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Abstract: Analysis and interpretation of spatial variability of soils properties is a keystone in site-specific
management. The objective of this study was to determme degree of spatial varability of soil chemical
properties with Ordinary Kriging (OK) and Inverse Distance Weighting (IDW) methods. Spatial distributions
for 6 soil chemical properties were examined in a fallow land in Bajgah, Fars province, Tran. Soil samples were
collected at approximately 60=60 m grids at 0-30 cm depth and coordinates of each of the 100 points were
recorded with GPS. Kriging and inverse-distance weighting are two commonly used techmques for
characterizing this spatial variability and interpolating between sampled points. Data were interpolated with OK
and TDW with powers of 1-5. All studied soil chemical parameters were strongly spatially dependent, but the
range of spatial dependence was found to vary within the soil parameters. Phosphorous had the shortest range
of spatial dependence (49.50 m) and pH had the longest (109.50 m). The accuracy of OK predictions was
generally unaffected by the coefficient of variaton. We concluded, for all soil chemical properties, OK
performed much better than the five IDW procedures in this study.
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INTRODUCTION

Site-specific management has received considerable
attention due to the three main potential benefits of
mcreasing mput efficiency, mmproving the economic
margins of crop production and reducing environmental
risks. Umform management of crops grown under spatially
variable conditions can result in less than optimum yields
due to nutrient deficiencies as well as excessive fertilizer
application that may potentially reduce environmental
quality (Redulla ef al., 1996). Geostatistical methods can
provide reliable estimates at unsampled locations
provided that the sampling interval resolves the variation
at the level of interest (Kerry and Oliver, 2004). Spatial
prediction techniques, also known as spatial interpolation
techmiques, differ from classical modeling approaches in
that they incorporate information on the geographic
position of the sample data points (Cressie, 1993). The
most common interpolation techniques calculate the
estimates for a property at any given location by a
weighted average of nearby data. Weighting is assigned
either according to deterministic or statistical criteria. A

number of factors affect map quality including the nature
of the soil variability (Sadler et al., 1998), intensity of
sampling and method of mterpolation. The variety of
available interpolation methods has led to questions
about which 183 most appropriate in different contexts
and has stimulated several comparative studies of relative
accuracy. Among statistical methods, geostatistical
kriging-based techniques, including simple and ordinary
kriging, universal kriging and simple cokriging have been
often used for spatial analysis (Deutsch, 2002). Among
determimstic mterpolation methods, inverse distance
weighting method and its modifications (Nalder and Wem,
1998) are the most often applied. Kriging and TDW are the
most commonly used methods in agriculture practices
(Franzen and Peck, 1995; Weisz et al., 1995). Knging
requires the preliminary modeling step of a variance-
distance relationship, but IDW does not require such
step and very simple and quick. Both methods
estimate values at unsampled locations based on the
measurements at surrounding locations with certain
assigned weights for each measurements. Creutin and
Obled (1982) and Tabios and Salas (1985) compared
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kriging with several other interpolation techniques,
including TDW, for annual precipitation distributions and
found kriging to be superior to IDW. Many studies have
compared IDW and kriging. In some cases, the
performance of kriging was generally better than
IDW (Hossemi et al, 1994, Dalthorp et al, 1999
Kravchenko and Bullock, 1999, Kravchenko, 2003;
Reinstort et al., 2005). Warrick et al. (1988) also reported
kriging to be better than inverse distance weighting for
mapping potato yield and soil properties, such as percent
of sand, Ca content and infiltration rate. In other studies,
IDW generally out-performed kriging (Weisz et al., 1995;
Nalder and Wein, 1998). Gotway et al. (1996) observed the
best results in mapping soil organic matter contents and
soil NO; levels for several fields when TDW was used as
an mterpolation technique. Often, however, the results
have been mixed (Schloeder er al., 2001; Mueller ef al.,
2001; Lapen and Hayhoe, 2003). Kriging performance
can be significantly affected by variability and spatial
structure of the data (Leenaers et al., 1990) and by the
choice of variogram model, search radius and the number
of the closest neighboring points used for estimation. As
might be expected, the performance of kriging improved
relative to IDW when spatial structure was known. The
objectives of this study was to describe and predict the
relative performance of Ordinary Kriging (OK) and Tnverse
Distance Weighting (TIDW) and provide map quality of
some soil fertility indicators at field scale 1 Bajgah, Fars
province, Iran.

MATERIALS AND METHODS

Study area, sampling design and laboratory analysis:
The study was conducted in a fallow land in Bajgah

(N 29°36', W 52°32"), About 15 km northeast of Shiraz,
Fars province, Tran (Fig. 1). According to the TISDA Seil
Taxonomy (Soil Survey Staff, 2006), the soil at the study
region was classified as Fine, mixed, mesic, Typic
Calcixerepts. One hundred soil samples were collected
(September 2007) from the cross-line nodes of an
approximately 60x60 m grids at 0-30 cm depth (Fig. 1) and
coordinates of each sampling point were recorded with
GPS. The soil samples were taken to the laboratory and
passed through a 2 mm sieve. Available Phosphorous (P)
was determined Olsen method (1982); available potassium
(K) was determined by extraction with ammomum acetate
(Richards, 1854); total Nitrogen (TN) was determined
using Kjeldal (Bremner, 1996); Organic Matter (OM)
content was determined using oxidation method
(Walldy and Black, 1934); pH was determined in saturated
paste; Electrical Conductivity (ECe) was determined with
conductivitymeter.

Descriptive of prediction methods: Statistical analyses
were done in 3 stages. First, the frequency distributions
were analyzed and normality was tested using the
Kolmogoroph-Smironoph test (SAS, 1999). Secondly, the
distribution of data was described using conventional
statistics such as mean, maximum, mimmum, median,
Standard Deviation (3.1D), Coetficient of Variation (CV),
skewness and kurtosis. These analyses were conducted
using the STATISTICA software package (StatSoft Inc,
2004). Thirdly, geostatistical analysis was performed
using the G357 (Gamma Design Software, 2008) to
determine the spatial dependency of soil properties.
Isotropic semivariograms for the soil parameters were

Fig. 1: Location of the study area and sampling pattern i 46.7 ha area
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computed to determine any spatially dependent variance
within the field. A semivariogram was calculated for each
soil property as follow (Isaaks and Srivastava, 1989
Journel and Huyjbregts, 1978):

H(h)

hy = h)— 2 (M
() 2N(h);[z(xl+ )—z(x]]
where:
v () = The experimental semivariogram value
at distance interval h.
N (h) = Number of sample pairs within the

distance interval h.
Sample values at two points separated
by the distance interval h.

z(x), z (% T h)

Experimental semivariograms were examined for the
best models (1e., exponential, spherical and Gaussian)
separately and the best fitted model was selected based.
Using the model semivariogram, basic spatial parameters
such as nugget variance (Co), structural variance (C),
range (A) and sill (C + Co) was calculated. Nugget
variance is the variance at zero distance, sill is the lag
distance between measurements at which one value for a
variable does not influence neighboring values and range
1s the distance at which values of one variable become
spatially independent of another (Lopez-Granadoz ef al.,
2002). Different classes of spatial dependence for the
soil variables were evaluated by the ratio between the
nugget semivariance and the total semivariance
(Cambardella et al., 1994). For the ratio <25%, the variable
was comnsidered to be strongly spatially dependent, or
strongly distributed in patches; for the ratio between
26 and 75%, the soil variable was considered to be
moderately spatially dependent, for the ratio >=75%, the
soil variable was considered weakly spatially dependent
and for the ratio of 100%, or if the slope of the
semivariogram was close to zero, the soil variable was
considered non-spatially correlated (pure nugget). In the
process of calculating the experimental semivariograms,
the active lag distance and the lag class distance interval
were changed until the smallest nugget varances in the
best model semivariograms were achieved (Mapa and
Kumaragamage, 1996).

Ordinary Kriging (OK): Ordinary kriging 1s one of the
most basic of kriging methods. Tt provides an estimate at
an unobserved location of variable z, based on the
weighted average of adjacent observed sites within a
given area. The theory 1s derived from that of regionalized
variables (Matheron, 1965, 1971) and can be briefly
described by considering an intrinsic random function
denoted by z (s), where, (3;,) represents all sample
locations, 1 = 1, 2,..., n. An estimate of the weighted
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average given by the ordinary Kriging predictor at an
unsampled site z (s,) 1s defined by:

Z(SD):ihlz(Si) (2)

where, A are the weights assigned to each of the observed
samples. These weights sum to unity so that the predictor
provides an unbiased estimation:

zn: A, =1 (3)

The weights are calculated from the matrix equation:

C=A"b,

where

A = A matrix of semivariances between the data
points.

b = A vector of estimated semivariances between the
data points and the points at which the variable
7 i3 to be predicted.

¢ = Theresulting weights.

Inverse Distance Weighting (IDW): All interpolation
methods have been developed based on the theory that
points closer to each other have more comrelations and
siunilarities than those farther. In IDW methed, it is
assumed substantially that the rate of correlations and
similarities between neighbors is proportional to the
distance between them that can be defined as a distance
reverse fimction of every point from neighboring points.
It 18 necessary to remember that the defimition of
neighboring radius and the related power to the distance
reverse function are considered as important problems n
this method. This method will be used by a state in which
there are enough sample points (at least 14 points) with a
suitable dispersion in local scale levels. The main factor
affecting the accuracy of mverse distance interpolator 1s
the value of the power parameter p (Isaak and Srivastava,
1989). In this study, we compared estimates of inverse
distance interpolator using different integer powers
parameters 1, 2, 3, 4 and 5, which are the most commonly
used in literature (Kravchenco and Bullock, 1999). Since,
the goal of wsing inverse distance functions as estimators
is giving more weight (importance) to the closest sampled
points (Webster and Oliver, 2001), in this study we just
considered integer values of p parameter, because the
values lower than one are closest to a simple average
estimation (Isaaks and Srivastava, 1989). In addition, the
size of the neighborhood and the number of neighbors are
also relevant to the accuracy of the results.
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g, )

where
7.5 = The estimation value of variable z in point T.
Z; = The sample value m pomt L.

d, = The distance of sample point to estimated point.

N = The coefficient that determines weigh based on a
distance.

= The total number of predictions
validation case.

for each

]
|

Forecasting evaluation methods: The performance of each
mterpolation technique, m terms of the accuracy of
estimates, was assessed by compering the deviation of
estimates from the measured data through the use of a
jackknifing technique or cross-validation (Isaak and
Srivastava, 1989; Webster and Oliver, 2001). In such a
procedure, sample values are deleted from the data set,
one at a time and then the value in turn is interpolated by
performing the interpolation algorithm with the remaining
sample values. This vields a list of estimated values of
variable data paired to those measured at sampled
locations. Therefore, the comparison of performance
between interpolation techniques was achieved by using
the followmg statistics: coefficient of determination
between measured and estimated variable values, the
Mean Error (ME), the Mean Absolute Error (MAE) and
the Root Mean Square Error (RMSE) (Zar, 1999).

The ME 15 used for determining the degree of bias in
the estumates and it 1s calculated with equation:

ME :ii\i(xl)fzai)\ (5

The MAE provides an absolute measure of the size
of the error. MAE is calculated with the equation:

MAE :LG:‘Z(xl)—Z,(xl) (6)
n 1=1

The RMSE provides a measure of the error size that
1t 1s sensitive to outliers. RMSE values can be calculated
with equation:

N LRI : 7
RMSE‘/HZ(Z(XI) Z(xi)) (7)

1=1
where:
Z(x) = The prediction values.

Z(x) = The mean values.

1

The total number of prediction for each
validation case.

The coefficient of determination, R’ of linear
regression line between the predicted and the measured
values were also used as a measure of performance for
each methods.

>0, —t)
_ ‘;1 (8)
> (o, -0)

RI=1

where:

o andt = The observed and predicted values for the
1 output respectively.

o, = The mean of observed values.

N = The total number of events considered.

Finally, the Relative Improvement (RT)
of the best method compared with the others is calculated
with equation:

g1 = 1OORMSE,; ~ RMSE | ©)
RMSE, .
where:
RMSE,., = The minimum value of RMSE.

RMSE, e = Represents the RMSE of the current model.
RESULTS AND DISCUSSION

Statistical analysis: The summary statistics of soil
parameters are shown in Table 1. The descriptive
statistics of soil data suggested that they were all
normally distributed (according te Kolmogrov-Smironov
test). Coefficient of Variation (CV) for all of variables was
very different. The greatest and the smallest variation
were observed in the total nitrogen (CV = 29.6) and pH
(CV = 1.7), respectively. Avalible phosphorus, pH and K
had low variation (CV <15%) whereas all other soil
parameters exhibited a medium variation (CV 15-50%0)
according to the guidelines provided by Warrick (1998)
for varability of soil properties. In order to identify the
possible spatial structure of different soil properties,
semivariograms were calculated and the best models that
describe these spatial structures were identified. The
spatial variation depicted by the semivariogram models
are shown on Table 2. Spherical,
Exponential models were found to fit well the experimental
semi-variograms (Fig. 2). The geostatistical analysis

Gaussian and
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Table 1: Descriptive statistics for selected soil properties

Variable  Unit Mean Median Min Max CV (%) S.D. Skewness Kurtosis
pH -Log[H+] 8.08 8.08 7.80 832 1.30 0.11 -0.03 -0.33
EC ds m! 0.60 0.59 0.34 1.20 25.91 0.15 1.09 2.33
TN % 0.07 0.07 0.04 0.14 29.57 0.02 0.82 0.03

P mg kg 27.28 26.06 22.00 36.70 11.07 3.02 0.93 0.89
K mg kg 451.39 435.0 387.0 560.0 10.06 4543 0.89 -0.33
oM % 1.68 1.55 0.91 3.02 26.06 0.44 0.82 0.03
Table 2: Parameters of variogram models for studied soil properties

Variable  Unit Model Nugget il Range Spatial ratio (%) Spatial class
pH Log[H+] Exponential 0.00097 0.01104 109.50 8 s

EC ds m! Gaussian 0.00001 0.01292 51.70 0.07 S

TN % Gaussian 0.0001 0.06350 62.5 0.1 S

P mg kg'! Spherical 0.00032 0.01262 49.50 2 S

K mg kg Gaussian 0.01252 0.01 7910 10 K}

oM % Gaussian 0.0001 0.0570 61.0 0.175 S

Spatial ratio = nugget sermivariance/total sernivariance, total semivariance = nugget + sill. Spatial class: 8 = strong spatial dependency
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Fig. 2: Omnidirectional semivariogram for soil paremeters

presented different spatial distribution models and spatial
dependence levels for the soil properties. As seen in
Table 2, the ranges of spatial dependences show a large
variation (from 49.50 m for P up to 109.50 m for pH).
Knowledge of the range of influence for various soil
properties allows one to construct independent datasets
to perform classical statistical analysis. Furthermore, it
aids in determining where to resample if necessary and in
the design of future field experiments to avoid spatial
dependency. The range values showed considerable
variability among the parameters (Table 2). There were
great differences between ranges of the different soil
variables, as had been already reported in several studies.
Weitz et al. (1993) found most of the soil properties had
variable range between 30 and 100 m. Doberman (1994)
fitted the spherical models to variograms with range
between 80-140 m. Cambardella ef af. (1994) reported that
the range of spatial distribution of 80m for total organmic N

ina farm from Iowa, USA. In site-specific management it
15 always advantageous to look for a soil property with
a greater spatial correlation due to practical reasons.
Lauzon et al. (2005) observed that the current 100 m
sampling grid m southern Ontario for site-specific P
fertilizer management 1s not reliable due to the lack of
spatial correlation of available P in distances =30 m. The
different ranges of spatial correlation for nutrients may be
related to the i1ons mobility in the soil. In the present
study spatial distribution of TN appeared to be correlated
to that of OM. The variogram ranges of TN and OM are
the same in studied area (Table 2). These results are in
accordance with the results of Cahn et al. (1994). A large
range indicates that observed values of a soil variable are
influenced by other values of this variable over greater
distances than soil variables which have smaller
ranges (Lopez-Granadoz ef al., 2002). Thus a range of
>109.5 m for pH indicates this variable values mfluenced
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Fig. 3: Map of ordinary Kriging interpolated soil proerties
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Table 5: Results of mean error, mean absolute error, root mean square error,
coefficient of determination for different soil chemical properties,

Table 7. Results of mean error, mean absolute error, root mean square error,
coefficient of determination for different soil chemical properties,

using IDW with power of 2 using IDW with power of 4

Variable ME MAE RMSE R? Variable ME MAE RMSE R?
pH -0.0041 0.1083 0.1310 0.978 pH -0.0020 0.0952 0.1218 0.98
EC 0.6007 0.2204 0.3080 0.98 EC 0.3674 0.1938 0.2864 0.983
N -0.0089 0.0160 0.0243 0.981 N -0.0054 0.0140 0.0226 0.964
P 0.1476 2.5836 3.6326 0.957 P 0.0899 2.2679 3.3772 0.958
K 0.1651 37.3961 55.9382 0.974 K 0.1074 32.8836 52.005 0.978
oM -4.3277 1.3119 1.5676 0.977 OM -2.6400 1.15361 1.4574 0.984

Table 6: Results of mean error, mean absolute error, root mean square
error, coefficient of determination for different soil chemical

Table 8: Results of mean error, mean absolute error, root mean square error,
coefficient of determination for different soil chemical properties,

properties, using IDW with power of 3 using IDW with power of 5

Variable ME MAE RMSE R? Variable ME MAE RMSE R?

pH -0.003 0.0997 0.1243 0.987 pH -0.0026 0.0961 0.1220 0.974
EC 0.4882 0.2028 0.2922 0.982 EC 04111 0.1956 0.2869 0.983
N -0.0072 0.0147 0.0230 0.978 TN -0.0061 0.0142 0.0226 0.975
P 0.1196 2.3721 3.4463 0.966 P 0.1011 2.2893 3.3835 0.968
K 0.1338 34.418 53.0692 0.977 K 0.1127 33.1921 52.1027 0.974
OM -3.5080 1.2074 1.4872 0.965 oM -2.9534 1.1644 1.4601 0.971

Fig. 4: Map of IDW (with power of 4) interpolated soil proerties
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Table 9: Relative improvement (RT) for selected soil properties, using Ordinary Kriging and IDW powers of 1-5, interpolation methods

RI (%)
Interpolation
method pH EC T™N P K oM
Kriging 0 0 0 0 0 0
IDW-1 44,6339 36,6532 36,6837 42,6008 36,6842 36,6799
IDW-2 31,3942 24,1935 23,9796 29,5969 24,2196 24,2155
IDW-3 24,6740 17,8226 22,9504 22,0504 17,8486 17,8447
IDW-4 22,1665 154839 15,3061 20,4852 15,4864 154834
IDW-5 22,3671 15,6855 15,6033 20,7742 15,7023 15,6973

with power of 4 result in significant reduction of RI
(about 22% for pH, 15% for EC, TN, K,OM and 20% for P)
compared to other IDW powers. The interpolation maps
of all soil properties using IDW with power of 4 can be
seen in Fig. 4. Kravchenko and Bullock (1999) report a
significant improvement m accuracy of soil properties
interpolated using TDW by manipulating the exponent
value. They found that data with high skewness (>2.5)
were often best estimated with a power of four (5 out of 8
datasets) and for most of the soil properties with low
skewness (<<1), a power of one yielded the most accurate
estimates (9 out of 15 datasets). Alternatively, Weber and
Englund (1994) reported that IDW with a power of one
resulted in a better estimation for data with skewness
coefficients of 4-6. Likewise, a larger exponent produced
better estimations when the data had low skewness. In
this study, in all implementations of IDW the power of
four was the best choice among the others, which is
possibly due to the relatively inherent low skewness in all
modelled soil properties (as also found by Weber and
Englund, 1994). To select the best accurate of methods
using Table 3-9 those represents the gist of results i this
research for all prediction methods. Results indicated
that kriging is most accurate performance in all applied
methods.

CONCLUSION

The generation of soil properties maps 18 the most
umportant and first step in precision agriculture. These
maps will measure spatial variability and provide the basis
to control it. Site-specific management is done to optimize
crop production and minimize soil fertility losses. For
this proposes we must identify the best method n
order to determine the spatial variability of soil chemical
properties. Kriging and inverse-distance weighting are
two commonly used techmques for characterizing this
spatial variability and interpolating between sampled
points. The accuracy of ordinary Kriging predictions was
generally unaffected by the coefficient of variation and
was relatively ligh for all of the sampling configurations
considered m this study. The range of spatial dependence
was found to vary within soil parameters. Overall, the
results obtained from the comparison of the two applied
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interpolation methods indicated that kriging was the most
suitable methods for prediction and mapping the spatial
distribution of soil chemical properties in this area. The
results showed, IDW with powers of 4 and had almost the
same precisions, but IDW with power of 4 was 1s better
than TDW with power of 5. Results also revealed that
although the TDW is relatively simple and ease to use, but
15 less accurate than OK. In cpmparison to OK, IDW
increase the error more than 22% for pH, 15% for EC, TN,
K, OM and 20% for avalible P. The result of present study
were 1n agreement to other studies (Hemandez-Stefanom
and Ponce-Hemandez, 2006, Voltz and Webster, 1990).
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