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Abstract: DNA computing is new research areas in biology science and information science separately. The
essential characteristic of it 1s the massive parallel of obtaining and managing mformation. It has been
evidenced that DNA computing can solve those problems which are currently intractable on event the fastest
electronic computers. The degree-constrained mimmum spanning tree 1s an important problem 1n graph theory
and it is an NP-complete problem. In this study, we present a algorithm for solving degree-constrained minimum
spanning tree problem based on sticker model in DNA computing. The study finds all sparming trees of given

graph and minimum spanning tree of given graph.
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INTRODUCTION

There are 2 reason for using molecular biology to
solve computational problems:

* The mformation density of DNA 18 much greater
than that of silicon: 1 bit can be stored in
approximately one cubic nanometer. Others storage
media, such as video tapes, can store 1 bit in 10"
cubic nanometer.

¢ Operation on DNA are massively parallel: a test tube
of DNA can contain trillions of strands. Each
operation on a test tube of DNA is carried out on all
strands in the tube in parallel.

Research m this area was started by Adleman (1994)
when he surprised the scientific community by using
the tools of molecular biclogy to solve a hard
computational problem. Adleman's experiment, solving
an instance of the directed Hamiltoran path problem
solely by manipulating DNA strand, marked the first
mstance of a mathematical problem being solved by
biological means.

One of the major achievements of computer science
in the last two decades is to understand that many
important computational search problems are NP-
complete, taking minimum spanning tree problem into
consideration, thus are unlikely to have efficient algorithm
implemented on silicon-based computer science. Adleman
solved one 7-vertex instance of the Hamiltonian path
problem, a well-known representative of NP-complete
problems, the major goal of subsequent research in

DNA computing area is to develop new techniques to
solve NP-complete problems that cannot be solved by
current electronic computers in a reasonable amount of
time. NP-complete problems are those problems for which
no polynomial-time algorithm whose worst-case run time
1s o(n) for some constant k, where n is the size of the
problem.

WHAT IS DNA?

Before delving into the principles of DNA computing,
we must have a basic understanding of what DNA
actually is.

DNA (Deoxyribonucleic Acid) is a double stranded
sequence of 4 nucleotides;, the 4 nucleotides That
compose a strand of DNA are as follows: Adenine (A),
Guanine (G), cytosine (¢) and Thymine (T), they are often
called bases . The chemical structure of DNA (the famous
double-helix) was discovered by James Watson and
Francis Crick i 1953. It consists of a particular bond of
2 linear sequences of bases. This bond follows a property
of complementary: Ademne bonds with Thymine (A-T)
and vice Versa (T-A), Cytosine bonds with Guanine {(C-G)
and vice versa (C-G). This is known as Watson-Crick
complementary. Each DNA strand has 2 different ends
that determine its polarity: The 3' end and the 5' end. The
double helix is an anti-parallel (2 strands of opposite
polarity) bonding of 2 complementary strands. In recent
years, many techniques have been developed in order
to study and mampulate DNA in a lab, for various
biological applications (Amos et al., 2002, Yeh et al,
2005; Guo et al., 2004).
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PROBLEM DESCRIPTION

A spanning tree in a graph G is a minimal subgraph
comnecting all the vertices of G. If graph G 1s a weighted
graph (i.e., if there is a real number associated with each
edge of G3), then the weight of a spanmng tree T of G 1s
defined as the sum of the weights of all the branches in T.
In general, different sparming trees of G will have different
weights. Among all the spanning trees of G, one with
smallest weight 1s of practical significance (Fig. 1). There
may be several spanning trees with the smallest weight;
for instance, i a graph of n vertices in which every edge
has unit weight, all spanning trees have a weight of n-1
units. A spaming tree with the smallest weight in a
weighted graph is called a Minimal Spanning Tree (MST)
(Deo, 2005).

Degree-constrained MST (de-MST) problem is to
find a mimimal spanmng tree which contain no edges of
degree greater than d (d is a constant). In general, the
problem may be stated as follow: Given a weighted
connected graph G, find a minimal spanning tree T in G

such that:
d{v,)<d forevery edge ¢, in T

This problem 1s NP-complete, because the Hamilton
path problem which is NP-complete, is a special case
of de-MST with d = 2 and all edge weights identical
(Papadimitrion and Steightz, 2003).

FINDING ALL SPANNING TREES

The goal in this study, is to determine all
spanning tree of graph G. To achieve this goal,
initially we introduce study by the operations and
procedures which has been used in this section cited from
(Adleman, 1998):

Polymerases: Polymerases copy information from one
molecule into another. For example, DNA polymerase will
malke a Watson-Crick complementary DNA strand from a
DNA template. In fact, DNA polymerase needs a “start
signal” to tell it where to begin making the complementary
copy. This signal 1s provided by a primer -a (possibly
short) piece of DNA that is annealed to the template by
Watson-Crnick complementarities. Wherever such a primer-
template pair is found, DNA polymerase will begin adding
bases to the primer to create a complementary copy of the
template.

Ligases: Ligases bind molecules together. For example,
DNA ligase will take to strands of DNA in proximity and
covalently bond them into a single strand. DNA ligase
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is used by the cell to repair breaks in DNA strands that
occur, for instance, after skan cells are exposed to
ultraviolet light.

DNA synthesis: Tt is now possible to write a DNA
sequence on a piece of paper, send it to a commercial
synthesis facility and in a few days receive a test tube
containing appreximately 10" molecules of DNA, all
(or the least most) of which have the described sequence.
Currently sequences of length approximately 100 can be
reliably handled in this manner.

Gel electrophoresis: This is not stolen from the cell. A
solution of heterogeneous DNA molecules 1s placed in
one end of a slab a of gel and a current is applied. The
negatively charged DNA molecules move toward the
anode, with shorter strands moving more quickly than
longer ones. Hence, this process separates DNA by
length. With special chemicals and ultraviolet light, it is
possible to see bands m the gel where the DNA molecules
of various lengths have come to rest.

Now, the following algonthm must be used to find all
spanning trees of graph G-

1. Generate a set of random paths through the graph G.

2. For each path in the set:

a. Check if that path passes through exactly n
vertices. If not, remove that path from the set.

b. For each vertex ,check if that path passes
through that vertex. If not, remove that path from
the set.

3. If the set 1s empty, then report that there 1s not a

spanning tree. Otherwise, introduce spanning

trees.

This 1s not a perfect algorithm; nevertheless, 1f the
generation of paths is random enough and the resulting
set large enough, then there 1s a high probability that it
will give the correct answer.

To simply the discussion here, consider the
graph on Fig. 1 ,which contain just 7 vertex linked by
12 edges.

We must begin by assigning a random DNA
sequence to any vertex which made of 8 nucleotide

Fig. 1: Seven vertex linked by 12 edges
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Table 1: A random DNA sequence to any vertex

Vertices DNA name Complement

v ACTTGCAT TGAACGTA
V, TCTAGGCC AGATCCGG
Vs GCTATGAC CGATACTG
Vi TCGGACTG AGCCTGAC
Vs GCAGTACC CGTCATGG
Vs GGCTATTC CCGATAAG
Vs TCAGITCG AGTCAAGC

(Table 1). For show edge's of graph G, we use 2 sequence
of nmuclectides, for example suppose two end vertices
of edge V|V, are vertices 1,2, two sequence defined
following:  First
concatenating first 4 nucleotide of vertex 1 and second 4
nucleotide of vertex 2 and 2nd sequence is constructed

sequence is constructed from

from concatenating second 4 nucleotide of vertex 1 and
first 4 nucleotide of vertex 2.

Recall that each strand of DNA has its Watson-Crick
complement. Thus, each vertex has its complementary
DNA name. V, complementary name becomes, for
instance, TGAACGTA.

After working out these encoding,
synthesize the complementary DNA vertex names and the
DNA edge names (As is turmed out, the DNA city names
themselves were largely unnecessary) we must take a
pinch (about 10" molecules) of each of the different
sequence and put them into common test tube. To begin

we  must

the computation, we simply added water-plus ligase, salt
and a few other ingredients to approximate the condition
mside a cell. Altogether only about one fiftieth of a
teaspoon of solution was used We will achieve the
answer 1n about one second.

To see how, comnsider what transpires in the tube.
For example, the edge V,V, (GCAGTCGG) and the
complementary name of V, (AGCCTGAC) might meet by
chance. By design, the former sequence ends with TCGG
and the latter starts with AGCC. Because these
sequences are complementary, they will stick together. Tf
the resulting complex now encounters the edge V,V,
(ACTGGGCT), 1t ,too ,will jomn the complex because the
end of the former (TGAC) 13 complementary to the
beginmng of the latter (ACTG). In this manner, complexes
will grow in length, with DNA name of edges splinted
together by complementary DNA vertex names. The ligase
m the mixture will then permanently concatenate the
chains of DNA name of edges. Hence, the test tube
containg molecules that encode random paths through
the different vertices.

Notice also that all the paths were created at once
by the simultaneous interactions of literally hundreds
of trillions of molecules. This biochemical reaction
represents enormous parallel processing.
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Unfortunately, although we hold the solution in my
hand, we also hold about 100 trillien molecules that
encoded paths that were not tree. These have to be
elimnated.

We must use gel electrophoresis to identify those
molecules that have the right length (in the our example,
a length of 48). All other molecules must be discarded.
This complete step Za of the algorithm.

To check the remaining sequences for whether their
paths passed through all the vertices, we take advantage
of Watson-Crick annealing in a procedure called affimty
separation. This process uses multiple copies of a DNA
“probe” molecule that encodes the complementary name
of a particular vertex. These probes are attached to
microscopic iron balls, each approximately one micron in
diameter.

We suspend the balls in the tube contaiming the
remaining molecules under conditions that encouraged
Watson-Crick pairing. Only those molecules that contain
the desired vertex’s name would anneal to the probes.
Then we place a magnet against the wall of the test tube
to attract and hold the metal balls to the side while we
poured out the liquid phase contaming molecules that do
not have the desired vertex's name.

Then we must add new solvent and remove the
magnet i order to resuspend the balls. Raising the
temperature of the mixture cause the molecules to break
free from the probes and redissolve m the liquid. Next, we
must reapply the magnet to attract the balls again to the
side of the test tube, but tlus time without any molecules
attach. The liqud, which now contain the desired DNA
strands, could then be pour into a new tube for further
screening. The process must be repeated for the
remaining vertices. This iterative procedure is the most
tedious part of the experiment.

At the conclusion of the affinity separations, step 2b
of the algorithm was over and we know that DNA
molecules left in the tube should be precisely those
encoding spanning trees of given graph. We must use an
additional PCR step for identify spanmng trees of given
graph.

FINDING MINIMUM SPANNING TREES

The goal of this study is to find a spanning tree
with the smallest weight among all trees and which
contain no edges of degree greater than d (Yeh ef af.,
2005; Guo et al., 2004).

Initially we introduce operations which must be used
1n this study:
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Extract (P,s,P"P): Given a tube P and a short single
strand of DNA called s, we can produce 2 tubes P* and P,
where P 15 all molecules of DNA of P which consist of the
short strand s and P~ 1s all of the molecules of DNA in P
which do not contain the short strand s.

Merge (PP, ,...,P): Givenntubes P..P,,. . P .yield P,
where P,_P, UP,lJ... UP,. This operation is to pour n tubes
into one, with no change in the individual strands.

Detect (P): Given atube P | if it includes at least one DNA
molecule we can say © yes” and if 1t contains no DNA we
can say ‘no’.

Append (P,s): Given a tube P and a short strand of DNA
called s, the operation will append the short strand s onto
the end of every strand in tube P.

Discard (P): Given a tube P , the operation will discard the
tube P.

Amplify (Py,P,, ... ,P): The amplify operation is used to
vield n new identical tubes P,, . . . ,P, of P; and then to
empty the tube P, .

Set (P,t): Given a tube P. Consider a particular bit position
“t”. The operation logically turns bit position t “on”
(value 1) on every strand in tube P.

Clear (P,t): Given a tube P. Consider a particular bit
position “t”. The operation logically turns bit position t
“off” (value 0) on every strand n tube P.

Number (P): Givena tube P ,count many DNA strands in
it.

The algorithm i this study, 1s m the following
manner:

Step 1: Define strand.

Step 2: Eliminate infeasible solution

Step 3: Compare feasible solution for find minimum
gpanning tree.

Each step 13 explained in the followmg:

Step 1: We designed the data structure in the form of
single strand DNA. Each strand is subdivided into mne
non-overlapping regions. The first six region encode
degree sequence of tree. The 7'th region encode value of
b. The 8'th region encodes the summation of degree
sequence of tree. Finally, the 9'th region applied for flag
bit for addition. The all regions include nu bit.
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Notice which 2 distinct
nucleotides are assigned to represent values “1” and “07
for each region.

value sequences” of 15

In order to reduce errors in computation ,sequence
were designed to discourage intra-and inter-library strand
hybridization and unimtended probe-library strand
hybridization. So, to achieve these goals, sequence were
computer generated must satisty reported constrains in
Guo et al. (2005).

Step 2: Imitially all strands which encode degree sequence
of trees is poured into tube T;. Then by using the below
procedure add to them value of d.

The following 1s defined: If the ith bit in strand h 1s
set to 1, then the corresponding variable 3 in h is
denoted X', ;if ith bit in strand h is set to O, then the
corresponding variable X, in h is denoted X’; .

Procedure Imit (T, , nn)

Fori_1-n
Append (T X ',..) or Append (T, , X's..)
Next 1.

In upper procedure depending to value of d, is used
whether Append (T, , X',..) or Append (T, , X,

The below procedure remove trees which don’t
satisfy in degree constraint.
Procedure checking (T, , n)

Fori_.1l-n

Extract (T, , X', . T,, T3
Extract (T, , X' » Tyeep» Ta)
Extract (T, , X'sis T n Ta)
Next i

Merge (T;, Ty, T,)

In the upper procedure k _0,n,2n,3n,4n,5n.

Step 3: In this step firstly we initializes bit values by
appending DNA strand with a encode value of “07 to the
ends of the strands in tube Py:

Procedure Init-value (P, , n)

» Fori=1-2n
»  Append (P;, X'z )
»  Nexti

Then we compute summation of degree sequence
of trees by parallel-add process which passes parameters
(k, a, B, ) with (n, 7n, 8n, Sn):
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Procedure Parallel-add (P, ,n)
Fori=1-n
Forj.0—(k-1)
Extract (T, X G- Tp . Ts )
Extract (T, X'y, .T,.T,)
Set (T, , X5, )
Clear (T, , X, )
Set (T, Kegen )
Merge (T, ,T,.T,.T,)
Forj=0-(ntk)
Extract (T, X'y, ,Ty . Ty )
Extract (Ty , X'5;. T4 . Tap)
Set (T, Xp,)
Clear (T4, . X, )
Clear (T,, , X;;)
Set (T, X1 )
Clear (T4, X, )
Merge (T, , Ty . Tuy . Tan )

Next j
Next1

The final procedure is Parallel-comparator which
applied to determine minimum spanning tree. The
remained strand (or strands) in tube P_, at the end of the
procedure has minimum spanning tree:
Procedure Parallel-comparator (P; ,n )

5.0
Do
s++
Extract (P, , X" .1ss P .Py )
If number (T, ) = 1 then exit
If number (T,,) = O then Amplify (T, , T,.)
TF number (P, } =1 then
For i= s+l -n
Extract (P, . X i T, T )
If mumber (T, Y= 1 Then
Wash (T,,,)
Amplify (T, ,T,.,)
Exit
If mumber (T,)>1 Then
Wash (T_,)
Amplify (T; ,T,.. )

Next i
Until number (T, ) >0
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CONCLUSION

Because computers have obvious limits 1 storage ,
speed, intelligence and miniaturization, the methods of
DNA computation have arisen, especially for their
efficient parallelism.

In this study, a completely different approach for
solving Degree-Constrained MS3T problem based on
DNA computing is proposed which improve upon
conventionally adopted exhaustive search. The time
complexity of the proposed algorithm is O (n ).
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