aJava

Asian Journal of Animal and Veterinary Advances

Asian Journal of Animal and Veterinary Advances 10 (9): 476-488, 2015 ISSN 1683-9919 / DOI: 10.3923/ajava.2015.476.488 © 2015 Academic Journals Inc.

Augmentation of Milk Production by Supplementing Bypass Fat in Dairy Animals

Mahendra Singh, A.K. Roy and Shikha Sharma Dairy Cattle Physiology Division, National Dairy Research Institute, Karnal, 132001, Harayna, India

Corresponding Author: Mahendra Singh, Dairy Cattle Physiology Division, National Dairy Research Institute, Karnal, 132001, Harayna, India

ABSTRACT

Pregnancy and lactation are the physiological states which modify metabolism in animals and induce stress. The period of transition between late pregnancy (-3 weeks) and early lactation (+3 weeks) presents huge metabolic challenges in terms of energy balance, plasma metabolites and hormonal changes. High rates of Body Condition Score (BCS) losses are associated with a severe negative energy balance conditions immediately after the calving. Energy deficiency due to decreased dry matter intake during the periparturient period results in increased lipolysis of body fat. The release of non-esterified fatty acids and higher β-hydroxybutyrate concentrations are indicative of lipid mobilization and fatty acid oxidation. Animals have to utilize their body reserves to support lactogenesis and milk production resulting in metabolic disorders and sub-optimal milk vield under these conditions. Most of the lactating animals are fed crop residues in the tropical countries, which are generally low in energy, protein and minerals. Increased amount of energy secreted into milk fat and lesser feed intake puts high yielder cows and buffaloes in negative energy balance (NEBAL), metabolic disorders and suboptimal milk production. Maximizing the energy intake by increasing the energy density of diet is a logical feeding strategy during transition period and in early lactating animals. Feeding large amounts of cereal grains decrease ruminal pH, ruminal fiber digestibility, acetate/propionate ratio, milk fat concentration and increase the risk of ruminal acidosis. Scientific interventions have been carried out from time to improve energy balance by supplementing bypass fat and proteins. Bypass fats are commonly referred to as ruminal inert fat, protected fat and escape fat and are more expensive per unit of energy provided compared to commodity fats. Calcium salts of fatty acids increase milk yield and fat contents but partially degrade in the abomassum. Prill fat, a bypass fat is available in different forms and augments productive performance of lactating animals by getting digested in the small intestine. However response varies depending upon the milk production levels and the body condition of animals. The present review discusses the role of bypass fat in enhancing the milk production performance and its effect on hormones, digestibility coefficients and energy balance.

Key words: Bypass fat, milk, yield, lactating animals, energy balance, reproduction

INTRODUCTION

Livestock is an integral part of India's agricultural economy and plays a multifaceted role in providing livelihood support to the rural population. It is estimated that about 70 million rural households own livestock of one species or the other (Livestock census, 2013). Nutrition of

transition cows and management has received much attention in the research and popular literature in recent years because of its importance in the productivity and health of cows (Block, 2010). The occurrence of health problems during the transition period is a major complicating factor for subsequent reproductive performance resulting in additional economic losses (Ferguson, 2001; Remppis et al., 2011). Poor transitions also result in losses from milk income. Indian cows and buffaloes are reared on a crop-residue system where as organized livestock farms manage animals as per the scientific requirements. The gap between the requirement and availability of feed and fodder is increasing primarily due to decreased area of fodder under cultivation and reduced availability of crop residues. The milk production potential of lactating animals varies and is not fully expressed under these conditions. Metabolic disorders like ketosis, retention of placenta occurs due to disturbed energy balance (Bargo et al., 2002). Attempts have been made to augment milk production from dairy animals with bovine somatotropin which is galactopoietic in nature (Bachman et al., 1992; Singh and Ludri, 1994). Because of the environmental hazards and secretion of hormone into milk, the application of this technology could not become popular (Prasad and Singh, 2010). Subsequently researchers focused on the use of non-hormonal preparations and herbal medicine to augment lactation because they augment milk yield without affecting the energy balance (Singh et al., 2012). The use of bypass fat and protein has been the topic of research to augment milk production for many years (Singhal et al., 2011; Kumar et al., 2014). Bypass fat supplementation increases energy density of the diet which is reflected in improved BCS and productive performance of animals (Ganjkhanlou et al., 2009). The high-yielding modern dairy cow is a product of many years of genetic selection that continually placed emphasis on milk yield through the utilization of progeny tested bulls, sexed semen technology improved management technologies and better nutrition (Rodriguez-Martinez et al., 2008). Such cows need better energy supplements to minimize the deleterious effect of less dietary intake and body weight losses during transition period. This could be achieved to a greater extent by providing high energy diet like rumen protected or inert fat during transition and early lactation. The high yielding crossbred cows and elite buffaloes face big challenge in meeting their nutrient requirements and sustaining milk production due to their subsistence on poor quality native grasses, crop residues and agro-industrial by-products (Goff and Horst, 1997). There are 190.90 and 108.7 million cattle and buffaloes in India out of which only 43.95 and 36.57 million produce milk. Taking an average 10% increase in milk production by feeding of bypass fat, about 13 million tons of milk can be obtained. This could further improve the production potential of over one billion breedable dairy animals in India.

BYPASS FAT

Over the years several methods have been developed to produce rumen inert fatty acids like prilled fatty acids, calcium salt of fatty acids etc. (Schauff and Clark, 1989). Calcium salts of fatty acids are most commonly used as they are cheaper in price. Prilled Fat (PF) is prepared after liquefaction and spraying the solution of saturated fatty acids under pressure into a cooled atmosphere. Saturated fat like animal fats, palm oil have a higher melting point viz, 50-60°C in contrast to the temperature of 38-39°C in the rumen (Chalupa *et al.*, 1986). That is why PF is not affected by the ruminal temperature. Calcium salts of fatty acid are produced by double decomposition and fusion method. The calcium soaps are insoluble in rumen pH of 6.2-6.8 but

soluble in the abomasum where the pH ranges between 2-3. In double decomposition method, fat source is heated in a metal container followed by addition of aqueous sodium hydroxide solution with constant stirring until the fatty acids are dissolved. Calcium chloride solution is added slowly with constant stirring, while the contents are still warm. This causes the precipitation of calcium soaps. The calcium soap is dried at low temperature and grounded before mixing into the ration.

ADVANTAGES OF BYPASS FAT

Energy density of the diet can be increased by fat supplementation but high dietary fat results in the reduction of fibre digestion in the rumen and a decline in milk fat percentage (Palmquist and Jenkins, 1980). Bypass fat supplementation in the ration of lactating animal, enhances the energy intake and reduces the adverse effect of NEBAL during early lactation (Drackley, 1999; Ganjkhanlou et al., 2009) without affecting rumen cellulolytic bacterial activity (Thakur and Shelke, 2010). Unprotected fats cause physical and chemical changes in the microbial fermentation of feed and depress rumen cellulolytic microbial activity (Palmquist, 1991). So, the feeding of rumen inert fat is partially resistant to bio-hydrogenation by the rumen microbes and reduces risk of metabolic acidosis (Naik, 2013). Supplementation of bypass fat before parturition could reduce the detrimental effects of NEBAL (Fig. 1) which could improve lactation as well as the metabolic performance (Duske et al., 2009). Adding protected fat to dairy rations can positively affect the efficiency of dairy cows through a combination of caloric and non-caloric effects. Caloric effects are attributed to higher energy content and energetic efficiency of lipids as compared to carbohydrates with the overall benefits of increased milk production and the persistency of lactation. The non-caloric effects include improved reproductive performance and altered fatty acid profile of milk (Tyagi et al., 2010). Rajesh (2013) reported that supplementation of PF during early lactation improved milk yield and reproductive performance in crossbred cows.

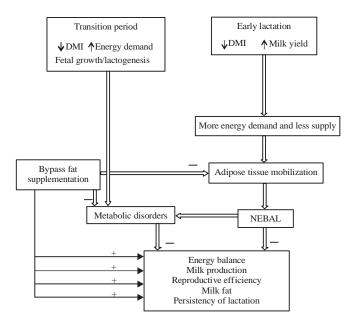


Fig. 1: Energy balance of dairy animals during transition and early lactation

FEEDING OF BYPASS FAT

The ration of high producing animals may contain 4-6% fat, which should include fat from natural feed, oil seed and bypass fat in equal proportions (Sharma, 2004). Under Indian feeding conditions different doses like 200 g bypass fat (Naik et al., 2009), 300 g (Sirohi et al., 2010), 150-200 g calcium salts of rice bran fatty acid oil (Wadhwa et al., 2012) and 75 g PF (Rajesh, 2013) have been used in the daily diet of lactating crossbred cows. Supplementation of bypass fat at 2.5% of total DM intake in the lactating crossbred cows has also been reported by Tyagi et al. (2009). There can be 3-4% fat in the dietary DM in the form of supplemental fat. The milk and fat yield in crossbred cows can further be enhanced by feeding of bypass fat with rumen protected choline chloride (Garg et al., 2012). Although, PF can be incorporated up to 9% of the dietary DM due to its inertness in rumen (Sharma, 2004), yet feeding of Ca-LCFA at 9% of the dietary DM has not benefitted the lactating dairy cows (Schauff and Clark, 1992). Supplementation of 6-8% of ration on DM basis with Ca-LCFA had no adverse effect on rumen fermentation of dairy animals (Naik et al., 2010). Use of dietary fat spares energy by increasing metabolic efficiency for milk production by generating ATPs more efficiently than VFA or protein. It lowers heat production, incorporate preformed FA into milk fat and optimize forage fiber intake and rumen function by substituting the rapidly fermentable carbohydrate (Palmquist, 1994). Milk fat of dairy animals consists of a mixture of short, medium and long chain Saturated Fatty Acids (SFA) and Unsaturated Fatty Acids (USFA). Milk fat of less than 16 carbons is synthesized de novo in the mammary glands. The Fatty Acids (FA) of more than 16 carbons are synthesized from diets while FA with 16 carbons are synthesized from both diet and de novo synthesis (Castaneda-Gutierrez et al., 2005). Thus feeding of prilled or bypass fat either increases milk fat content or the efficiency of milk production.

Supplementing rumen bypass fat might affect the following attributes in the dairy animals.

RUMEN FERMENTATION

Supplementation of bypass fat has no adverse effect on rumen fermentation even at 5-15% of the dietary DM (Chalupa *et al.*, 1985, 1986). Parameters like ruminal pH, NH₃-N and TVFA level have no adverse effect on the supplementation of Ca soaps up to 5% of dietary DMI in lactating cows (Ohajuruka *et al.*, 1991) and buffaloes (Naik *et al.*, 2010). However, molar percentage of acetate and acetate to propionate ratio increased linearly (Schauff and Clark, 1992). The effectiveness of PF supplementation on rumen metabolism depends upon the level of inclusion, roughage to concentrate ratio and type of roughage fed. The mixture of cereal grains and forages usually contain about 3% fat, so that the total dietary fat does not exceed 6-7% of the total DMI (NRC., 2001).

DIGESTIBILITY OF NUTRIENTS

As parturition approaches, there is a progressive decrease in DMI with an overall decrease of 30% in the last 3 weeks of gestation and almost 90% of this decrease occurring in 5-7 days before calving (Ingvartsen and Andersen, 2000). There was no adverse effect of rumen protected fat and protein supplementation on DMI of buffaloes and cows during mid lactation (Singh *et al.*, 2014) and prior to calving (Shelke *et al.*, 2012). The digestibility of ADF may increase (Naik, 2013) or may not change (Thakur and Shelke, 2010) on supplementation of bypass fat. The PF supplementation did not affect the digestibility of DM, OM, CP, CF, NFE, TCHO, NDF and cellulose (Rajesh, 2013; Singh, 2015). However, EE digestibility increases with Ca salts of palm FA or PF in dairy cows (Thakur and Shelke, 2010; Weiss *et al.*, 2011; Rajesh, 2013). The lower fat digestibility at higher

level of supplementation may be due to the limited capacity of small intestine to absorb fat or masking effect of endogenous faecal fat (Ngidi et al., 1990). The digestibility of the SFA decreases with an increase in the chain length and unsaturation of fatty acids increases the digestibility; therefore, palmitic acid is more digestible and stearic acid is less digestible than the average fatty acid mixture in the ruminants (Palmquist, 1994). The NDF digestibility increased linearly on increasing the level of Ca soap in diet (Ngidi et al., 1990) due to the increase in the post-ruminal degradation (Chouinard et al., 1998). Naik et al. (2007) reported no influence of bypass fat supplementation on the cellulose digestibility of buffaloes. Hemicellulose digestibility remains unchanged (Schauff and Clark, 1992), increases (Garcia-Bojalil et al., 1998) or decreases (Naik et al., 2007) with the inclusion of bypass fat in the diet. Prilled Fat (PF) feeding enhances energy balance of buffaloes by improving DE, ME and net energy of lactation.

MILK YIELD AND ITS COMPOSITION

Bypass fat supplementation at 1.4% of DMI (200 g day⁻¹) increased the milk production and feed efficiency in lactating Murrah buffaloes (Ranjan *et al.*, 2012). There was an improvement of 6.02% in milk yield of early lactating crossbred cows fed 75 g day⁻¹ per animal PF (Rajesh, 2013). Similar amount of PF feeding to Murrah buffaloes resulted in 10% increase of milk yield in organized herd (Singh, 2015) and 17% increase under field conditions (Khan *et al.*, 2015). Effect of supplemental bypass fat on milk yield depends upon breed, parity, stage of lactation of animal, level of supplementation and the type of protected fat, i.e., PF or Ca-LCFA.

Among all milk components, fat is the most sensitive variable to dietary changes. An increase in the proportions of LCFA (C18:1, C18:2, C18:3) takes place due to more uptake of preformed LCFA from blood (Mishra *et al.*, 2004). The supplementation of bypass fat increases milk fat in lactating cows (Fahey *et al.*, 2002; Purushothaman *et al.*, 2008; Rajesh, 2013; Yadav *et al.*, 2015). The average daily milk yield increased by 1.13 kg day⁻¹ (20.42 vs. 21.55 kg day⁻¹) in the bypass fat (150-200 g day⁻¹ per cow) supplemented group (Wadhwa *et al.*, 2012). The increased milk yield in prilled fat supplemented cows is due to improved persistency of lactation (Fig. 2). Milk yield was not affected by dietary supplementation of Ca alts of CLA in lactating dairy cows (Castaneda-Gutierrez *et al.*, 2005).

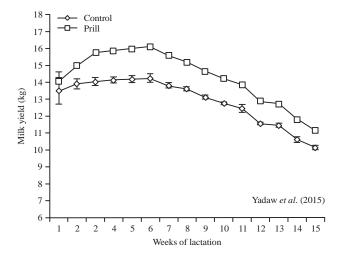


Fig. 2: Lactation curve of PF supplemented cows

BODY WEIGHT AND BCS

The body weight of the animals improved in the bypass fat supplemented group as compared to the control group (551 vs. 508, kg), though the differences were non-significant (Wadhwa $et\ al.$, 2012). Feeding of calcium salt of palm oil fatty acids significantly reduced (p<0.05) the loss in body weight (11.72 vs. 38.30) in comparison to that of control group (Vahora $et\ al.$, 2013). Metabolic body weight at the beginning of experiment was more (p<0.05) in the control cows; however after 90 days of experiment the metabolic weight increased significantly (p<0.05) in the PF supplemented cows (Singh $et\ al.$, 2014).

Body Condition Score (BCS) provides better estimate of body fat distribution than the body weight. The decline in BCS (p<0.01) was more in control than the PF supplemented cows (Singh $et\ al.$, 2014). Lipid mobilized from body reserves makes a substantial contribution to the energetic cost of milk production during early lactation. Dairy cows are successively mobilizing and storing body reserves during the lactation cycle. However, additional dietary fat could result in better energy partitioning and improved energy balance in dairy animals (Friggens $et\ al.$, 1993; Sharma $et\ al.$, 2015). The amount of body fat mobilized to meet the energy deficit was equivalent to 50% of the milk fat output over the first 5 weeks of lactation in high yielding dairy cows. The cows under NEBAL mobilized 50-60 kg of fat during the first 16 weeks of lactation which works out to about 10% of their body weight.

GLUCOSE AND NON-ESTERIFIED FATTY ACIDS (NEFA)

Glucose is the primary metabolic fuel required for vital organ function, foetal growth and milk production (LeBlanc, 2010). Plasma glucose levels remain unaffected by PF supplementation in KF cows during mid-lactation (Singh et al., 2014). NEFA concentration of plasma is also a stronger indicator based on risk and odds ratios, of disease, reproductive performance and milk production than blood BHBA concentration (Huzzey et al., 2011). As a consequence body fat stores are mobilized for milk production leading to NEBAL. LeBlanc (2010) reported a period of NEBAL during early lactation in dairy cows. Blood concentration of NEFA reflects the balance between release of FA from adipose tissue and lipoproteins and utilization of NEFA by tissues such as mammary gland. Chapinal et al. (2012) found that multiparous cows with high concentrations of NEFA at weeks 1 or 2 post-partum produced less milk than cows with normal NEFA concentrations, but such association was not found in primiparous cows. The NEFA levels in PF supplemented cows were different ($p \le 0.05$) in comparison to that of control (0.14 vs 0.20 mM L⁻¹, Singh et al., 2014) while Shelke et al. (2012) have not reported any difference in plasma concentrations of NEFA in bypass fat supplemented cows. Prepartum NEFA and postpartum BHBA were significantly associated with the development of clinical diseases in dairy cows including retention of placenta, displaced abomasum and ketosis (Ospina et al., 2010). However, plasma BHBA did not vary significantly in the control and PF supplemented group (Singh et al., 2014).

TOTAL CHOLESTEROL AND TRIGLYCERIDES

Cholesterol is produced mostly in the small intestinal epithelium to transport dietary lipid. Possible explanations for the prepartum decrease in cholesterol concentrations include the foetal utilization of cholesterol for progesterone synthesis (Guedon *et al.*, 1999). Higher cholesterol level may have favorable effect on the synthesis of reproductive hormones, thus leading to a better reproductive performance of animals in the bypass fat supplemented group (Wadhwa *et al.*, 2012). Plasma cholesterol in the control and PF fed did not vary significantly in the cows during mid

lactation (Singh *et al.*, 2014). Similarly, plasma HDL cholesterol did not differ in PFG cows; however, plasma VLDL cholesterol concentration increased (p<0.05) in PF cows as compared to the control group (80.54 vs 86.13 mg dL^{-1}).

The term "Fat" usually stands for a triglyceride that is solid or semi-solid at typical environmental temperatures, whereas, "Oil" is a triglyceride that is liquid at working temperatures. Triglyceride level was improved (p<0.01) in the bypass fat supplemented group (Wadhwa $et\ al.$, 2012). The plasma triglyceride concentration in control and PF cows during mid lactation did not vary significantly (Singh $et\ al.$, 2014). There was no significant effect of prepartum and postpartum PF supplementation on plasma triglycerides, HDL and VLDL concentrations; however, cholesterol levels were higher (p<0.05) in the PF cows (Yadav $et\ al.$, 2015).

PLASMA HORMONES

Insulin is an essential peptide product of pancreas which primarily controls blood glucose levels and regulates its uptake by peripheral tissues, most notably in muscles and adipose tissue (Kraft and Durr, 2005). Early lactation is characterized by a decrease in plasma insulin accompanied by a decrease in NEBAL during early lactation in cows (Ingvartsen and Andersen, 2000). The supplementation of Ca-salt of fatty acids (Tyagi *et al.*, 2009) or prill fat did not influence the plasma insulin concentration of cows (Singh *et al.*, 2014). The regulation of GH secretion has been the focus of intensive research for years (McMahon *et al.*, 2001). It inhibits lipid storage in adipose tissue and increases the blood flow to mammary glands. Plasma GH concentration increased (p<0.05) in PFG cows during mid lactation (Singh *et al.*, 2014) and postpartum. The GH has been found to be galactopoetic in the cows (Yadav, 2014) and buffaloes (Prasad and Singh, 2010).

Leptin concentration varies from 5-9 ng mL⁻¹ in dry pregnant cows just 1 month before calving (Kokkonen et al., 2004); it decreased between weeks 4 and 1 prepartum and reached a nadir (3-6 ng mL⁻¹) during the first week postpartum. Plasma leptin concentration did not vary significantly in PFG cows during mid-lactation (Singh et al., 2014). However, prepartum PF feeding increased (p<0.05) postpartum plasma levels of leptin (Yadav, 2014). Ghrelin prepares the body to consume and store energy (Litwack et al., 2008). After parturition, ghrelin decreased in rats below levels that are typically detected before pregnancy (Litwack et al., 2008). Ghrelin signals the deposition of fat by increasing food intake and reducing the fat oxidation (Bradford and Allen, 2008). Ghrelin is also involved in the control of prolactin secretion, which stimulates milk production (Litwack et al., 2008). Therefore, ghrelin levels increased the milk production which helped to gain the body weight of the offspring (Litwack et al., 2008). The plasma ghrelin concentration did not vary significantly in PFG cows during mid lactation (Singh et al., 2014). The postpartum ghrelin concentration decreased (p<0.05) in PFG cows, however it remained unaffected during prepartum (Yadav, 2014). Plasma T₃ and T₄ concentration was higher (p<0.05) in PFG cows during mid-lactation (Singh et al., 2014). However prepartum PF supplementation significantly influence plasma T₃ and T₄ concentrations in cows (Yadav, 2014). There was no significant difference between the cortisol levels of control and PFG cows during early (Yadav, 2014) and mid-lactation (Singh et al., 2014).

REPRODUCTION

The NEBAL lead to an altered metabolism which affects production of IGF during early lactation in cows (Fig. 3). NEBAL may also influence IGF availability in the oviduct indirectly through changes in specific IGFBP expression due to low circulating IGF-I after calving (Fenwick *et al.*, 2008).

Asian J. Anim. Vet. Adv., 10 (9): 476-488, 2015

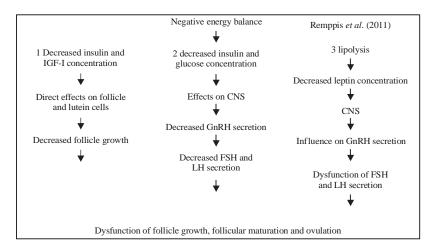


Fig. 3: Effect of NEBAL on reproduction

It has been observed that higher leptin concentrations associated with shorter intervals to first observed estrus might indicate a relationship between leptin and expression of estrus (Liefers *et al.*, 2003). Supplementation of prill fat resulted in significantly (p<0.05) reduced service period in the urban buffaloes than rural ones (Khan, 2015). The conception rate and service period was 46.8% and 80.3 days, respectively in buffaloes (Khan, 2015). Yadav (2014) reported that prepartum supplementation of prilled fat in KF cows significantly (p<0.01) increased calf birth weight and minimized the cases of retention of fetal membrane and metritis. The prilled fat feeding also resulted in earlier resumption of estrous cyclicity, less number of AI per conception and improved conception rate in KF cows (Rajesh, 2013).

PRODUCTION ECONOMICS

The cost of indigenously prepared bypass fat depends upon the cost of its raw materials; However, feeding of bypass fat to dairy animals have reportedly given an additional profit of Rs. 34.50/- (Naik *et al.*, 2009), Rs. 11.60/- (Gowda *et al.*, 2013) and Rs 94.46 per cow per day (Yadav *et al.*, 2015). Similarly, bypass fat feeding of buffaloes yielding 8-9 kg of milk daily resulted in Rs. 26.61 more income per day during early lactation (Parnerkar *et al.*, 2010). The cost benefit ratio of 1.5 has been reported under field conditions (Khan, 2015). It is possible to formulate a strategy in future to get desirable milk yield from the lactating cows through different levels of supplementation with bypass fat. However, further studies may be taken up to investigate the role of various hormones on partitioning of nutrients for lactation and long term consequences of bypass fat feeding to dairy animals.

CONCLUSION

Supplementation of bypass fat improves the energy balance of lactating cows. However, feeding bypass fat during transition results in inconsistent and contradicting results which may be related to the level of fat feeding relative to body condition of the animal. It helps in achieving early metabolic and physiological adaptation in the freshly calved animals by reducing the adipose tissue mobilization. There has been a horizontal growth in lactating animals and now it is essential to achieve a vertical growth in terms of milk production performance by feeding bypass fat.

REFERENCES

- Bachman, K.C., D.H. Wilfond, H.H. Head, C.J. Wilcox and M. Singh, 1992. Milk yields and hormone concentrations of holstein cows in response to sometribove (somatotropin) treatment during the dry period. J. Dairy Sci., 75: 1883-1890.
- Bargo, F., L.D. Muller, J.E. Delahoy and T.W. Cassidy, 2002. Milk response to concentrate supplementation of high producing dairy cows grazing at two pasture allowances. J. Dairy Sci., 85: 1777-1792.
- Block, E., 2010. Transition cow research-what makes sense today? Proceedings of the High Plains Dairy Conference, March 10-12, 2010, Amarillo, TX., pp: 75-98.
- Bradford, B.J. and M.S. Allen, 2008. Negative energy balance increases periprandial ghrelin and growth hormone concentrations in lactating dairy cows. Domestic Anim. Endocrinol., 34: 196-203.
- Castaneda-Gutierrez, E., T.R. Overton, W.R. Butler and D.E. Bauman, 2005. Dietary supplements of two doses of calcium salts of conjugated linoleic acid during the transition period and early lactation. J. Dairy Sci., 88: 1078-1089.
- Chalupa, W.B., B. Vecchiarelli, D. Sklan and D.S. Kronfeld, 1985. Response of rumen microorganisms and lactating cows to calcium salts of long chain fatty acids. J. Dairy Sci., 68: 110-110.
- Chalupa, W., B. Vecchiarelli, A.E. Elser, D.S. Kronfeld, D. Sklan and D.L. Palmquist, 1986. Ruminal fermentation *in vivo* as influenced by long-chain fatty acids. J. Dairy Sci., 69: 1293-1301.
- Chapinal, N., M.E. Carson, S.J. LeBlanc, K.E. Leslie and S. Godden *et al.*, 2012. The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance J. Dairy Sci., 95: 1301-1309.
- Chouinard, P.Y., V. Girard and G.J. Brisson, 1998. Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. J. Dairy Sci., 81: 471-481.
- Drackley, J.K., 1999. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci., 82: 2259-2273.
- Duske, K., H.M. Hammon, A.K. Langhof, O. Bellmann and B. Losand *et al.*, 2009. Metabolism and lactation performance in dairy cows fed a diet containing rumen-protected fat during the last twelve weeks of gestation. J. Dairy Sci., 92: 1670-1684.
- Fahey, J., J.F. Mee, J.J. Murphy and D. O'Callaghan, 2002. Effects of calcium salts of fatty acids and calcium salt of methionine hydroxy analogue on plasma prostaglandin F_{2a} metabolite and milk fatty acid profiles in late lactation Holstein-Friesian cows. Theriogenology, 58: 1471-1482.
- Fenwick, M.A., S. Llewellyn, R. Fitzpatrick, D.A. Kenny, J.J. Murphy, J. Patton and D.C. Wathes, 2008. Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct. Reproduction, 135: 63-75.
- Ferguson, J.D., 2001. Nutrition and reproduction in dairy herds. Proceedings of the Intermountain Nutrition Conference, (INC'01), Salt Lake City, UT., pp. 65-82.
- Friggens, N.C., D.E.F. Hay and J.D. Oldham, 1993. Interactions between major nutrients in the diet and the lactational performance of rats. Br. J. Nutr., 69: 59-67.
- Ganjkhanlou, M., K. Rezayazdi, G.R. Ghorbani, H.D. Banadaky, H. Morraveg and W.Z. Yang, 2009. Effects of protected fat supplements on production of early lactation Holstein cows. Anim. Feed Sci. Technol., 154: 276-283.

- Garcia-Bojalil, C.M., C.R. Staples, C.A. Risco, J.D. Savio and W.W. Thatcher, 1998. Protein degradability and calcium salts of long-chain fatty acids in the diets of lactating dairy cows: Productive responses. J. Dairy Sci., 81: 1374-1384.
- Garg, M.R., B.M. Bhanderi and P.L. Sherasia, 2012. Effect of supplementing bypass fat with rat with rumen protected choline chloride on milk yield, milk composition and metabolic profile in crossbred cows. Indian J. Dairy Sci., 65: 319-323.
- Goff, J.P. and R.L. Horst, 1997. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci., 80: 1260-1268.
- Gowda, N.K.S., A. Manegar, A. Raghavendra, S. Verma and G. Maya *et al.*, 2013. Effect of protected fat supplementation to high yielding dairy cows in field condition. Anim. Nutr. Feed Technol., 13: 125-130.
- Guedon, L., J. Saumande, F. Dupron, C. Couquet and B. Desbals, 1999. Serum cholesterol and triglycerides in postpartum beef cows and their relationship to the resumption of ovulation. Theriogenology, 51: 1405-1415.
- Huzzey, J.M., D.V. Nydam, R.J. Grant and T.R. Overton, 2011. Associations of prepartum plasma cortisol, haptoglobin, fecal cortisol metabolites and nonesterified fatty acids with postpartum health status in Holstein dairy cows. J. Dairy Sci., 94: 5878-5889.
- Ingvartsen, K.L. and J.B. Andersen, 2000. Integration of metabolism and intake regulation: A review focusing on periparturient animals. J. Dairy Sci., 83: 1573-1597.
- Khan, S., 2015. Effect of prill fat feed supplementation on productive performance and hormonal profile in urban and rural *Murrah buffaloes*. M.V.Sc. Thesis, NDRI (Deemed University) Karnal, Haryana.
- Khan, S., M. Singh, R.K. Mehla, S. Thakur and B.S. Meena, 2015. Effect of prill fat, sweetener and toxin binder feeding on plasma hormones and productive performances in urban and rural Murrah buffaloes. Asian J. Anim. Vet. Adv., (In Press).
- Kokkonen, T., J. Taponen, S. Alasuutari, M. Nousiainen and T. Anttila *et al.*, 2004. Plasma leptin in transition dairy cows. Effects of body fatness, ambient temperature and dietary factors. Proceedings of the British Society of Animal Science Annual Meeting, April 5-7, 2004 University of York, UK., pp. 92.
- Kraft, W. and U.M. Durr, 2005. Klinische Labordiagnostik in der Tiermedizin. Vol. 6, Schattauer Verlag, New York, ISBN-13: 9783794523085, Pages: 534.
- Kumar, S., R.K. Mehla and M. Singh, 2014. Effect of *Shatavari (Asparagus racemosus)* on milk production and Immune-modulation in Karan Fries crossbred cows. Indian J. Tradit. Knowledge, 13: 404-408.
- LeBlanc, S., 2010. Assessing the association of the level of milk production with reproductive performance in dairy cattle. J. Reprod. Dev., 56: S1-S7.
- Liefers, S.C., R.F. Veerkamp, M.F.W. te Pas, C. Delavaud, Y. Chilliard and T. van der lende, 2003. Leptin concentrations in relation to energy balance, milk yield, intake, live weight and estrus in dairy cows. J. Dairy Sci., 86: 799-807.
- Litwack, G., T.P. Begley, A.R. Means, B.W. O'Malley, L. Riddiford and A.H. Tashjian Jr., 2008. Ghrelin. Vitamins and Hormones Volume 77, Elsevier Press, Oxford, UK.
- McMahon, C.D., R.P. Radcliff, K.J. Lookingland and H.A. Tucker, 2001. Neuroregulation of growth hormone secretion in domestic animals. Domestic Anim. Endocrinol., 20: 65-87.

- Mishra, S., S.S. Thakur and K. Rakesh, 2004. Milk production and composition in crossbred cows fed calcium salts of mustard oil fatty acids. Indian J. Anim. Nutr., 21: 22-25.
- NRC., 2001. Nutrient Requirements for Dairy Cattle. 7th Edn., National Academy Press, Washington, DC., USA.
- Naik, P.K., S. Saijpaul and N. Rani, 2007. Preparation of rumen protected fat and its effect on nutrient utilization in buffaloes. Indian J. Anim. Nutr., 24: 212-215.
- Naik, P.K., S. Saijpaul, A.S. Sirohi and M. Raquib, 2009. Lactation response of cross bred dairy cows fed on indigenously prepared rumen protected fat-a field trial. Indian J. Anim. Sci., 79: 1045-1049.
- Naik, P.K., S. Saijpaul and K. Kaur, 2010. Effect of supplementation of indigenously prepared rumen protected fat on rumen fermentation in buffaloes. Indian J. Anim. Sci., 80: 902-905.
- Naik, P.K., 2013. Bypass fat in dairy ration-a review. Anim. Nutr. Feed Technol., 13: 147-163.
- Ngidi, M.E., S.C. Loerch, F.L. Fluharty and D.L. Palmquist, 1990. Effects of calcium soaps of long-chain fatty acids on feedlot performance, carcass characteristics and ruminal metabolism of steers. J. Anim. Sci., 68: 2555-2565.
- Ohajuruka, O.A., Z. Wu and D.L. Palmquist, 1991. Ruminal metabolism, fiber and protein digestion by lactating cows fed calcium soap or animal-vegetable fat. J. Dairy Sci., 74: 2601-2609.
- Ospina, P.A., D.V. Nydam, T. Stokol and T.R. Overton, 2010. Associations of elevated nonesterified fatty acids and β -hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J. Dairy Sci., 93: 1596-1603.
- Palmquist, D.L. and T.C. Jenkins, 1980. Fat in lactation rations: Review. J. Dairy Sci., 63: 1-14. Palmquist, D.L., 1991. Influence of source and amount of dietary fat on digestibility in lactating cows. J. Dairy Sci., 74: 1354-1360.
- Palmquist, D.L., 1994. The role of dietary fats in efficiency of ruminants. J. Nutr., 124: 1377S-1382S.
- Parnerkar, S., D. Kumar, S.S. Shankhpal and H. Thube, 2010. Effect of feeding bypass fat to lactating buffaloes during early lactation. Proceedings of the 7th Biennial Animal Nutrition Association Conference, December 17-19, 2010, Bhubaneswar, India, pp. 126-131.
- Prasad, J. and M. Singh, 2010. Milk production and hormonal changes in Murrah buffaloes administered recombinant Bovine Somatotropin (rBST). Agric. Biol. J. North Am., 1: 1325-1327.
- Purushothaman, S., A. Kumar and D.P. Tiwari, 2008. Effect of feeding calcium salts of palm oil fatty acids on performance of lactating crossbred cows. Asian-Aust. J. Anim. Sci., 21: 376-385.
- Rajesh, G., 2013. Studies on postpartum physiological adaptation in hormones, metabolites and milk production in crossbred cows fed with prill fat. M.V.Sc Thesis, NDRI Deemed University, Karnal, Haryana, India.
- Ranjan, A., B. Sahoo, V.K. Singh, S. Srivastava, S.P. Singh and A.K. Pattanaik, 2012. Effect of bypass fat supplementation on productive performance and blood biochemical profile in lactating Murrah (*Bubalus bubalis*) buffaloes. Trop. Anim. Health Prod., 44: 1615-1621.
- Remppis, S., H. Steingass, L. Gruber and H. Schenkel, 2011. Effects of energy intake on performance, mobilization and retention of body tissue and metabolic parameters in dairy cows with special regard to effects of pre-partum nutrition on lactation-a review. Asian-Aust. J. Anim. Sci., 24: 540-572.

- Rodriguez-Martinez, H., J. Hultgren, R. Bage, A. Bergqvist, C. Svensson and C. Bergsten, 2008. Reproductive performance in high-producing dairy cows: Can we sustain it under current practice. IVIS Rev. Vet. Med.
- Schauff, D.J. and J.H. Clark, 1989. Effects of prilled fatty acids and calcium salts of fatty acids on rumen fermentation, nutrient digestibilities, milk production and milk composition. J. Dairy Sci., 72: 917-927.
- Schauff, D.J. and J.H. Clark, 1992. Effects of feeding diets containing calcium salts of long-chain fatty acids to lactating dairy cows. J. Dairy Sci., 75: 2990-3002.
- Sharma, D.D., 2004. Deviation of feed industry towards quality feed production. Proceedings of the All India Dairy Husbandry Officers Workshop, October 14-15, 2004, Dairy Extension Divison, National Dairy Research Institute, Karnal, India, pp. 28-33.
- Sharma, S., M. Singh, A.K. Roy and S. Thakur, 2015. Prepartum prilled fat supplementation effect on feed intake, energy balance and milk production performance of murrah buffaloes. Vet. World, (In Press).
- Shelke, S.K., S.S. Thakur and S.M. Shete, 2012. Productive and reproductive performance of Murrah buffaloes (*Bubalus bubalis*) supplemented with rumen protected fat and protein. Indian J. Anim. Nutr., 29: 317-323.
- Singh, M. and R.S. Ludri, 1994. Plasma growth hormone profile and milk yield responses of Murrah buffaloes treated with slow release formulation of somidobove. Buffalo J., 10: 81-84.
- Singh, M., J.P. Sehgal, A.K. Roy, S. Pandita and G. Rajesh, 2014. Effect of prill fat supplementation on hormones, milk production and energy metabolites during mid lactation in crossbred cows. Vet. World, 7: 384-388.
- Singh, S.P., R.K. Mehla and M. Singh, 2012. Plasma hormones, metabolites, milk production and cholesterol levels in Murrah buffaloes fed with *Asparagus racemosus* in transition and postpartum period. Trop. Anim. Health Prod., 44: 1827-1832.
- Singh, S., 2015. Nutritional effects on metabolic profile and early lactation performance of Murrah buffaloes fed diet supplemented with prilled fat. Ph.D. Thesis, NDRI, Deemed University, Karnal Haryana.
- Singhal, K.K., A.K. Tyagi, Y.S. Rajput, M. Singh, H. Kaur, T. Perez and G.F. Hartnell, 2011. Feed intake, milk production and composition of crossbred cows fed with insect-protected Bollgard II® cottonseed containing Cry1Ac and Cry2Ab proteins. Animal, 5: 1769-1773.
- Sirohi, S.K., T.K. Walli and R.K. Mohanta, 2010. Supplementation effect of bypass fat on production performance of lactating crossbred cows. Indian J. Anim. Sci., 80: 733-736.
- Thakur, S.S. and S.K. Shelke, 2010. Effect of supplementing bypass fat prepared from soybean acid oil on milk yield and nutrient utilization in Murrah buffaloes. Indian J. Anim. Sci., 80: 354-357.
- Tyagi, N., S.S. Thakur and S.K. Shelke, 2009. Effect of feeding bypass fat supplement on milk yield, its composition and nutrient utilization in crossbred cows. Indian J. Anim. Nutr., 26: 1-8.
- Tyagi, N., S.S. Thakur and S.K. Shelke, 2010. Effect of bypass fat supplementation on productive and reproductive performance in crossbred cows. Trop. Anim. Health Prod., 42: 1749-1755.
- Vahora, S.G., S. Parnerkar and K.B. Kore, 2013. Productive efficiency of lactating buffaloes fed bypass fat under field conditions: Effect on milk yield, milk composition, body weight and economics. Iran. J. Applied Anim. Sci., 3: 53-58.

Asian J. Anim. Vet. Adv., 10 (9): 476-488, 2015

- Wadhwa, M., R.S. Grewal, M.P.S. Bakshi and P.S. Brar, 2012. Effect of supplementing bypass fat on the performance of high yielding crossbred cows. Indian J. Anim. Sci., 82: 200-203.
- Weiss, W.P., W. Steinberg and M.A. Engstrom, 2011. Milk production and nutrient digestibility by dairy cows when fed exogenous amylase with coarsely ground dry corn. J. Dairy Sci., 94: 2492-2499.
- Yadav, G., 2014. Effect of prill fat supplementation on milk production and reproductive performance in crossbred cows. M.V.Sc. Thesis, National Dairy Research Institute, Deemed University, Karnal Haryana.
- Yadav, G., A.K. Roy and M. Singh, 2015. Effect of prilled fat supplementation on milk production performance of crossbred cows. Indian J. Anim. Nutr., 32: 133-138.