aJava

Asian Journal of Animal and Veterinary Advances

Asian Journal of Animal and Veterinary Advances 8 (4): 683-690, 2013 ISSN 1683-9919 / DOI: 10.3923/ajava.2013.683.690 © 2013 Academic Journals Inc.

Inconsistencies Between Morphological and Genetic Subspecies of Grant's Gazelle (Nanger granti)

Nozomi Kurihara and Sin-Ichiro Kawada

National Museum of Nature and Science, Department of Zoology. 4-1-1, Amakubo, Tsukuba-shi, Ibaraki, Japan

Corresponding Author: Nozomi Kurihara, National Museum of Nature and Science, Department of Zoology, Ibaraki, Japan

ABSTRACT

Grant's gazelles exhibit wide variations in coat color and horn shape and nine subspecies have been described using morphological characters. Recently, some authors recognized three subspecies, $N.\,g.\,g.\,mati,\,N.\,g.\,notata$ and $N.\,g.\,petersi$, based on three distinct genetic clades of Grant's gazelles from Kenya. However, morphological characters for the individuals in the clades and/or genetic characters of the type specimens have not been shown. Thus, there is no evidence to connect the genetic clades to the type specimens and these three subspecies are only tentatively recognized. In this study, the relationships between morphological and genetic subspecies were examined by comparing the morphological and genetic features of four specimens. There were some inconsistencies between morphological and genetic subspecies. Although, NSMT-M 32104 had the genetic type of $N.\,notata$, the coat color of this specimen was that of $N.\,g.\,brighti$. NSMT-M 32284 and 32287 had the genetic type of $N.\,g.\,granti$, whereas coat color in these specimens was that of $N.\,g.\,serengetae$. NSMT-M 32166 had the genetic type of $N.\,g.\,notata$, but the morphological subspecies of this specimen was unclear because much of the body was missing. It is considered that inconsistencies between morphological and genetic subspecies are attributable to insufficient information about morphological variations and insufficient comparison with type specimens.

Key words: Grant's gazelle, *Nanger granti*, taxonomy, morphological subspecies, genetic subspecies

INTRODUCTION

Grant's gazelle (Nanger granti) inhabits semi-desert open savannas and treeless plains from southern Sudan and Ethiopia to central Tanzania (Skirka and Swank, 1971; Kingdon, 1982; East, 1999). Grant's gazelle is distinguished from other Nanger species by the following characters: extensive area of white hairs around the anus, reddish brown face with a dark nose patch, skull length of 22-27 cm in adults, horns not curving strongly backward, horn tip not facing toward the medial side, a large pygal band in some populations and a lateral band in some populations (Gentry, 1971).

Taxonomy within this species is confused because of the wide variations in horn shape and coat color (Kingdon, 1982). Although nine subspecies were described based on morphological characters, some authors claimed that most of the subspecies were indistinct in the field (Walther, 1972; Leuthold, 1981). Recently, genetic studies revealed three geographic populations in Kenya (Arctander et al., 1996; Lorenzen et al., 2008) recognized the populations as the subspecies

N. g. granti (Brooke 1872), N. g. petersi (Gunther 1884) and N. g. notata (Thomas, 1987). Groves and Leslie Jr. (2011) regarded these subspecies as distinct species because of the long separations between the clades. However, Lorenzen et al. (2008) did not describe the morphological features of the specimens analyzed in their study and did not include any type specimens. Therefore, the subspecies recognized in their study are not evidential. To define subspecies or species, it is necessary to show the connections between specimens and the type specimen.

In this study, four Grant's gazelles were examined using morphological and molecular methods. To verify the relationship among morphotypes, genetic types and type specimens, these four gazelles with the genetic subspecies recognized by Lorenzen *et al.* (2008) and the morphological descriptions of the type specimens were compared.

MATERIALS AND METHODS

Four specimens of Grant's gazelle (NSMT-M 32104, 32166, 32284 and 32287), which were collected in 1958-1988 by the late Watson T. yoshimoto and donated to the National Museum of Nature and Science, Tokyo and the W.T. Yoshimoto Foundation, Hawaii were examined. These specimens are composed of three mounted skins and a trophy made by the taxidermy company Kleinburger in Seattle (Table 1).

Morphological analysis: Horn shape and coat color were examined (Fig. 1). The distance between the tips of the horns was measured to the nearest 0.5 mm with calipers and the angle of each horn at the root was measured from photographs. The coat color was described using a color chart, RAL D2 (United Color Systems, Inc.), in addition to words because it is difficult to explain the correct color using only words. RAL color is a standard color system and the number is transcribed in order of hue, lightness and chroma based on a hue circle (for example, RAL 030 40 40 for red).

The specimens were identified as morphological subspecies by comparison with the original descriptions of nine subspecies (Thomas, 1987, 1901, 1903; Neumann, 1906; Heller, 1913) and other morphological studies (Lydekker, 1914; Grubb, 2000).

Molecular analysis: Using an Ultra Clean[™] Tissue DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA), total DNA from each specimen was extracted from bone powder obtained from the cornual process in the horn. The samples were added to 1.5-1.8 mL of 0.5 mM EDTA, pH 8.0 and incubated for 3 days at room temperature. Further procedures followed the manufacturer's protocol. Two primers designed by Kocher et al. (1989), HL15926 and HH16397 and four primers designed in this study, DLF220 (5'-TGTCCRCATGCATATAAGCA-3'), DLR125 (5'-TCCACATTTATGAAGCTATATTGATAGTCT-3'), DLF155G(5'-CCTGAAAGACTATCAATATAGCT-3'), DLR330G (5'-CATGTGGACAATCATTTAATGTAC-3') and HL15926modif.2 (5'-TTACACCAGTCTTGTAAACCGAAGGA-3'), were used to amplify and sequence the mitochondrial DNA D-loop (Table 2). Polymerase Chain Reaction (PCR) amplification was performed in a 10 μL

Table 1: Core data of our specimens

Museum No.	Sex	Locality	Date	Specimen type
NSMT-M 32104	Male	Dire Dawa, Ethiopia	Oct. 1988	Mounted skin
NSMT-M 32166	Unknown	Narok, Masai Reserve, Nirobi, Kenya	Jan. 1958	Trophu
NSMT-M 32284	Male	Ruvu, Burigi, Tanzania	Jul. 1986	Mounted skin
NSMT-M 32287	Male	Ruvu, Burigi, Tanzania	Jul. 1986	Mounted skin

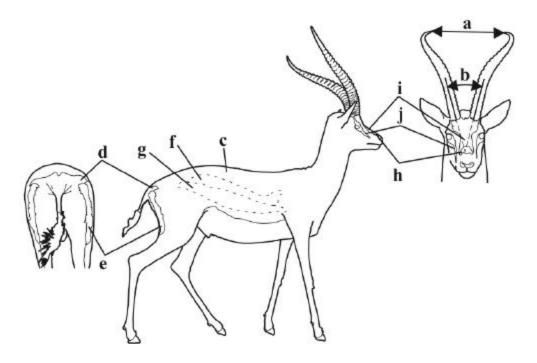


Fig. 1(a-j): Morphological characters examined in this study, a: Horn-spread (distance between the tips of the horns), b: Angle of each horn at the root, c: Back color, d: Color of the white rump patch, e: Color of the pygal band, f: Color of the light lateral band, g: Color of the dark lateral band, h: Color of the nose patch, i: Color of the bridge line at the nose and j: Color of the cheek line

volume containing $10\times\mathrm{Ex}\ Taq$ Buffer (Takara Bio Inc., Japan), 2.5 mM MgCl₂, 0.2 mM dNTPs (Takara Bio Inc., Japan), 2 $\mu\mathrm{M}$ forward and reverse primers, 0.5 U of Ex Taq (Takara Bio Inc., Japan) and 1.0 $\mu\mathrm{L}$ of template DNA, for a total of 46 cycles: 10 cycles of 94°C for 20 sec, 40°C for 20 sec, 40°C for 20 sec, 40°C for 30 sec, followed by 36 cycles of 94°C for 20 sec, 49°C for 20 sec and 72°C for 30 sec. Direct sequencing was carried out for 27 cycles of 96°C for 10 sec, 48°C for 5 sec and 60°C for 4 min.

To identify genetic subspecies, our specimens were compared with the genetic subspecies identified by Lorenzen et al. (2008). Phylogenetic relationships among the D-loop sequences of our specimens (GenBank accession numbers JN801151-JN801154) and the 27 specimens in Lorenzen et al. (2008) (15 N. g. granti (EU029808, EU029815, EU029818, EU029819, EU029826, EU029845, EU029852, EU029860, EU029863, EU029866, EU029868, EU029869, EU029878, EU029884 and EU029885), five N. g. notata (EU029893, EU029898, EU029899, EU029911 and EU029914) and five N. g. petersi (EU029917, EU029925, EU209926, EU029929 and EU029930), were estimated by the neighbor-joining (NJ) method using Kimura's two-parameter model (Kimura, 1980). A blackbuck (Antilope cervicaptra: AP003422) was used as the outgroup.

RESULTS

Morphological subspecies: Four specimens had variations in horn-spread and the angle between the horns at the roots (Table 2). NSMT-M 32284 had horns like those of *N. g. robertsi*, characterized by a remarkably wide spread (Table 2). Other specimens were not identified to subspecies by horn shape alone.

Greenish RAL 075 leghorn (granti-075 40 Cheek umber bellow sienna type?) above lines) 5040 RALdark and eyes (not RAI. 090 Bridge line RAL 080 20 Dark black raw sienna Yellowish Greenish RAL 060 RAL 075 RAL 060 yellow sienna brown 5030 cream 8030 RawFace color RAL 050 RAL 060 RAL 060 RAL 050 brown brown brown Black 20 10 Broze 40 20 30 20 Black patch 20 10 Dark Nose Dark color lateral band Absence Absence Absence Absence Absence Dark Black lateral band Deep black Light buff Burnt umber Yellowish RAL 080 Absence RAL 075 Absense RAL 060 30 leghorn Light 90 10 80 20 Burnt umber Ivory RAL 060 Absence (brighti-Obsolete 30 10 Pygal Black type) band 10 Division of white-Divided partially Divided partially (serengetae-type) (within 2.54 cm) within 2.54 cm by insertion by insertion of back color of back color rump patch (serengetae-Table 2: Summary of horn shape and coat color for our specimens and the type specimens of Grant's gazelle Undivided type) White-rump RAL 085 90 RAL 090 90 RAL 085 90 Light ivory Light ivory Pale ivory patch White Yellow ocher RAL 070 60 RAL 060 60 30 (brighti Light buff Body color Buff RAL 060 60 20 -type) Fawn Back side horns at root Angle of both 21° 27° 27° (robertsi-type) Horn shape *496.5 mm 276.1 mm 240.1 mm $287.0 \, \mathrm{mm}$ Scarcely $_{
m spread}$ Horn-Reference (Brook g., (Thomas, (Thomas, Gunter, 1884) 1987) 1901) Museum No. subspecies or type of Type of N. NSMT-M Type of N. Type of N. NSMT-M Type of N. NSMT-M NSMT-M g. granti g. brighti g. notata g. petersi 3216632104 32284

cinnamon cinnamon cinnamon Dusky Dusky Cheek Dusky Bridge line Cinnamon Cinnamon Cinnamon -rufous -rufous -rufous Face color brown g. Clove-Clovebrown patch DarkNose sepia lateral band Absence Absence Darklateral band Clove-brown Light buff Light buff Obsolete ness Bister Pygal Black band Division of whiteinsersion to tail completely by rump patch Undivided Undivided Divided White-rump Pure white Pure white Pure white White patch Imall Vinaceous -cinnamon Body color vinaceous-Mikadobrown Light Black side horns at root Angle of both Neally pararel and were very Tips outwerd Horn shape 463.55 mm 171.45 mm 241.3 mm far apart spreadHorn-(Neumann, Reference (Thomas, (Heller, (Heller, (Heller, 1913) 1913) 1903) 1906) 1913) g. serengetæ Museum No. subspecies g. lacuum g. raineyi or type of Type of N. g. robertsi Type of N. Type of N. Type of N. Type of N. roosevelti

The diagnostic character of each subspecies described in Heller (1913) and/or Lydekker (1914)

Table 2: Continue

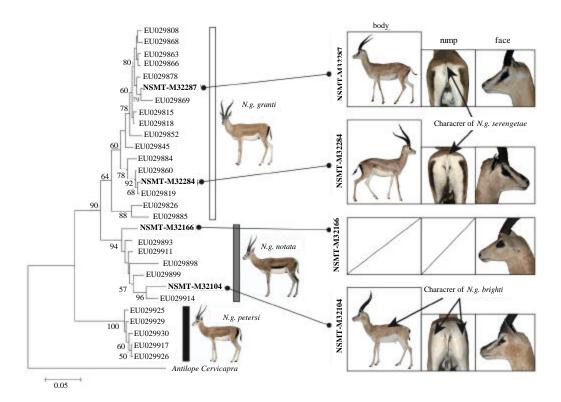


Fig. 2: Relationships among the genetic and morphological subspecies for our specimens, Phylogenetic relationships were established using our specimens and the specimens in Lorenzen et al. (2008), The figures of N. g. granti, N. g. notata and N. g. petersi were cited from Groves and Leslie Jr. (2011)

The body and facial colors of our specimens are summarized in Table 2. All of our specimens in which the body parts were present had a white rump patch and no dark lateral bands (Table 2, Fig. 2). NSMT-M 32104 was distinguishable from the others by lighter back color and no pygal bands (Table 2, Fig. 2) and resembled the type of N. g. brighti (Table 2). NSMT-M 32284 and 32287 had similar body colors, although the light lateral band was obscured in NSMT-M 32287 (Table 2, Fig. 2). The white rump patch was partially bifurcated by color from the back. Therefore, these specimens were identified as N. g. serengetae (Table 2, Fig. 2). The body color of NSMT-M 32166 was not examined because that part of the body was missing.

Our specimens also varied in facial color (Table 2, Fig. 2). NSMT-M 32284 and 32287 had similar facial colors, while NSMT-M 32104 was distinguished from the others by a darker bridge line of the nose. NSMT-M 32166 did not have a cheek line, which was also the case in the type of N. g. granti.

Genetic subspecies: Our specimens exhibited 68 variable sites in a 364 bp fragment of the D-loop. The phylogenetic relationships among the partial D-loop sequences from our specimens and sequences in GenBank showed three clades of subspecies (Fig. 2). NSMT-M 32104, with N. g. brighti coat color and NSMT-M 32166, of unknown morphological subspecies, were in the N. g. notata clade. NSMT-M 32284 and 32287, with N. g. serengetae coat color, were in the N. g. granti clade.

DISCUSSION

Coat color and horn shape differed among our specimens, supporting a wide morphological variation in Grant's gazelles (Kingdon, 1982; Gentry, 1971). Our results also showed that morphological subspecies are inconsistent with genetic subspecies.

In the present study, morphological and genetic subspecies were identified by comparison with type descriptions and by following Lorenzen et al. (2008), respectively. The inconsistencies between the morphological and genetic subspecies found in our specimens suggest the possibility that Lorenzen et al. (2008) misplaced subspecies names to genetic clades. For example, NSMT-M 32104 had N. g. brighti coat color but the genetic type of N. g. notata, indicating that the genetic clade regarded as N. g. notata by Lorenzen et al. (2008) was N. g. brighti. Lorenzen et al. (2008) simply named the genetic clade composed of specimens from northern Kenya as 'N. g. notata', which was first described in northern Kenya, despite the strong possibility that the population called 'N. g. notata' is extinct (Grubb, 1994). Groves and Grubb (2011) insisted with no evidence that N. g. brighti was a synonym of N. g. notata. However, N. g. brighti is easily distinguished from N. g. notata by coat color (Table 2) and there is no genetic data indicating that these are the same subspecies.

On the other hand, inconsistencies found in NSMT-M 32284 and 32287 may sustain previous taxonomic opinions (Lorenzen et al., 2008; Groves and Grubb, 2011). NSMT-M 32284 had the coat color of N. g. serengetae and the horns of N. g. robertsi (Table 2), suggesting that these two are the same subspecies. In addition, Walther (1972) reported that N. g. robertsi and N. g. granti were observed in the same herd and Groves and Leslie Jr., 2011 recognized the horns of N. g. robertsi as a variant type of N. g. granti. Thus, it is implied that N. g. robertsi and N. g. serengetae are junior synonyms of N. g. granti, making it appropriate for NSMT-M 32284 and 32287, with the coat color of N. g. serengetae, to be positioned in the genetic clade of N. g. granti.

The present study demonstrated taxonomic inconsistencies in Grant's gazelles. This fact indicates that taxonomy in Grant's gazelles have a problem with unclear diagnostic characters of subspecies. It is considered that these inconsistencies are attributable to insufficient information about morphological variations and insufficient comparison with type specimens.

ACKNOWLEDGMENTS

This study was supported by a donation from the W.T. Yoshimoto Foundation, Hawaii. We express sincere gratitude to Drs. Tadasu K. Yamada, Yuko Tajima and Manami Makara (National Museum of Nature and Science) and Miss Hiroko Nagaoka (National Museum of Nature and Science) for their help in this study. We are indebted to Miss Eri Kato (University of Tokyo) for determining the detailed localities of the specimens from Yoshi's diary and the 16 mm rolls from hunts by the late Watson T. Yoshimoto. We thank Drs. Tsuneo Kakuda (National Museum of Nature and Science), Toshiaki Kuramochi (National Museum of Nature and Science), Takashi Sato (National Museum of Nature and Science), Ken-ichi Shinoda (National Museum of Nature and Science), Isao Nishiumi (National Museum of Nature and Science), Kuniko Kawai (Hokkaido University), Akio Shinohara (Miyazaki University), Azusa Hayano (Kyoto University) and Chiouju Yao (National Museum of Natural Science) for technical advice on molecular methods and insightful discussion.

REFERENCES

Arctander, P., P.W. Kat, R.A. Aman and H.R. Siegismund, 1996. Extreme genetic differences among populations of Grant's gazelle (*Gazella granti*) in Kenya. Heredity, 76: 465-475.

Asian J. Anim. Vet. Adv., 8 (4): 683-690, 2013

- Brooke, V., 1872. On a supposed new species of gazelle from Eastern Africa. Proc. Zool. Soc. London, 2: 600-602.
- East, R., 1999. African antelope database 1998. The IUCN Species Survival Commission, Antelope Specialist Group. http://data.iucn.org/dbtw-wpd/edocs/ssc-op-021.pdf
- Gentry, A.W., 1971. Genus *Gazella*. In: The Mammals of Africa: An Identification Manual, Meester, J. and H.W. Setzer (Eds.). Smithsonian Institution Press, Washington, DC., USA., pp: 87-88.
- Groves, C. and D.M. Leslie Jr., 2011. Genus Nanger. In: Handbook of the Mammals of the World: Hoofed Mammals, Wilson, D.E. and R.A. Mittermeier (Eds.). Vol. 2. Lynx Edicions, Barcelona, Spain, pp: 635-637.
- Groves, C. and P. Grubb, 2011. Ungulate Taxonomy. Johns Hopkins University Press, Baltimore, MA., USA., ISBN-13: 978-1421400938, Pages: 336.
- Grubb, P., 1994. Genetic analysis of African bovids. Gnusletter, 13: 4-5.
- Grubb, P., 2000. Morphological Evolution in Ungulates. In: Antelopes, Deer and Relatives: Fossil Record, Behavioral Ecology, Systematics and Conservation, Vrba, E.S. and G.B. Schaller (Eds.). Yale University Press, New Haven and London, ISBN-13: 9780300081428, pp: 156-170.
- Gunther, A., 1884. Note on some East-African antelopes supposed to be new. Ann. Mag. Nat. History, 14: 425-429.
- Heller, E., 1913. New Races of Antelopes from British East Africa. Vol. 61, Smithsonian Institution, Washington DC, USA., Pages: 13.
- Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120.
- Kingdon, J., 1982. East African Mammals: An Atlas of Evolution in Africa. Vol. 3, The University of Chicago Press, Chicago, IL, USA.
- Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca and A.C. Wilson, 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA., 86: 6196-6200.
- Leuthold, W., 1981. Contact between formerly allopatric subspecies of Grant's gazelle (Gazella granti Brooke, 1872) owing to vegetation changes in Tsavo National Park, Kenya. Z. Saugetierkunde, 46: 48-55.
- Lorenzen, E.D., P. Arctander and H.R. Siegismund, 2008. Three reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Grant's gazelle. Conserv. Genet., 9: 593-601.
- Lydekker, R., 1914. Gazella (Nanger) Granti. In: Catalogue of the Ungulate Mammals in the British Museum (Natural History), Lydekker, R. (Ed.). Vol. 3. Department of Zoology, London, UK., pp: 86-96.
- Neumann, O., 1906. Some gazelles and antelopes. Ges. Nat. Freunde, Berlin, pp. 236-248.
- Skirka, P. and W.G. Swank, 1971. African Antelope. Winchester Press, New York, USA., ISBN-13: 9780876910290, Pages: 143.
- Thomas, O., 1987. Diagnosis of a new subspecies of Gazelle from British East Africa. Ann. Mag. Nat. History, 20: 479-482.
- Thomas, O., 1901. List of mammals obtained by Dr. Donaldson Smith during his recent journey from Lake Rudolf to the Upper Nile. Proc. Zool. Soc. London, 1900: 800-807.
- Thomas, O., 1903. On a new form of Grant's gazelle. Proc. Zool. Soc. London, 2: 119-120.
- Walther, F.R., 1972. Social grouping in Grant's gazelle (*Gazella granti* Brooke 1827) in the Serengeti National Park. Zeitsc. fur Tierpsy., 31: 348-403.