aJava

Asian Journal of Animal and Veterinary Advances

Asian Journal of Animal and Veterinary Advances 7 (10): 980-988, 2012 ISSN 1683-9919 / DOI: 10.3923/ajava.2012.980.988 © 2012 Academic Journals Inc.

Prevalence of the "High-pathogenicity Island" in *Escherichia coli* Isolated from Clinical and Subclinical Bovine Mastitis in China

^{1,2}Jiying Xu, ³Zhiqiang Yang, ⁴Juan Xing, ²Jutian Yang, ²Rongxin Zang, ²Jialin Bai, ²Junlin Liu, ²Yizhong Liu and ²Shengdong Huo

¹College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, P.R. China

²College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, 730000, P.R. China

³Lanzhou Institute of Animal and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China

⁴Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, P.R. China

Corresponding Author: Zhiqiang Yang, Lanzhou Institute of Animal and Veterinary Medicine, Chinese Academy of Agicultural Sciences, Lanzhou, 730050, P.R. China

ABSTRACT

The aim of this study was to investigate the distribution of high pathogenicity island (HPI) in $Escherichia\ coli\ (E.\ coli)$ isolated from cows with clinical and subclinical mastitis in China. Milk samples from 750 cows with clinical and subclinical mastitis in seven provinces were used to screen Gram-negative bacteria by MacConkey agar. 115 $E.\ coli$ isolates were further identified from the Gram-negative bacteria by microbiological tests. Total DNA extraction from $E.\ coli$ was used to detect HPI genes by PCR. The PCR results showed that in 115 samples, 29, 22 and 20 were positive for genes irp2, fyuA and intB, respectively. Sequence analysis of randomly selected 10 PCR products showed that homology of genes irp2, fyuA and intB were 97.1, 98.2 and 97.2% identical to the published sequences. In addition, HPI⁺ isolates were associated with fyuA (75.86%) and $asn_{-}tRNA$ locus (68.96%). We further analyzed the association of the prevalence of HPI and O serotypes and found that HPI occurred in several serotypes including O_{149} , O_{93} , O_{9} and O_{7} . Therefore, we concluded that HPI was widely distributed in the $E.\ coli$ isolates from cows with clinical and subclinical mastitis in China. The prevalence of HPI is associated with special serotypes in $E.\ coli$ from cows with clinical and subclinical mastitis.

Key words: Clinical mastitis, HPI genes, microbiological tests, O serogroups, cows

INTRODUCTION

High-pathogenicity island (HPI), a large chromosomal DNA fragment of Yersinia pestis, is highly associated with the mouse-lethal phenotype of Yersinia (Bearden et al., 1997; Buchrieser et al., 1998a; Alvarez and Cardineau, 2010; Carniel et al., 1996). HPI carries the gene fyuA, which is specific for the pesticin receptor and the iron repressible protein (irp) loci encoding the siderophore yersiniabactin (Ybt). The functional core of HPI is called irp2-fyuA gene cluster, the major gene element encoding an iron uptake system mediated by Ybt. The Ybt is associated with asparagine-specific tRNA loci and carries an integrase gene, int, often associated with a phage genome (Carniel et al., 1996; Rakin et al., 1999; Gehring et al., 1998; Buchrieser et al., 1998b).

Irp2, one of the major structural genes of the core conservative region of HPI, has been used as a marker to detect HPI. FyuA gene coded for the yersiniabactin receptor FyuA and also served as a receptor for pesticin (Lucier et al., 1996; Rakin et al., 1994). Besides pathogenic Yersinia species, HPI has been reported as a part of the genomes of other enterobacteria such as Klebsiella spp., Citrobacter spp. and Escherichia coli (E. coli) (Hacker et al., 1999; Schubert et al., 1998).

Dairy cattle with clinical mastitis caused by *Escherichia coli* exhibits a wide range of disease severity, from mild, with only local inflammatory changes of the mammary gland, to severe, with significant systemic derangement. *Escherichia coli* is one of the commonest causes of bovine clinical mastitis (Green *et al.*, 2005) and a major problem in lactating dairy cows (Kobori *et al.*, 2004). It has been reported that the incidence of *E. coli* mastitis has recently increased in some countries (Green *et al.*, 2005; Guler and Gunduz, 2007). Numerous studies in identifying virulence factors of *E. coli* isolated from cows with clinical mastitis have been conducted (Barrow and Hill, 1989; Kaipainen *et al.*, 2002). However, the role of HPI in the *E. coli* caused bovine mastitis is still unclear. The present study has detected the prevalence of HPI using specific HPI markers from 115 *E. coli* isolated from milk samples, which were collected from 750 cows with clinical and subclinical mastitis in different areas of China.

MATERIALS AND METHODS

Bacterial isolation: Milk samples from 750 cows with clinical and subclinical mastitis in different dairy farms of seven provinces (Beijing, Inner Mongolia, Gansu, Sichuan, Chongqing, Guizhou and Yunnan) in China were collected between 2008 and 2009. Clinical and subclinical mastitis were identified by the Lanzhou Mastitis Test (LMT) and clinical examination (Li et al., 2002). Approximately 5 mL of milk were collected in sterile vials after disinfection with 70% ethanol and removal of the first 3 to 4 streams of milk. Samples were cultured in MacConkeys (MAC) agar. The isolates were identified as *E. coli* based on colony morphology and color, Gram stain and API-20E Enteric Identification System (Wenz et al., 2006) and stored at -70°C.

Identification of O-serotyping: Pure cultures of bacterial strains (*Escherichia coli* isolates) were grown on nutrient agar slants and sent to Bacterial products testing center, China Institute of Veterinary Drugs Control, (Beijing, China) for serotyping.

Bacterial pre-culturing and extraction of DNA templates: Each bacterial strain (*Escherichia coli* isolates) grown in LB agar at 37°C for 24 h was selected single colony and transfered into LB nutrient broth overnight with vigorous agitation at 37°C. The bacterial culture was enriched by centrifugation at 12000 g and DNA samples were extracted using a bacterial genomic DNA extraction kit (from *TaKaRa* Biotechnology Co., Ltd. (Dalian, P.R.China)). The productions were used directly or stored at -70°C before PCR as DNA templates.

PCR detection of HPI in *E. coli*: The specific PCR primers were respectively designed according to the published gene sequences of *irp2*, *fyuA* and *asn_tRNA_intB* in Genebank. PCR assays were performed by the Applied Biosystems (2720 Thermal Cycler America). The primers were synthesized by Sangon Biological Engineering Technology and Service Co. Ltd. (Shanghai, P.R. China). All the PCR reagents were purchased from *TaKaRa* Biotechnology Co., Ltd. (Dalian, P.R. China). *Irp2*, *fyuA* and *asn_tRNA_intB* genes were detected using the three pairs of specific primers as following protocols.

The PCR assay was carried out in a total volume of 50 μ L of mixture containing 5 μ L of 10x PCR buffer (Mg²⁺), 5 IU of Taq polymerase, 4 μ L of dNTP mixture (each 2.5 mmol L⁻¹), 1 μ L of HPI primers set (each 50 mmol L⁻¹), 2 μ L of DNA template and deionized water to a final volume of 50 μ L. The amplified DNA products were separated by electrophoresis on 1% agarose gel, stained with ethidium bromide and detected under ultraviolet light. The expected sizes of PCR products should be 276, 1071 and 1512 bp, respectively. The sequences of the forward (FP) and reverse (RP) primers used for PCR reactions and PCR amplification Tm were listed in Table 1.

DNA sequencing and sequence comparison: Ten PCR products from *irp2*-positive, *fyuA*-positive or *intB*-positive *E. coli* strains were randomly selected for amplification. The amplified DNA products were purified and connected to the pMD18-T carrying agent, then which were transformed into *E. coli* JM109 and cultured. Eventually, positive clones were selected to extract plasmid DNAs and identified by PCR. DNA sequencing was performed by Sangon Biological Engineering Technology and Service Co. Ltd. (Shanghai, P.R.China). The nucleotide sequences were analyzed with the DNAStar and BLAST in NCBI.

RESULTS

Survey for the presence of *irp2*, *fyuA* and *intB* genes among *E. coli* strains: We isolated 115 *E. coli* strains from a total of 750 mastite milk samples. After analyzing all three HPI-genes *irp2*, *fyuA* and *intB* in each of 115 *E. coli*, found that 22 (19.13%) of the 115 *E.coli* strains harbored both *irp2* and *fyuA* gene at the same time, while 7 (6.09%) of that only harbored genes *irp2*. Therefore, totally 29 (25.22%) *E. coli* isolates were HPI-positive strains. In addition, in the 29 HPI-positive *E. coli*, 20 (68.96%) strains were *intB* postitive, indicating that most HPI-positive *E. coli* isolates carried the *intB* gene and the HPI was linked at *asn_tRNA* locus (Fig. 1-3).

Sequence analysis of the genes of *irp2*, *fyuA*, *asn_tRNA_intB* in *E. coli*: After analyzed by DNAStar and MEGA programs, we found that all 10 *irp2* gene sequences were 276 bp and the sequence homology was identical to the published *irp2* sequences (97.1%). The sequence homology of 5 irp2⁺fyuA⁺intB⁺ strains and 3 irp2⁺fyuA⁻intB⁺ strains and 2 irp2⁺fyuA⁻intB⁻ strains exceeded 98.3%. The *fyuA* gene sequences were 1071 bp and sequence homology was identical to the published *fyuA* sequences (98.2%). The *asn_tRNA_intB* gene sequences were 1512 bp and sequence homology was identical to the published *asn_tRNA_intB* sequences (97.2%). The phylogenetic tree of isolated strains on the genes of *asn_tRNA_intB* in *E. coli* was seen (Fig. 4-6).

HPI and O-serotyping in *E. coli*: For the 115 *E. coli* strains, 63 isolates were identified as 39 serogroups, 3 isolates were self-clumpinged and 49 isolates could not be serotyped. As we shown (Table 2), O_{93} , O_{9} , O_{146} , O_{7} , O_{74} serotypes were the most prevalent serogroups. Among the 39

Table 1: Oligonucleotide primers used in the study

Primer	Primer sequence (5'-3')	Target gene	Annealing temperature (°C)	PCR fragment size (bp)
Irp2-L	AAGGATTCGCTGTTACCGGAC	Irp2	55	276
Irp2-R	TCGTCGGGCAGCGTTTCTTCT			
FyuA-L	CCGTCTTACAGGGACTCACAACAAT	fyuA	58	1071
FyuA-R	GGTACAGCCCAAACACCATATCAAC			
intB-L	GTGTGAAAACTCTTCTCGGTGC	asn_tRNA_intB	60	1512
intB-R	GTCGCTCTTTCATTCCTCTGTG			

Asian J. Anim. Vet. Adv., 7 (10): 980-988, 2012

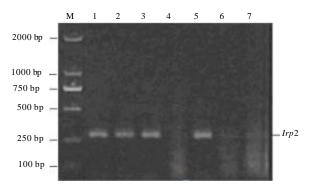


Fig. 1: PCR for detection irp2 in partial isolates, M. eDNA Marker DL2000, 1. S433014 strains; 2, 3 and 5; irp2+ strains; 4, 6 and 7; irp2 strains

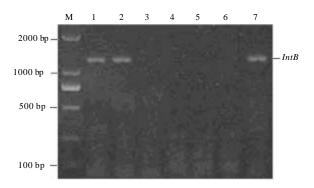


Fig. 2: PCR for detection fyuA in partial isolates, M. DNA Marker DL2000, 1. S433014 strains, 2, 3, 4, 5 and 6; fyuA+strains, 7. fyuA strains

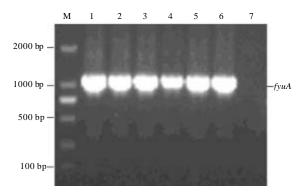


Fig. 3: PCR for detection asn_tRNA_intB in partial isolates, M. DNA Marker DL2000, 1. S452621 strains, 2 and 7: asn_tRNA_intB strains; 3, 4, 5 and 6: asn_tRNA_intB strains

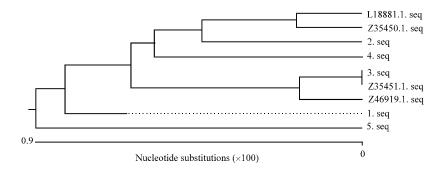


Fig. 4: The phylogenetic tree of isolated strains on irp2 gene sequences, 1, 2, 3, 4, 5. seq. isolated strains irp2 gene sequences

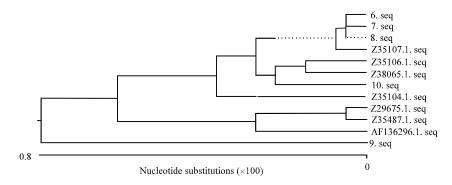


Fig. 5: The phylogenetic tree of isolated strains on fyuA gene sequences, 6, 7, 8, 9, 10. seq. isolated strains fyuA gene sequences

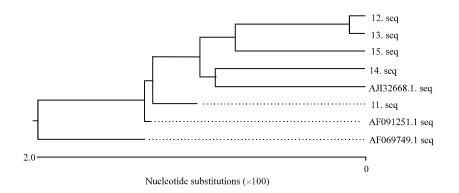


Fig. 6: The phylogenetic tree of isolated strains on asn_tRNA_intB gene sequences, 11, 12, 13, 14, 15. seq. isolated strains asn_tRNA_intB gene sequences

serogroups, 22 HPI-positive strains belongs to 16 different serogroups, 6 HPI-positive strains were non-serotyping and 1 was self-clumpinged. Furthermore, comparing to the detection rates of HPI in the most prevalent serogroups, O_{98} serogroup was the highest one than O_9 (33.3%), O_7 (33.3%), O_{74} (33.3%) and O_{146} (20%). While among non-prevalent serogroups, O_{149} serogroups were 100% HPI-positive strains.

Table 2: Relation statistic between HPI+ and isolates serotype

Serotype	Positive ratio*	Serotype	Positive ratio
O ₉₃	4/9	O ₃₆	0/2
O_9	2/6	O ₆₁	0/2
O ₁₄₆	2/5	O_{66}	1/2
O ₇	1/4	O_{74}	1/2
O ₁₀	0/3	O_{83}	0/2
O_{21}	0/3	O ₁₀₇	1/2
O_{22}	0/3	O ₁₄₉	2/2
O ₃₂	0/2	Others	15/66

^{*}Ratio = No. of HPI positive isolates/No. of isolates

DICUSSION

HPI was first discovered in pathogenic Yersinia strains and has recently been found in other enterobacteria. Schubert et al. (1998) demonstrated that the fyuA-irp gene cluster is absent in Shigella, S.enterica serotypes Enteritidis and Typhimurium and Shiga toxin-producing E.coli (EHEC). The gene cluster is infrequently detected in E.coli strains of EPEC, ETEC and EIEC pathotypes. Strikingly, the EAEC pathotype, which causes acute and chronic diarrhea in infants (Huppertz et al., 1997; Frederick, 2011; Naidu et al., 2007), frequently harbors a chromosomal fyuA-irp gene cluster (Buchrieser et al., 1998a; Hacker et al., 1999; Schubert et al., 1998). The HPI of Yersinia spp. is responsible for lethality for mice and for biosynthesis and uptake of the siderophore yersiniabactin. Yersiniabactin-mediated iron acquisition is thought to be the main function of the HPI (Gehring et al., 1998) and genes involved in yersiniabactin biosynthesis, transport and regulation (irp1 to irp9, ybtA and fyuA) are clustered on the "core" of the HPI. Although, HPI was the important virulence factor of pathogenicity E. coli isolates from humans, piglets and rabbits (Clermont et al., 2001; Bach et al., 2000; Penteado et al., 2002), there is no study reporting HPI of E. coli isolates from bovine mastitis milk in China. This is critical problem for dairy industry in China now.

The irp2 and fyuA genes are the two major structure of the "core" of the Yersinia HPI. Both of them are extremely conservative and usually exist at the same time. In our study, we found that 22 (19.13%) of the strains harbored both irp2 and fyuA gene at the same time, while 7 (6.09%) of that only harbored the *irp2* genes. Totally 29 (25.22%) E. coli isolates were HPI-positive strains. The detection rate is lower than that from humans (32.25-34.9%) (Yong et al., 2002; Changyun and Jianguo, 2000) and avians (44.9%) (Wenjie et al., 2006), but higher than that from pigs (12.7-16.66%) (Xiang et al., 2006; Darong et al., 2006). These results indicate that horizontal gene transfer of HPI occurs between Yersinia strains and E. coli strains and Yersinia HPI was widespread in E. coli isolates from bovine mastitis milk and confered virulence-associated functions. The data of results also offered certain evidences for horizontal gene transfer of Yersinia HPI. The results of our survey indicated that the irp2 and fyuA genes may not be simultaneously expressed in one strain. Because of the fyuA gene was only detected in 75.86% of HPI-positive strains. The absence of fyuA gene, may reduce the iron-uptaken ability and subsequently attenuate the virulence for these HPI-positive strains without fyuA gene. This reduced virulence may result from gene mutation or gene recombination in the course of horizontal gene transfer of HPI among bacterial species for adaptation to a new environment. The functions of the fyuA-irp gene cluster in E. coli strains still remains unclear.

The HPI in Yersinia is located next to the asn tRNA bacterial attachment site. The asnT locus is linked to a gene which is highly homologous with a phage derived integrase determinant termed int that codes for a P4-like integrase. The instability of Yersinia HPI might be due to containing some mobile elements in Yersinia HPI, such as potential insertion sequences and integrase. Partial deletion of int might result in a non-functional integrase and incline to stabilization of the HPI in the chromosome of those isolates (Schubert et al., 1999). In our research, 64% of Yersinia HPI-positive strains from bovine mastitis milk carried the intB gene and inserted the asn-tRNA site. This is in line with some reports that Yersinia HPI from humans and pigs mostly linked to the asn-tRNA site (Bach et al., 2000; Wenjie et al., 2006). As recent report from Germany demonstrated that the HPI of O_{28} STEC strains and two E. coli strains isolated from blood poisoning avians had same deletion at its left junction, leading to a truncated integrase gene int (Karch et al., 1999). Therefore, we conclude that the HPI of the STEC O_{26} group represents a new and unique type of HPI with a partially deleted int. The deletion in the int gene may result in a nonfunctional integrase and subsequent fixation of the HPI in the genome of this STEC clonal lineage.

We also demonstrated that O_{93} , O_{9} , O_{146} , O_{7} serotypes were dominant serotypes in all $E.\ colinial$ isolated from seven provinces in China. However, the Yersinia HPI was expressed differently among these different dominant serotypes and all two isolates of non-dominant serotype O_{149} are HPI positive. These results indicate that the distribution of Yersinia HPI existed distinction among different serotype strains. HPI might be only associated with special serotypes, not with dominant serotypes.

In summary, the findings in this study demonstrate that *Yersinia* HPI was widely distributed in the *Escherichia coli* isolates from cows with clinical and subclinical mastitis in China. The prevalence of HPI is probably associated with special serotypes in *E. coli* from cows with clinical and subclinical mastitis.

REFERENCES

- Alvarez, M.L. and G.A. Cardineau, 2010. Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol. Adv., 28: 184-196.
- Bach, S., A. de Almeida and E. Carniel, 2000. The *Yersinia* high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiology Lett., 183: 289-294.
- Barrow, P.A. and A.W. Hill, 1989. The virulence characteristics of strains of *Escherichia coli* isolated from cases of bovine mastitis in England and Wales. Vet. Microbiol., 20: 35-48.
- Bearden, S.W., J.D. Fetherston and R.D. Perry, 1997. Genetic organization of the yersiniabactin biosynthetic region and construction of a virulent mutants in *Yersinia pestis*. Infection Immunity, 65: 1659-1668.
- Buchrieser, C., M. Prentice and E. Carniel, 1998a. The 102-kilobase unstable region of *Yersinia pestis* comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J. Bacteriol., 180: 2321-2329.
- Buchrieser, C., R. Brosch, S. Bach, A. Guiyoule and E. Carniel, 1998b. The high-pathogenicity island of *Yersinia pseudotuberculosis* can be inserted into any of the three chromosomal *asn* tRNA genes. Mol. Microbiol., 30: 965-978.
- Carniel, E., I. Guilvout and M. Prentice, 1996. Characterization of a large chromosomal high-pathogenicity island in biotype 1B *Yersinia enterocolitica*. J. Bacteriol., 178: 6743-6751.

- Changyun, Y. and X. Jianguo, 2000. A High-pathogenicity Island of *Yersinia* enterocolitia exsited in Entero-SLT-Producing and invasive *E. Coli* strains. Dis. Surveillance, 15: 48-50.
- Clermont, O., S. Bonacorsi and E. Bingen, 2001. The *Yersinia* high-pathogenicity island is highly predominant in virulence-associated phylogenetic groups of *Escherichia coli*. FEMS Microbiology Lett., 196: 153-157.
- Darong, C., S. Huaichang, X. Jiansheng and G. Song, 2006. Prevalence of LEE and HPI pathogenicity islands of *Escherichia coli* isolates from weaned piglets in China. Acta Microbiol. Sinica, 46: 368-372.
- Frederick, A., 2011. *Escherichia coli*, it prevalence and antibiotic resistant in Malaysia: A mini review. Microbiol. J., 1: 47-53.
- Gehring, A.M., E. Demoll, J.D. Fetherston, I. Mori and G.F. Mayhew *et al.*, 1998. Iron acquisition in plaque: Modular logic in enzymatic biogenesis of yersiniabactin by *Yersinia pestis*. Chemistry Biology, 5: 573-586.
- Guler, L. and K. Gunduz, 2007. Virulence properties of *Escherichia coli* isolated from clinical bovine mastitis. Turk. J. Veterinary Anim. Sci., 31: 361-365.
- Hacker, J., G. Blum-Oehler, B. Janke, G. Nagy and W. Goebel, 1999. Pathogenicity islands of extraintestinal *Escherichia coli*. In: Pathogenicity islands and other mobile virulence elements, Kaperand, J., J. Hacker, Ed., ASM Press, Washington, D.C., pp. 59-76.
- Huppertz, H., S. Rutkowski, S. Aleksic and H. Karch, 1997. Acute and chronic diarrhoea and abdominal colic associated with enteroaggregative *Escherichia coli* in young children living in western Europe. Lancet, 349: 1660-1662.
- Kaipainen, T., T. Pohjanvirta, N.Y. Shpigel, A. Shwimmer, S. Pyorala and S. Pelkonen, 2002. Virulence factors of *Escherichia coli* isolated from bovine clinical mastitis. Vet. Microbiol., 85: 37-46.
- Karch, H., S. Schubert, D. Zhang, W. Zhang, H. Schmidt, T. Olschlager and J. Hacker, 1999. A genomic island, termed high-pathogenicity island, is present in certain non-O157 shiga toxin-producing *Escherichia coli* clonal lineages. Inf. Imm., 67: 5994-6001.
- Kobori, D., E.C. Rigobelo, C. Macedo, J.M. Marin and F.A. Avila, 2004. Virulence properties of shiga toxin-producing *Escherichia coli* isolated from cases of bovine mastitis in Brazil. Revue d'Elevage et deMedecine Veterinaire des Pays Tropicaux, 57: 15-20.
- Li H.S., J. Yu, J.Y. Luo, X.P. Li and J.Y. Xu, 2002. Bacteriology investigation of bovine mastitis from individual dairy farms in China. J. Traditional Chinese Veterinary Med., 6: 14-17.
- Lucier, T.S., J.D. Fetherston, R.R. Brubaker and R.D. Perry, 1996. Iron uptake and iron-repressible polypeptides in *Yersinia pestis*. Infection Immunity, 64: 3023-3031.
- Naidu, K.G., S.M. Gaddad, C.T. Shivannavar, R.N. Goud and U. Neogi *et al.*, 2007. Prevalence and antibiotic sensitivity of shiga toxin producing *Escherichia coli* in gulbarga region, India. Trends Med. Res., 2: 149-154.
- Penteado, A.S., L.A. Ugrinovich and J. Blanco, 2002. Serobiotypes and virulence genes of *Escherichia coli* strains isolated from diarrheic and healthy rabbits in Brazil. Vet. Microbiol., 89: 41-51.
- Rakin, A., E. Saken, D. Harmsen, J. Heesmann, 1994. The pesticin receptor of *Yersinia enterocolitica*: A novel virulence factor with dual function. Mol. Microbiol., 13: 253-263.
- Rakin, A., C. Noelting, S. Schubert and J. Heesmann, 1999. Common and specific characteristics of the high-pathogenicity island of *Yersinia enterocolitica*. Infection Immunity, 67: 5265-5274.

Asian J. Anim. Vet. Adv., 7 (10): 980-988, 2012

- Schubert, S., A. Rakin, H. Karch, E. Carniel and J. Heesemann, 1998. Prevalence of the high pathogenicity island of *Yersinia* species among *Escherichia coli* strains that are pathogenic to humans. Infect. Immunol., 66: 480-485.
- Schubert, S., A. Rakin, D. Fischer, J. Sorsa and J. Heesmann, 1999. Characterization of the integration site of *Yersinia* high-pathogenicity island in *Escherichia coli*. FEMS Microbiol. Lett., 179: 409-414.
- Wenjie, J., Z.H. Zhiming, Q. Aijian, L. Yuelong, S. Hongxia, Z.H. Yongzhi and H. Xunliang, 2006. Molecular epidemiological investigation of *Yersinia* high island in avian pathogenic *Escherichia coli*. Vet. Sci. China, 36: 787-790.
- Wenz, J.R., G.M. Barrington, F.B. Garry, R.P. Ellis and R.J. Magnuson, 2006. Escherichia coli Isolates' serotypes, genotypes and virulence genes and clinical Coliform mastitis severity. J. Dairy Sci., 89: 3408-3412.
- Xiang, C.H., Z.H. Juan, G. Song, M. Xiaoqing and L. Jing *et al.*, 2006. Detection of related genes of LEE and HPI pathogenicity island of *Escherichia coli* strains isolated from pigs in China. Chin. J. Zoonoses, 22: 33-47.
- Yong, W., W. Hong, X. Qian, S. Suxia and Y. Shouyi, 2002. Detection of the high-Pathogenieity island of *Yersinia enterocolitica* in enterotoxigenic and entero Pathogenic *E. coli* strains. J. First Mil. Med. Uni., 22: 580-583.