All the same it 15 very important to select h such
that the local truncation error 1s satisfactorily small. The
practical application of a limit for the local truncation error
is  confounded by the pragmatic difficultness of
determining a limit for |y*"" (x)|. Moreover, the usage of
predictor-corrector method in a suitable mode can avert
estimating higher derivatives by applying Milne’s device
to approximmate the principal local truncation error.
Employing the step-control policy: the step length h will
be selected such that:

*  The principal local truncation error as approximated
by Milne’s device stays at each step less thana
pre-assigned tolerance (stopping criteria)

¢« H rests within an interval of absolute or relative
stability and

¢ The condition h <1/L|B,| is met

The step-control policy might anticipate for a
reduction or allow an increment in h as the computing
continues (Lambert, 1973, 1991). Hence, from the above
defimitions and demonstration, desigming a variable step
size for the successful implementation of P(EC)® and
P(EC)"E mode necessitates that some touchstones must
be gratified to assure the execution of this method as sited
in (Dormand, 1996; Lambert, 1973, 1991 ). Therefore, the
principal objective of this study will be to design a
variable step size for the successful implementation of
P(ECY" and P(EC)"E mode for solving ODEs.

The residuum of this study is hatch out as
follows: m p(EC)™ and p(EC)"E mode wnplementations.
The local truncation error of predictor-corrector
mode. Estimation of P(EC)* and P(EC)"E mode. Lastly,
displays  concluding notes as  interpreted in
(Akinfenwa et al., 2013).

PEC)" and P(EC)"E mode implementations: The
predictor-corrector pair 1s:

i¥ari = BJ et

E
O Yaey = 2 BJ n+j

1=0

S
- (6)
e
j=0

There are different ways or modes in which the Eq. 6
can be applied. First, utilize the predictor to provide the

initial guess y™,., then permit the looping to continue till
convergence 1s attained (in practical applications some

criterion comparable ||y"*" . +v™,..|<€. Where, € is of the
order of round-off error is met). This is called the
mode of correcting to convergence. In this mode, the
predictor represents a very auxiliary role and the local
truncation error and stability characteristics of the
predictor-corrector pair are those of the corrector
exclusively. Nevertheless, this mode 1s unattempting in
practical applications because one cannot assure ahead
the looping numbers of the corrector and thus the
numbers of function evaluations will be needed
at each step.

A practically more satisfactory process is to express
ahead the numbers of looping of the corrector are to be
allowed at each step. Ordmnarily this number 15 small,
commonly 1 or 2. The local truncation error and stability
characteristics of the predictor and corrector method in
such a bounded mode depend on both the predictor and
the corrector. A reliab mnemonic for depicting modes of
this form can be built by applymg P and C to indicate
single application program of the predictor or corrector
respectively and P to represent single evaluation of the
function f given x and y. Presuppose the predictor is
employ to appraise y"..,, appraise f",,, = f(X ... Vo) and
then use Eq. 2 at cne time to get y"'!.,. The mode is then
named as PEC. When the looping is done a second time
to incur y¥. which apparently implies the advance
evaluation 1" ,, = f(x,..., y'L.,) then the mode is depicted
as PECEC or P(EC). There is cne father conclusion to
malke. At the final of the P(EC)” step obtain a value y*%,,,
for y.., and a value £, for f{x..,, y.s). There is a choice
to modify the value of f by making a farther
evaluation 9, = f(x,.,, y¥,..) the mode will then be
reported as P{EC). The two categories of modes P(EC)™
and p(EC)"E can be spelt as a single mode p(EC)"E"
where m 15 positive mteger and t = 0 or 1 and specified by
p(EC)"E"* P

k-1
n+k 2 ]y[nn:]j = hz B]fl’ET] g
1=0

fn+k =f ( n+k=YE1v+]k)

v=0,1

(BEC)" .y + E oy = =0,1,...,m—1

k-1
h B £ + hz ijnlf] g
1=0

(7
ET _f( n+k’y£1n+]-]k)

if t = 0. Instead, the predictor and corrector may be
composed as:
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p*(E)y, =hc*(E)f, .p(E)y, =ho (E}f,

respectively, where p’, p and ¢ possess degree K and ¢’
owns degree K-1 at most. With this notational system, the
mode P(ECY™ E"* may be redefined as P:

Byt J{p (E) ]ynm] =ho* (E)fﬁmﬁ]

B0 = f (%, E5YY)
(ECY" Byl +| p(E)-E* [y = v=0,1,..,m-1

(8)
E(l—t) Ekf{Em] _ f ( . Eky[m )

if t = 0 (Lambert, 1973, 1991).

Theorem: Let {Y™ _ } be a sequence of approximations of
Y .., obtammed by a PECE method if:

of

@ (Xn+1’y) S L

(for all Ynear Y, including Y., Y™ .,..) where T,
satisfies the condition L<1/hp,| then the sequence
£YM L} converges to Y.,

Proof: The numeric solution satisfies the Equation:

Yn+1 :E::U OL1Yn+1 +h Buf( n+1=’Yn+1 +h211 61 n+i

The corrector satisfies the equation:

(m+1) _ 1 (m)
yn“;l 21: C“"'Ynﬂ +h Bﬂf( n+1’ynn:-1)+

by, AL,

Subtracting these two equations to obtain:

yn+1 ysﬁ;l) hBU Hf (Xn+1’yn+1)_f( n+1’y1(1n3)

]

Applying the Lagrange mean value theorem to arrive at:

Yae1~ Yr(wlﬂj =h BD (Ynﬂ Yr(wi)a_y(xmp y*)

where y™,,,<y"<y,.,. Thus:

vy
n+l n+l ay

Yan _yim+1) S|h Bu

)

(m) ()}

ﬁhL|Bg‘Yn+1 2+l |:hL|Bn[| ¥ou " Yan
Now:
lim|y,,,— yaii”| =0
m—eo

il hL|Bl<1 or L=<1/h|B;|. This means that the conclusion of
Theorem 2.1 holds as seen in (Jain et al., 2007).

RESULTS AND DISCUSSION

The local truncation error of predictor-corrector mode:
Assume the predictor-corrector pair is implemented in the
mode of correcting to convergence then the local
truncation error 1s distinctly that of the corrector
exclusively. Suppose the pair is employed in P(EC)"E"
mode t = 0, then the local truncation error of the corrector
will be contaminated by the that of the predictor. This
necessitate the investigation of this contamination.

If the predictor and corrector defined by Eq. 6
possess associated linear difference operators L' and L,
orders P' and P and error constants C"W1 and C_,,
respectively Established the loealizing premise y*., =
¥(Xui), ] =0, ..., k-1 and suggest by y_,; estimations to y
at X y1e1ded When the localizing premise 15 effective.
Also, presume that y(x)eC*"! where ~p = max (p, p). It
then implies that:

L* [y(X);h] = C%Hhﬁﬂy(ﬁnj (x)+ O(h;”)
L* [y(X);h] = C%thﬂy(pnj (x)+ O(h**)

©)

For the predictor:

Z_ (IJ*Y(XH+J) = hZ B: (Xn+J’Y(Xﬂ+J))+ L[Y(Xn)lh]

(10)
And:

YrETk +EOLJYrET] hZBf(XnHYrET]t )

On subtracting and using localizing premise with
Eq. 9to get:

Y ()Y~ 1 P () o) AD)

10
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Because the predictor-corrector pair is  being
employed in P(EC)"E'* mode as specified by Eq. 8 the
Equations for the corrector, agreeing to Eq. 10 are:

k-l

o (5, ) 13 BF (5 Ly (5,)0]

=0

And:
—[w+1] —[v]
Yark + E (1 n+] =h Bk ( n+k>Yn+k) +
k1 g
hz ayf (Xn+j, i )V 0,1,...m-1
=0
Again on subtracting and utilizing localizing

premise to obtain:

—[v+]

—¥
y (Xn+k) Yn+k

i

4 of e
Ly GrbH]= B2 (om) ¥ (5L
C,, 1y (x x,)F0(R*?),v=01,.m-1
(12)

Thusly what succeeds relies on the relative
magnitudes of P* and P. Firstly,view the case P':P.

Replacing Eq. 11 into 12 with v = 0 to arrive at:

—

Y( n+k) Yo —C e

L () o (1)
This reflection for ¥(x )_*[” can instantly be replaced
into Eq. 12 with v = 1 to havé”

—[2] +
Y(Xn+k) T ¥ T p+1 Ly 1 y(P“) (Xﬂ) +O(hp+2)

Proceeding in this fashion to observe that:

—m]

Y( n+k) Yo —C e

1 () 0 1)

Hence, if p'zp, the Principal Local Truncation Error
(PLTE) of the P(ECE" mode is for allm =1 incisively that
of the corrector exclusively. Forth with study the case
p’ = p-1. On replacing Eq. 11 and 12 with v = 0 to
immediately find that:

|, O o .
Y(Xnm)'ymk = Bkgy G );p) (Xn)+cp+1 he fp ! (Xn) " JrO(hp 2)

11

Therefore, if m =1 that is assume the mode is PEC E'*
the PLTE is not the indistinguishable with that the
corrector, merely the order of the PC method is that of the
corrector. Moreover, on consecutive replacing into Eq. 12
to observe that form =2:

Y( n+k) yn+k _c hpﬂ y(pH) (Xn)+0(hp+2)

and the PL.TE of the PC method turns that of the corrector
exclusively. Right away the case p’ = p-2. Putting Eq. 11
into 12 together with v = 0 to obtain:

—lv]

af . .
Y( n+k) Yo = Bk_cpfl hf

o yle ) (x,)+0 (h"”) (13)

Hence if m = 1 the order of the PC method is entirely
p-1. Again, putting Eq. 13 into 11 with v =1 yields:

"

p+1

—\2
of (1)
%} Gy he* 0 (1)
hp+1 yp+1 (Xn)

—[2]
Y( n+k) Yore =

and thus for m = 2 the order of the PC method 1s that of
the corrector only the two PLTEs are not exactly alike.
Farther consecutive replacing into Eq. 11 demonstrate that
for m=3:

C th

Pl }APH) (Xn)+0(hp+2)

Y( n+k) yn+k

and the PLTE is that of the corrector solely. Tt is instantly
obvious that the order and the PLTE of a PC method rely
on the gap within p’ and pand on m the amount of times
the corrector 18 named. In distinction from others:

»  Ifp'spiorp'zp withm=p-p") then the PC method and
the corrector possess the same order and the same
PLTE as the corrector

» Ifp'<pandm = p-p’ then the PC methed possess the
same order as the corrector but different PLTE

» If p'<p and mzp-p’-1 then the PC method possess
the same order equal to p'+m (thus less than p)

Specifically, 1t 13 observe that suppose the predictor
has order p-1 and the corrector has order p, the PEC
answers to get a method of order p. Moreover, the p(EC)™
or p{(EC)"E scheme has always the same order and the
same PLTE as discussed in (Lambert, 1973; 1991;
Quarteroni et al., 2000).
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Estimationof P(EC)"and P(EC)"E mode: Following (Faires
and Burden, 2012; Lambert, 1973; Lambert, 1991,
Oghonyon et al., 2015):

¢ Predictor-corrector techniques always bring forth two
approximations at apiece step thus, they are natural
prospects for error-control adaptation

* To illustrate the error-control procedure a variable
step-size predictor-corrector pair expending k-step
explicit Adams-Bash forth method as predictor while
the k-1-step implicit Adams-Moulton method as
corrector methods are constructed

Firstly, the k-step predictor Local Truncation Error
(LTE) 1s:

Cp ¥ (1]

Y () Wi (14)
h

Secondly, the k-1-step cormrector Local Truncation
Error (LTE) 1s:

= (15)

t, 1 —W° =
Y( 1+121 i+l 0y y(5) (M)h4

Where the k-step predictor and k-1-step corrector
methods use this presumption such that the estimations
W, W ..., W, are all exact, W*, and W*, represents the
predicted and cormrected estimations given by the k-step
predictor and k-1-step corrected methods. To advance,
the presumption that for small values of h 1s establish to

arrive at:
¥ () =y (;) (16)

The potencyof the error-control techmque relies now
on this presumption. On subtracting Eq. 14 from 135 and
merging the local truncation error estimates to get:

co_
141

h

W ~C,, y(s) (Z)h4 (17)

Therefore, decimating the term involving y@(i)w in
Eq. 15 obtains eventually the following approximation
to the k-1-step corrector LTE:

3 P

(18)

i+l i+l

h

(h)»cp‘rl ‘ <&

|Ti+1

Equation 18 1s Adam’s estimate for correcting to
convergence which 1s bounded by a prescribed tolerance
e otherwise known as stopping criteria. Moreover, the
error estimate Eq. 18 is utilized to determine whether to
admit the results of the current step or to redo the step

12

with a smaller step size. The step is admitted based on a
test as reported by Eq. 18 as sited in (Un and Linda,
1998).

The Harmomnizing (Un and Linda, 1998; Ibrahim et ai.,
2007) varying the step size is very essential for the
effective performance of a discretization method. Step size
adjustment for k-step predictor and k-1-step corrector
block multistep methods applying variable step has been
stated previously earlier. On the given step, the user will
supply a prescribed tolerance. In the block multistep,
variable step-size strategy codes, the block solutions are
accepted 1f the local truncation error, LTE 1s less than the
prescribed tolerance. Suppose the error estimate is greater
than the accepted prescribed tolerance, the value of T, is
rejected, the step is repeated with halving the current step
size or otherwise, the step 18 multiply by 2.

Furthermore, Eq. 18 insures the convergence criterion
of the method during the test evaluation. Fmally, a
mumber of approximation presumptions have been
constructed in  this development, so m practical
application, a new step size (gh) is chosen conservatively,

often as:
1
e 4
gh=| ———
2‘Wf+1 - W1p+1

Noting that w%,#w',,. Equation 19 is used in
determining a new step size for the method.

(19)

CONCLUSION

Designing a variable step size for the successful
implementation of P(EC)™ and P(EC)"E mode have been
studied. Block predictor-corrector pair is a compendium of
Adams family of the predictor-corrector pair which can be
executed in P(ECY" and p(EC)"E mode as presented above
in (Dormand, 1996; Faires and Burden, 2012; Lambert,
1991; Un and Linda, 1998). All of these sited above
favoured the designing of a variable step size for the
successful implementation of block predictor-corrector
pair for solving nonstiff ODEs.

Moreover, designing a variable step size for the
successful implementation of P(EC)Y* and P(ECY*E mode
possesses the same order thus, necessitate that the
stepmumber of the predictor to be one step greater than
the corrector method. Again, the PLTE of both the
predictor-corrector pair are considered in the development
for properexecution and evaluation of the max errors.

In addition, the implementation is achieved with the
support of the convergence criteria (stopping criteria).
This convergence criteria decide whether the result is
admitted or not as discussed mn (Ibrahim ef al, 2007).
Finally, the implementation of this method comes with
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many computational advantages as mention previously in
(Dormand, 1996; Faires and Burden, 2012; Gear, 1971,
Oghonyon et al., 2015a, b).
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