

American Journal of Biochemistry and Molecular Biology

Insights into Steviol Glycoside Biosynthesis Pathway Enzymes Through Structural Homology Modeling

Praveen Guleria and Sudesh Kumar Yadav
Plant Metabolic Engineering and Nanobiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (HP), India
Corresponding Author: Sudesh Kumar Yadav, Plant Metabolic Engineering and Nanobiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (HP), India

Abstract

Steviol glycosides are the major secondary metabolites synthesized through steviol glycoside biosynthesis pathway operating in the leaves of Stevia rebaudiana. Present article documents the structural analysis of enzymes specific to steviol glycoside biosynthesis pathway, kaurenoic acid-13 hydoxylase (KAH) and three UDP-glycosyltransferases (UGT85C2, UGT74G1 and UGT76G1). The in silico protein structure prediction server SWISS MODEL was used to predict and evaluate the models. The secondary structure data of predicted model for KAH was in accordance to that of cytochrome P450s suggesting its nativeness to the respective superfamily. Similarly, the secondary structure data of target UGTs also showed conservation with the structural information of glycosyltransferases superfamily. PROCHECK and QMEAN Z-score evaluations suggested that the models predicted for the 4 query enzymatic proteins were of good quality. In addition, Ligand binding site analysis and molecular docking analysis was carried out for the predicted models. The following data suggested a possibility of the presence of an alternate pathway for the synthesis of steviol glycosides.

Key words: Binding site, comparative protein modeling, interaction, ligand, Stevia rebaudiana

INTRODUCTION

Steviol glycosides are the diterpene secondary metabolites from S. rebaudiana. These are the glycosylated products of the precursor steviol (Richman et al., 2005). Steviol glycosides are used as dietary supplements as natural sweetner in various nations. It has been known that these glycosides are anti-diabetic, non-cariogenic and non-mutagenic (Yadav and Guleria, 2011). Steviol glycosides are synthesized in the leaves of Stevia via steviol glycoside biosynthesis pathway (Fig. 1). Steviol glycoside biosynthesis pathway comprises of 16 steps catalyzed by several enzymes. Among these, the last 5 steps are specific to steviol glycoside biosynthesis pathway (Yadav and Guleria, 2011; Guleria et al., 2011; Brandle and Telmer, 2007). These steps are catalyzed by enzymes Kaurenoic Acid-13 Hydroxylase (KAH) and four UDP-glycosyltransferases (UGTs) identified as UGT85C2, UGT74G1 and UGT76G1. One UGT is still to identify (Yadav and Guleria, 2011; Brandle and Telmer, 2007). Despite of the huge and wide prevailing importance, various aspects of this pathway are still hidden.

Formulating three dimensional structure of a protein is of great help in understanding its biochemical functions and molecular interaction properties (Bordoli et al., 2009). Protein structures are more conserved than protein or DNA sequences. So, in silico approaches are being used to

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013

Fig. 1: Schematic representation of steviol glycoside biosynthesis pathway, Enzymes (bolded) are specific to steviol glycoside biosynthesis pathway
predict the structure of an unknown protein taking known three dimensional structures of related protein family as a template reference (Chithia and Lesk, 1986; Mugilan et al., 2010; Smith and Plazas, 2011; Joseph and Nair, 2012). Comparative homology modeling has been utilized to predict three dimensional structures for various plant proteins such as cytosolic glutamine synthetase from Camellia sinensis (Yadav, 2009), late embryogenesis abundant protein from Arabidopsis thaliana (Boobalan and Bharathi, 2010) lectins from mushroom (Khan and Khan, 2011) and thioredoxin from Triticum aestivum (Prabhavathi et al., 2011). Higher the sequence similarity, more significant is the structural identity and consequently, an increased reliability of the predicted model (Marti-Renom et al., 2000; Huq, 2008a, b).

In this study, protein structures of steviol glycoside biosynthesis pathway enzymes; Kaurenoic Acid-13 Hydoxylase (KAH) and three UDP-glycosyltransferases (UGT85C2, UGT74G1 and UGT76G1) were analyzed using in silico approaches. This is the first report documenting the computational elucidation of three dimensional models of these enzymatic proteins. These structures were further analyzed for the prediction of ligand binding sites and ligand interaction affinities.

MATERIALS AND METHODS

Retrieval of target sequences: The amino acid sequences of the enzymatic proteins KAH, UGT85C2, UGT74G1 and UGT76G1 were obtained from NCBI (http://www.ncbi.nlm.nih.gov) Protein Database in FASTA format. It was made ascertain that three dimensional structures of these proteins were not available in Protein Data Bank (PDB). Accession number, protein lengths have been tabulated (supplementary Table 1 in appendix).

Structure prediction and evaluation: The three dimensional structures were predicted using SWISS-MODEL, an automated protein homology-modeling server (Schwede et al., 2003). The amino acid sequences of respective proteins were submitted to SWISS-MODEL server one-by-one and following steps were performed: domain annotation, template identification, automated modeling and structure assessment. Domain annotation determined the superfamily to which respective protein belonged as well as secondary structure elements of the target protein. Template identification predicted the possible templates for target sequence on the basis of target-template sequence similarity. Three dimensional structures were determined using automated modeling mode and the predicted models were evaluated using Structure Assessment tool of SWISS-MODEL server (Bordoli et al., 2009).

Ligand binding site prediction: Ligand binding sites of the evaluated models were predicted by submitting models to Q-SiteFinder server. This server depicts the energetically favorable ligand binding sites by using methyl probes at a grid resolution of $0.9 \AA$ on a three dimensional grid encompassing the whole protein molecule (Laurie and Jackson, 2005).

Molecular docking analysis: Molecular docking between the predicted models corresponding to KAH, UGT85C2, UGT74G1, UGT76G1 and the pathway substrate molecules was performed using Molecular Docking server (http://www.dockingserver.com). It involves three steps: uploading of desired ligand molecule from NCBI PubChem, uploading of the query protein molecules through PDB and finally followed by docking. Each docking run was repeated twice to get best results (Bikadi and Hazai, 2009). Selected ligands were ent-kaurenoic acid, steviol, steviolmonoside, steviolbioside, stevioside and rebaudioside A. The uploaded proteins were three dimensional models predicted for enzymatic proteins KAH, UGT85C2, UGT74G1 and UGT76G1. Each protein was docked with every uploaded ligands.

RESULTS AND DISCUSSION

Homologue identification and secondary structure analysis: Kaurenoic Acid-13 Hydroxylase (KAH) and three UDP glycosyltransferases (UGT85C2, UGT74G1 and UGT76G1) are the key enzymes of steviol glycoside biosynthesis pathway (Fig. 1). In this paper, SWISS-MODEL was used to predict structures of these enzymatic proteins. Domain annotation data indicated that KAH belongs to Cytochrome P450 superfamily. No plant enzymatic proteins belonging to P450 superfamily have been analyzed for their structures (Rupasinghe and Schuler, 2006). While domain annotation of UGT85C2, UGT74G1 and UGT76G1 documented that these enzymatic proteins belong to glycosyltransferases (GTs) superfamily and/or UDP-glucuronosyl/UDPglucosyltransferase family. The structural analysis of GT proteins have been carried out for Medicago truncatula (Shao et al., 2005) and Vitis vinifera (Offen et al., 2006). Secondary structure predicts the α-helices and β-sheets present in the query protein. The analysis data of predicted secondary structures for all the four proteins are shown in Fig. 2 and their evaluations are presented in Supplementary Table 1 (Appendix). KAH possessed a higher number of α-helices (264) than β-sheets (37) or random coils (174) (Fig. 2a). Presence of increased number of helices than β-sheets is the conserved structural feature of Cytochrome P450s (Graham and Petersen, 1999; Stout, 2004). This suggested the nativeness of KAH to Cytochrome P450s and its helical nature. UGT85C2 possessed 220 random coils, 196α-helices and 64β-sheets (Fig. 2b). An increased number of random coils (213) than α-helices (189) or β-sheets (57) were also observed for UGT74G1 (Fig. 2c). Similarly, UGT76G1 showed 207 random coils, 189α-helices and 61β-sheets (Fig. 2d). The data documented the dominating character of random coils in predicted secondary structures of UGTs. This suggests that these three UGTs belong to the same family and possess coiled geometry.

Model prediction and evaluation: Template identification searched templates for the query sequences on the basis of significant sequence similarity. Retinoic acid bound cyanobacterial CYP120A1 protein (PDB ID 2ve3 chain A), a Cytochrome P450 was identified as template for KAH showing 33.9% of sequence similarity. 2 vg 8 chain A, N and O glucosyltransferase involved in xenobiotic metabolism of plants was identified as template for UGT74G1 with a highest sequence similarity of 26.6%. While 2 pq6 chain A, crystal structure of Medicago truncatula UGT85H2, was

Fig. 2(a-d): Secondary structure for enzymes (a) KAH, (b) UGT85C2, (c) UGT74G1 and (d) UGT76G1. KAH possesses helical structure and UGTs possess coiled structure

Fig. 3(a-d): Three dimensional model of (a) KAH, (b) UGT85C2, (c) UGT74G1 and (d) UGT76G1
identified as template for both UGT85C2 and UGT76G1 with a sequence similarity of 43.3 and 28%, respectively. For all the query proteins template-target sequence identity was more than 25%, hence suitable to conduct automated modeling (Schwede et al., 2003).

The three dimensional structure of enzymatic protein KAH was determined at $2.1 \AA$ resolution by Automated modeling method of SWISS-MODEL server. The employed template was 2 ve 3 chain A, a cyanobacterial cytochrome P450. Out of total 476 residues, 447 residues were included by the software to constitute the modeled structure. The structure consisted of a single chain comprising of 17α-helices and 12β-strands arranged in four β-pleated sheets (Fig. 3a). This kind of arrangement is also a characteristic feature of Cytochrome P450 folds (Rupasinghe and Schuler, 2006; Kuhnel et al., 2008). Conserved secondary structure suggests that KAH belongs to cytochrome P450 superfamily. The enzymatic protein UGT85C2 was modeled at a resolution of $2.1 \AA$ by using template 2pq6 chain A, UGT85H2 from M. truncatula. A total of 468 residues out of 483 residues were included to constitute the three dimensional model. The predicted model possessed single chain consisting of 20α-helices and 13β-strands. The β-strands were arranged in two β pleated sheets, one possessing seven stranded parallel β-strands and the other with six stranded parallel β-strands (Fig. 3b). This feature is common for the UGTs modeled till date using experimental approaches (Shao et al., 2005; Li et al., 2007). Results suggested the nativeness of computationally modeled UGT85C2 with the experimentally solved UGTs.

Similarly, automated modeling was carried out for the protein UGT74G1. This enzymatic protein was modeled on the basis of template 2 vg 8 chain A at $1.75 \AA$ resolution. The predicted model consisted of 449 residues out of the total 460 residues. The geometry of model comprised of one chain, 16α-helices, 13β-strands arranged in 7 and 6 stranded parallel two β-pleated sheets (Fig. 3c). The geometry and topology of modeled UGT74G1 was similar to UGT85C2. Hence, similar to UGT85C2, the UGT74G1 was conserved for structural features with the experimentally solved UGTs (Shao et al., 2005; Brazier-Hicks et al., 2007). The other UDP glycosyltransferase protein, UGT76G1 was modeled by automated modeling on the basis of template utilized for UGT85C2, 2pq6 chain A. The predicted model was constituted of 445 residues out of 458 residues. The model
possessed single chain with 19α-helices and 13β-strands (Fig. 3d). Like UGT85C2 and UGT74G1, the β-strands of UGT76G1 were also arranged in the form of seven stranded and six stranded parallel two β-pleated sheets (Shao et al., 2005; Li et al., 2007). It was observed that the entire query UGTs possessed similar geometry of β-pleated sheets. Thus, it suggests that the studied UGTs; UGT85C2, UGT74G1 and UGT76G1 belong to same protein family.

The predicted models were assessed by evaluation through PROCHECK analysis (Laskowski et al., 1993). The number of residues in the most favored regions of Ramachandran plot deciphers the quality of predicted model. Another evaluating factor is the overall average value of G-factors. G-factors include the dihedral angles involved in phi-psi distributions, chi1-chi2 distribution, chi1, chi3-chi4, omega and main chain covalent forces constituting main chain bond angles and bond lengths. G-factors determine the degree of unusualness in the predicted model. The overall average values of G-factors below -0.5 and -1.0 corresponds to unusual and highly unusual properties of the model, respectively. Comparison of following parameters of the predicted models with respect to the template could help to assess the quality of the model.

The model for enzymatic protein KAH possessed 83.6% of the residues in the most favored regions of the Ramachandran plot (Fig. 4a), comparable to 89.6% for its template 2 ve 3 A . The average value of G -factors was observed to be 0.03 (more than -0.5) for KAH and was 0.12 for its template 2 ve 3 A . The data thus suggests that the model predicted for KAH is usual and worth use for representing the protein KAH. Ramachandran plot for UGT85C2 predicted model showed 87.2% of the residues in most favored regions (Fig. 4b), comparable to 89.6% for its template protein 2pq6A. The G-factor average value was 0.02 (more than -0.5) for UGT85C2 and was 0.35 for its template. Both the features of target protein were in close proximity to the template and within the required limits. Thus the model predicted for UGT85C2 was normal not unusual and can be used to represent the target protein. The model predicted for UGT74G1 showed 85.4% of residues in the most favored regions of Ramachandran plot (Fig. 4c), whereas 92.3% for its template 2vg8A. The average value of G-factor was -0.09 (more than -0.5) for UGT74G1. The G-factor was comparatively higher for this target protein to that of 0.11 for its template protein. In this case, both the features in target protein showed a higher variability from template protein. However, the G-factor was within limits which suggest that the predicted model is usual and can be used as a representative of the protein UGT74G1. The predicted three dimensional model for UGT76G1 possessed 87.0% of the residues in the most favored regions of Ramachandran plot (Fig. 4d), comparable to 89.6% for its template protein 2pq6A. The G-factor average was 0.02 (more than -0.5) for the modeled target protein and 0.35 for the template. Like UGT85C2, UGT76G1 was observed to be in close proximity of the template protein and the respective values were within limits. Hence, the predicted model was enough usual to represent structure of the target protein UGT76G1.

Recently, a new measure QMEAN Z-score has been introduced to determine the closeness of the computationally predicted models with the experimentally validated structures (Benkert et al., 2011). QMEAN score is a linear combination of six structural features: two distance dependent interaction potentials of mean force based on C- $\boldsymbol{\beta}$ atoms and on all atom types, torsion angle potential evaluating the local backbone geometry of the structure, solvation potential describing the burial status of residues and solvent accessibility in the form of SSE and ACC agreements. In order to calculate the QMEAN Z-score of a predicted model, the normalized raw scores of the model are compared to the scores obtained for a representative set of high resolution X-ray structures of similar size (number of residues of query protein $\pm 10 \%$). The output is obtained in the form of a

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013

Plot statistics	No.	$(\%)$
Residuces in most favoured regions [A.B.L]	327	83.6
Residuces in additional allowed regions [a.b.b.p]	52	13.3
Residuces in generously allowed regions $[\mathrm{a}, \mathrm{b}, \sim 1 \sim \mathrm{p}]$	8	2.0
Residuces in disallowed regions	4	1.0
	-	-
No. of nonglycine and nonproline residues	391	100.0
No. of end-residues (excl. Gly and Pro)	1	
No. of glycine residues (shown as triangles)	29	
No. of proline residues	26	

Total No. of residues	447	

Plot statistics	No.	$(\%)$
Residuces in most favoured regions [A.B.L]	355	87.2
Residuces in additional allowed regions [a.b.1.p]	45	11.1
Residuces in generously allowed regions $5 \mathrm{a},-\mathrm{b}, \sim 1 \sim \mathrm{p}]$	7	1.7
Residuces in disallowed regions	0	0.0
	--	-
	407	100.0
No. of nonglycine and nonproline residues	2	
No. of end-residues (excl. Gly and Pro)	32	
No. of glycine residues (shown as triangles)	27	
No. of proline residues	---	
	468	
Total No. of residues		

Plot statistics	No.	$(\%)$
Residuces in most favoured regions [A.B.L]	341	87.2
Residuces in additional allowed regions [a.b.1.p]	47	12.7
Residuces in generously allowed regions fa, $\mathrm{a}-\mathrm{b}, \sim 1 \sim \mathrm{p}]$	3	0.8
Residuces in disallowed regions	1	0.3
No. of nonglycine and nonproline residues	392	100.0
No. of end-residues (excl. Gly and Pro)	2	
No. of glycine residues (shown as triangles)	27	
No. of proline residues	24	
	-	
Total No. of residues	445	

Plot statistics	No.	$(\%)$
Residuces in most favoured regions [A.B.L]	340	85.4
Residuces in additional allowed regions [a.b.l.p]	47	11.8
Residuces in generously allowed regions $\mathrm{Fa},-\mathrm{b}, \sim 1 \sim$ p]	7	1.8
Residuces in disallowed regions	4	1.0
	--	-
No. of nonglycine and nonproline residues	398	100.0
No. of end-residues (excl. Gly and Pro)	2	
No. of glycine residues (shown as triangles)	33	
No. of proline residues	16	

Total No. of residues	449	

Fig. 4(a-b): Ramachandran plots for the predicted three dimensional models of (a) KAH, (b) UGT85C2, (c) UGT74G1 and (d) UGT76G1
model quality plot in which the query model is marked on normalized QMEAN score data obtained from high resolution structures of similar size. The predicted model of KAH has normalized QMEAN score less than 1 that lies within the prescribed limits (Fig. 5a). Thus the QMEAN score suggests

Fig. 5(a-d): Normalized QMEAN Z-scores for the proposed three dimensional models of (a) KAH, (b) UGT85C2, (c) UGT74G1 and (d) UGT76G1
that model is of good quality. The QMEAN score for UGT85C2 was predicted to be greater than 1 but less than 2 which was within the defined limits (Fig. 5b). Hence, the model was of good quality. The QMEAN score was very similar for both UGT74G1 (Fig. 5c) and UGT76G1 (Fig. 5d) to that of UGT85C2. Hence, models for both the enzymatic proteins UGT74G1 and UGT76G1 were also of good quality. Various quality assessment features suggested that the predicted models were of good quality and these models can be used to represent these enzymatic proteins KAH, UGT85C2, UGT74G1 and UGT76G1.

Ligand binding site prediction: In order to predict Ligand binding sites for the obtained evaluated models, the models were submitted to Q-SiteFinder server. Ten Ligand binding sites were predicted for each query model which were later arranged on the basis of total interaction energies. Out of predicted sites, the binding site with most favorable interaction energy, area and volume was identified as first predicted binding site. Ligand binding sites for the four query proteins are shown in Fig. 6. The red marked site was the first predicted site. The volume for predicted sites were 1221 cubic Angstroms for KAH (Fig. 6a), 300 cubic Angstroms for UGT85C2 (Fig. 6b), 1536 cubic Angstroms for UGT74G1 (Fig. 6c) and 513 cubic Angstroms for UGT76G1 (Fig. 6d). Various residues present in putative ligand binding sites of proteins KAH, UGT85C, UGT74G1 and UGT76G1 are shown in Supplementary Table 2 (Appendix).

Molecular docking analysis: Molecular docking predicts the stable protein-ligand interactions on the basis of protein-ligand complex geometries and binding energies (Shakyawar et al., 2011). The assessment is based on binding affinity between the protein and ligand molecules. It allows the accurate prediction of binding geometry and binding energies. It has been known that good binding geometry prediction depends upon the accurate prediction of binding energy. Least is the binding energy, higher is the binding affinity. It has been found that the computationally predicted and

Fig. 6(a-d): Ligand binding sites predicted for three dimensional models of (a) KAH, (b) UGT85C2, (c) UGT74G1 and (d) UGT76G1. Ten sites were predicted for each protein. The site highlighted with red color is the first predicted site and a close view of the same has been shown as inset
experimentally solved binding energies are correlated, that further supports the computationally predicted data (Bikadi and Hazai, 2009; Lakshmi et al., 2011). Molecular docking was carried out to analyze the affinity of the studied enzymatic proteins with the substrates of the steviol glycoside biosynthesis pathway (Supplementary Table 1).

First committed step of steviol glycoside biosynthesis pathway involves conversion of ent-kaurenoic acid to steviol by the activity of enzyme KAH. The interaction affinity of KAH, UGT85C2, UGT74G1 and UGT76G1 was evaluated for ent-kaurenoic acid and steviol. The model predicted for KAH showed highest affinity for the ligand steviol ($-9.23 \mathrm{kcal} \mathrm{mol}^{-1}$), followed by steviolmonoside ($-9.07 \mathrm{kcal} \mathrm{mol}^{-1}$) and ent-kaurenoic acid ($-8.07 \mathrm{kcal} \mathrm{mol}^{-1}$). UGT85C2 was observed to possess highest affinity for ent-kaurenoic acid ($-7.30 \mathrm{kcal} \mathrm{mol}^{-1}$), followed by steviolmonoside $\left(-6.91 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and steviol ($-6.32 \mathrm{kcal} \mathrm{mol}^{-1}$). Similarly, UGT74G1 model showed highest affinity for ent-kaurenoic acid ($-7.97 \mathrm{kcal} \mathrm{mol}^{-1}$) followed by steviol ($-7.19 \mathrm{kcal} \mathrm{mol}{ }^{-1}$) and steviolmonoside ($-2.41 \mathrm{kcal} \mathrm{mol}^{-1}$). The docking results for three dimensional model of UGT76G1 suggested its highest binding affinity for ent-kaurenoic acid ($-7.11 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$), followed by steviol $\left(-6.91 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and steviolmonoside ($-6.48 \mathrm{kcal} \mathrm{mol}^{-1}$). Results demonstrate that these enzymes possibly have the ability to interact with more than one ligands of steviol glycoside biosynthesis pathway. This is in well support by the presence of number of active binding sites on the protein surfaces. Data documents the probability of existence of alternative pathways or branching for the synthesis of various metabolites of steviol glycoside biosynthesis pathway.

This is the first report on prediction of three dimensional models for the enzymatic proteins KAH, UGT85C2, UGT74G1 and UGT76G1 from Stevia rebaudiana. From the evaluation data of PROCHECK and QMEAN Z-score, it was found that the predicted models were enough usual and good to represent the query proteins. Further, prediction of ligand binding sites for the predicted models of enzymatic proteins has opened way to carry out various manipulative studies that could facilitate metabolic engineering. Understanding three dimensional structures and ligand binding
sites provide the possibility of manipulating enzyme sequences for interaction with more ligands in addition to the already known ones. This study can help find way to increase the turn over production of steviol glycosides. Models for UGT85C2 and UGT76G1 were predicted on the basis of a common template, suggesting the possibility of single UGT that might be catalyzing two or more reactions by interacting with more ligands. Earlier study has also documented the multisubstrate activity of UGTs (Wang and Hou, 2009). This work suggested that the pathway may be modulated to specifically enhance the production of desired steviol glycosides to obtain final yield sweeter and less bitter.

ACKNOWLEDGMENTS

We thank the Director, CSIR-IHBT, Palampur for his continuous support and encouragement. We would like to acknowledge the financial support from Council of Scientific and Industrial Research (CSIR), Govt of India. PG is also thankful to CSIR for proving fellowship as JRF.

APPENDIX

Supplementary Table 1: Detailed description of models and their evaluation data for proteins, KAH, UGT85C2, UGT74G1 and

Property/protein	KAH	UGT85C2	UGT74G1	UGT76G1
NCBI Accession number	ACD93722.1	AAR06922.1	AAR06920.1	AAR06912.1
No. of amino acids	476	483	460	458
Secondary structure prediction				
α-helices	264	196	189	189
Extended β-turns	37	64	57	61
Random coils	174	220	213	207
Model prediction				
Template used	2ve3A with atomic resolution of its X ray crystal structure being 2.1 A	2pq6A with atomic resolution of its X ray crystal structure being 2.10 A	2vg8A with atomic resolution of its X ray crystal structure being 1.75 A	2pq6A with atomic resolution of its X ray crystal structure being 2.10 A
No. of residues in predicted model	447	468	449	445
No. of chains	1	1	1	1
No. of strands	12	13	13	13
No. of α-helices	17	20	16	19
No. of 3,10 helices	3	6	3	4
Topology	Mixed and antiparallel	Parallel	Parallel	Parallel
Model evaluation: Procheck (Ramachandran plot) analysis				
Residues in most favored region (\%)	83.6	87.2	85.4	87.0
Residues in additional allowed regions (\%)	13.3	11.1	11.8	12.0
Residues in generously allowed regions (\%)	2.0	1.7	1.8	0.8
Residues in disallowed regions (\%)	1.0	0.0	1.0	0.3
Ligand binding site prediction				
Protein volume (Cubic angstroms)	42817	44251	41694	41998
Prediction site volume (Cubic angstroms)	1221	300	1536	513

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013

Supplementary Table 2: Residues present in putative ligand binding sites of proteins KAH, UGT85C, UGT74G1, UGT76G1

Potential ligand binding site residues			
KAH	539 CE1 PHE 94	816 O MET 128	3174 C MET 422
	541 CZ PHE 94	817 CB MET 128	3175 O MET 422
	557 CA GLU 97	818 CG MET 128	3176 CB MET 422
	558 C GLU 97	821 N ARG 129	3180 N CYS 423
	559 O GLU 97	822 CA ARG 129	3181 CA CYS 423
	560 CB GLU 97	823 C ARG 129	3182 C CYS 423
	561 CG GLU 97	824 O ARG 129	3184 CB CYS 423
	562 CD GLU 97	825 CB ARG 129	3185 SG CYS 423
	563 OE1 GLU 97	826 CG ARG 129	3186 N LEU 424
	564 OE2 GLU 97	827 CD ARG 129	3187 CA LEU 424
	565 N ASN 98	828 NE ARG 129	3188 C LEU 424
	566 CA ASN 98	829 CZ ARG 129	3189 O LEU 424
	567 C ASN 98	830 NH1 ARG 129	3190 CB LEU 424
	568 O ASN 98	832 N LYS 130	3191 CG LEU 424
	569 CB ASN 98	837 CG LYS 130	3192 CD1 LEU 424
	570 CG ASN 98	838 CD LYS 130	3193 CD2 LEU 424
	572 ND2 ASN 98	839 CE LYS 130	3194 N GLY 425
	591 CA VAL 101	840 NZ LYS 130	3195 CA GLY 425
	592 C VAL 101	853 CB LEU 132	3196 C GLY 425
	593 O VAL 101	854 CG LEU 132	3197 O GLY 425
	594 CB VAL 101	855 CD1 LEU 132	3198 N LYS 426
	595 CG1 VAL 101	856 CD2 LEU 132	3199 CA LYS 426
	596 CG2 VAL 101	878 CD2 TYR 135	3217 CA PHE 428
	597 N ALA 102	880 CE2 TYR 135	3218 C PHE 428
	598 CA ALA 102	888 CG LEU 136	3219 O PHE 428
	599 C ALA 102	889 CD1 LEU 136	3220 CB PHE 428
	600 O ALA 102	890 CD2 LEU 136	2119 CB SER 291
	601 CB ALA 102	1292 CD2 PHE 185	2120 OG SER 291
	602 N SER 103	1293 CE1 PHE 185	2134 N SER 294
	603 CA SER 103	1294 CE2 PHE 185	2135 CA SER 294
	605 O SER 103	1295 CZ PHE 185	2138 CB SER 294
	606 CB SER 103	2027 CG ASN 279	2139 OG SER 294
	607 OG SER 103	2029 ND2 ASN 279	2588 CG MET 348
	628 CD1 TRP 105	2049 O LEU 282	2589 SD MET 348
	630 NE1 TRP 105	2051 CG LEU 282	2590 CE MET 348
	631 CE2 TRP 105	2052 CD1 LEU 282	2625 N PRO 353
	633 CZ2 TRP 105	2053 CD2 LEU 282	2626 CA PRO 353
	635 CH2 TRP 105	2054 N LEU 283	2629 CB PRO 353
	717 CA SER 116	2055 CA LEU 283	2630 CG PRO 353
	718 C SER 116	2056 C LEU 283	2631 CD PRO 353
	719 O SER 116	2057 O LEU 283	2632 N VAL 354
	720 CB SER 116	2058 CB LEU 283	2635 O VAL 354
	721 OG SER 116	2059 CG LEU 283	2636 CB VAL 354
	722 N LEU 117	2061 CD2 LEU 283	2637 CG1 VAL 354
	723 CA LEU 117	2081 N ALA 286	2638 CG2 VAL 354
	724 C LEU 117	2082 CA ALA 286	2655 CB THR 357
	725 O LEU 117	2083 C ALA 286	2656 OG1 THR 357
	726 CB LEU 117	2084 O ALA 286	2657 CG2 THR 357

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013
Supplementary Table 2: Continue

Potential ligand binding site residues			
	727 CG LEU 117	2085 CB ALA 286	2675 CG ARG 359
	730 N LEU 118	2086 N GLY 287	2676 CD ARG 359
	731 CA LEU 118	2087 CA GLY 287	2677 NE ARG 359
	732 C LEU 118	2088 C GLY 287	2678 CZ ARG 359
	733 O LEU 118	2089 O GLY 287	2679 NH1 ARG 359
	734 CB LEU 118	2109 CA THR 290	2680 NH2 ARG 359
	735 CG LEU 118	2110 C THR 290	2701 CD1 LEU 362
	736 CD1 LEU 118	2111 O THR 290	2851 NE1 TRP 380
	737 CD2 LEU 118	2112 CB THR 290	2852 CE2 TRP 380
	747 C ILE 120	2113 OG1 THR 290	2854 CZ2 TRP 380
	748 O ILE 120	2114 CG2 THR 290	2855 CZ3 TRP 380
	750 CG1 ILE 120	2115 N SER 291	2856 CH2 TRP 380
	751 CG2 ILE 120	2116 CA SER 291	3120 O VAL 414
	752 CD1 ILE 120	2117 C SER 291	3125 CA PRO 415
	753 N ARG 121	2118 O SER 291	3126 C PRO 415
	754 CA ARG 121	3139 CE1 PHE 416	3127 O PRO 415
	755 C ARG 121	3140 CE2 PHE 416	3128 CB PRO 415
	756 O ARG 121	3141 CZ PHE 416	3131 N PHE 416
	757 CB ARG 121	3142 N GLY 417	3132 CA PHE 416
	758 CG ARG 121	3143 CA GLY 417	3133 C PHE 416
	759 CD ARG 121	3144 C GLY 417	3134 O PHE 416
	760 NE ARG 121	3146 N GLY 418	3135 CB PHE 416
	762 NH1 ARG121	3147 CA GLY 418	3136 CG PHE 416
	764 N GLY 122	3148 C GLY 418	3137 CD1 PHE 416
	765 CA GLY 122	3149 O GLY 418	3221 CG PHE 428
	766 C GLY 122	3155 CA PRO 420	3222 CD1 PHE 428
	767 O GLY 122	3156 C PRO 420	3223 CD2 PHE 428
	768 N ASP 123	3157 O PRO 420	3224 CE1 PHE 428
	786 CA ALA 125	3158 CB PRO 420	3225 CE2 PHE 428
	787 C ALA 125	3159 CG PRO 420	3226 CZ PHE 428
	788 O ALA 125	3160 CD PRO 420	3227 N ALA 429
	789 CB ALA 125	3161 N ARG 421	3228 CA ALA 429
	790 N LYS 126	3162 CA ARG 421	3229 C ALA 429
	791 CA LYS 126	3163 C ARG 421	3230 O ALA 429
	792 C LYS 126	3164 O ARG 421	3231 CB ALA 429
	793 O LYS 126	3165 CB ARG 421	
	794 CB LYS 126	3166 CG ARG 421	
	795 CG LYS 126	3167 CD ARG 421	
	796 CD LYS 126	3168 NE ARG 421	
	797 CE LYS 126	3169 CZ ARG 421	
	799 N TRP 127	3170 NH1 ARG 421	
	814 CA MET 128	3171 NH2 ARG 421	
	815 C MET 128	3172 N MET 422	
	173 CA MET 422		
UGT85C2	2326 CA ASN 300	2382 CE MET 307	2607 CG LEU 334
	2327 C ASN 300	2553 CD1 TRP 328	2608 CD1 LEU 334
	2329 CB ASN 300	2555 NE1 TRP 328	2610 N VAL 335
	2330 CG ASN 300	2556 CE2 TRP 328	2614 CB VAL 335

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013
Supplementary Table 2: Continue

	2331 OD1 ASN 300	2558 CZ2 TRP 328	2616 CG2 VAL 335
	2332 ND2 ASN 300	2562 CA ILE 329	2635 CD GLU 338
	2333 N PHE 301	2563 C ILE 329	2636 OE1 GLU 338
	2334 CA PHE 301	2564 O ILE 329	2637 OE2 GLU 338
	2335 C PHE 301	2565 CB ILE 329	2788 O ALA 357
	2336 O PHE 301	2566 CG1 ILE 329	2791 CA SER 358
	2337 CB PHE 301	2567 CG2 ILE 329	2792 C SER 358
	2338 CG PHE 301	2569 N ILE 330	2793 O SER 358
	2340 CD2 PHE 301	2570 CA ILE 330	2796 N TRP 359
	2344 N GLY 302	2571 C ILE 330	2797 CA TRP 359
	2345 CA GLY 302	2572 O ILE 330	2798 C TRP 359
	2346 C GLY 302	2573 CB ILE 330	2800 CB TRP 359
	2347 O GLY 302	2574 CG1 ILE 330	2801 CG TRP 359
	2348 N SER 303	2575 CG2 ILE 330	2802 CD1 TRP 359
	2349 CA SER 303	2576 CD1 ILE 330	2803 CD2 TRP 359
	2350 C SER 303	2577 N ARG 331	2804 NE1 TRP 359
	2351 O SER 303	2578 CA ARG 331	2805 CE2 TRP 359
	2352 CB SER 303	2579 C ARG 331	2810 N CYS 360
	2353 OG SER 303	2580 O ARG 331	2811 CA CYS 360
	2361 N THR 305	2581 CB ARG 331	2812 C CYS 360
	2363 C THR 305	2582 CG ARG 331	2813 O CYS 360
	2364 O THR 305	2583 CD ARG 331	2814 CB CYS 360
	2368 N VAL 306	2584 NE ARG 331	2815 SG CYS 360
	2369 CA VAL 306	2585 CZ ARG 331	
	2370 C VAL 306	2587 NH2 ARG 331	
	2372 CB VAL 306	2588 N SER 332	
	2373 CG1 VAL 306	2602 N LEU 334	
	2375 N MET 307	2603 CA LEU 334	
	2376 CA MET 307	2604 C LEU 334	
	379 CB MET 307	2606 CB LEU 334	
	2380 CG MET 307		
	2381 SD MET 307		
UGT74G1	68 CD1 PHE 18	1326 O GLN 182	2615 CA LYS 338
	70 CE1 PHE 18	1327 CB GLN 182	2616 C LYS 338
	71 CE2 PHE 18	1328 CG GLN 182	2617 O LYS 338
	72 CZ PHE 18	1329 CD GLN 182	2618 CB LYS 338
	84 CB LEU 20	1330 OE1 GLN 182	2619 CG LYS 338
	85 CG LEU 20	1331 NE2 GLN 182	2620 CD LYS 338
	86 CD1 LEU 20	1332 N ASN 183	2621 CE LYS 338
	87 CD2 LEU 20	1333 CA ASN 183	2622 NZ LYS 338
	89 CA GLN 21	1334 C ASN 183	2623 N GLN 339
	90 C GLN 21	1335 O ASN 183	2624 CA GLN 339
	91 O GLN 21	1336 CB ASN 183	2625 C GLN 339
	92 CB GLN 21	1337 CG ASN 183	2627 CB GLN 339
	93 CG GLN 21	1338 OD1 ASN 183	2628 CG GLN 339
	94 CD GLN 21	1339 ND2 ASN 183	2629 CD GLN 339
	95 OE1 GLN 21	1340 N HIS 184	2630 OE1 GLN 339
	96 NE2 GLN 21	1341 CA HIS 184	2631 NE2 GLN 339

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013
Supplementary Table 2: Continue

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013
Supplementary Table 2: Continue

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013
Supplementary Table 2: Continue

Potential ligand binding site residues			
	1057 CE1 TYR 148	2608 N CYS 337	
	1058 CE2 TYR 148	2609 CA CYS 337	
	1059 CZ TYR 148	2610 C CYS 337	
	1060 OH TYR 148	2611 O CYS 337	
	1239 CG LEU 172	2612 CB CYS 337	
	1240 CD1 LEU 172	2613 SG CYS 337	
	1241 CD2 LEU 172	2614 N LYS 338	
	1258 NE ARG 174		
	1259 CZ ARG 174		
	1260 NH1 ARG 174		
	1261 NH2 ARG 174		
	1308 CA ILE 180		
	1309 C ILE 180		
	1310 O ILE 180		
	1311 CB ILE 180		
	1312 CG1 ILE 180		
	1313 CG2 ILE 180		
	1314 CD1 ILE 180		
	1316 CA LEU 181		
	1317 C LEU 181		
	1318 O LEU 181		
	1319 CB LEU 181		
	1323 N GLN 182		
	1324 CA GLN 182		
	1325 C GLN 182		
UGT76G1	559 CA ASN 78	2211 OG SER 285	2433 CB PRO 312
	560 C ASN 78	2212 N GLU 286	2434 CG PRO 312
	561 O ASN 78	2213 CA GLU 286	2435 CD PRO 312
	562 CB ASN 78	2214 C GLU 286	2440 N PHE 314
	563 CG ASN 78	2215 O GLU 286	2441 CA PHE 314
	564 OD1 ASN 78	2216 CB GLU 286	2442 C PHE 314
	565 ND2 ASN 78	2217 CG GLU 286	2444 CB PHE 314
	582 CA THR 81	2218 CD GLU 286	2445 CG PHE 314
	583 C THR 81	2219 OE1 GLU 286	2446 CD1 PHE 314
	585 CB THR 81	2220 OE2 GLU 286	2447 CD2 PHE 314
	586 OG1 THR 81	2221 N VAL 287	2448 CE1 PHE 314
	587 CG2 THR 81	2222 CA VAL 287	2449 CE2 PHE 314
	588 N HIS 82	2225 CB VAL 287	2450 CZ PHE 314
	593 CG HIS 82	2226 CG1 VAL 287	2451 N VAL 315
	594 ND1 HIS 82	2266 CB PHE 292	2455 CB VAL 315
	595 CD2 HIS 82	2267 CG PHE 292	2457 CG2 VAL 315
	596 CE1 HIS 82	2269 CD2 PHE 292	2617 O VAL 336
	597 NE2 HIS 82	2271 CE2 PHE 292	2622 CA LYS 337
	615 CD1 LEU 85	2272 CZ PHE 292	2623 C LYS 337
	2174 C SER 280	2297 CD1 ILE 295	2624 O LYS 337
	2176 CB SER 280	2398 NE1 TRP 308	2630 N TRP 338
	2177 OG SER 280	2399 CE2 TRP 308	2631 CA TRP 338
	2178 N PHE 281	2401 CZ2 TRP 308	2634 CB TRP 338

Am. J. Biochem. Mol. Biol., 3 (1): 1-19, 2013
Supplementary Table 2: Continue

Potential ligand binding site residues		
2179 CA PHE 281	2405 CA VAL 309	2635 CG TRP 338
2180 C PHE 281	2406 C VAL 309	2636 CD1 TRP 338
2181 O PHE 281	2407 O VAL 309	2638 NE1 TRP 338
2182 CB PHE 281	2408 CB VAL 309	2782 NE2 HIS 356
2183 CG PHE 281	2409 CG1 VAL 309	
2185 CD2 PHE 281	2410 CG2 VAL 309	
2187 CE2 PHE 281	2411 N VAL 310	
2189 N GLY 282	2412 CA VAL 310	
2190 CA GLY 282	2413 C VAL 310	
2191 C GLY 282	2414 O VAL 310	
2192 O GLY 282	2415 CB VAL 310	
2193 N SER 283	2416 CG1 VAL 310	
2194 CA SER 283	2417 CG2 VAL 310	
2195 C SER 283	2418 N ARG 311	
2196 O SER 283	2419 CA ARG 311	
2197 CB SER 283	2420 C ARG 311	
2198 OG SER 283	2421 O ARG 311	
2199 N THR 284	2422 CB ARG 311	
2200 CA THR 284	2423 CG ARG 311	
2201 C THR 284	2424 CD ARG 311	
2202 O THR 284	2425 NE ARG 311	
2206 N SER 285	2426 CZ ARG 311	
2207 CA SER 285	2428 NH2 ARG 311	
2208 C SER 285	2429 N PRO 312	
2209 O SER 285	2430 CA PRO 312	
2210 CB SER 285	2431 C PRO 312	
2432 O PRO 312		

REFERENCES

Benkert, P., M. Biasini and T. Schwede, 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27: 343-350.
Bikadi, Z. and E. Hazai, 2009. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminf., 1: 1-15.
Boobalan, C. and N. Bharathi, 2010. Comparative modeling and functional characterization of 3-D structure of a late embryogenesis abundant protein of Arabidopsis thaliana. J. Adv. Bioinf. Appl. Res., 1: 7-10.
Bordoli, L., F. Kiefeer, K. Arnold, P. Benkert, J. Battey and T. Schwede, 2009. Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 4: 1-13.
Brandle, J.E. and P.G. Telmer, 2007. Steviol glycoside biosynthesis. Phytochemistry, 68: 1855-1863.
Brazier-Hicks, M., W.A. Offen, M.C. Gershater, T.J. Revett and E.K. Lim et al., 2007. Characterization and engineering of the bifunctional N - and O-glucosyltransferase involved in xenobiotic metabolism in plants. PNAS, 104: 20238-20243.
Chithia, C. and A.M. Lesk, 1986. The relation between the divergence of sequence and structure in proteins. EMBO J., 5: 823-826.
Graham, S.E. and J.A. Petersen, 1999. How similar are P450s and what can their differences teach us? Arch. Biochem. Biophys., 369: 24-29.

Guleria, P., V. Kumar and S.K. Yadav, 2011. Effect of sucrose on steviol glycoside biosynthesis pathway in Stevia rebaudiana. Asian J. Plant Sci., 10: 401-407.
Huq, F., 2008a. Molecular modelling analysis of the metabolism of Maraviroc. Asian J. Biochem., 3: 79-89.

Huq, F., 2008b. Molecular modelling analysis of the metabolism of udenafil. Asian J. Biochem., 3: 109-117.

Joseph, B. and V.M. Nair, 2012. In silico analysis of Vi polysaccharide biosynthesis protein of Salmonella typhi. Am. J. Drug Discov. Develop., 2: 101-109.
Khan, F. and M.I. Khan, 2011. The mushroom lectins show three types of conserved domain in a bioinformatics analysis. Am. J. Biochem. Mol. Biol., 1: 375-388.
Kuhnel, K., N. Ke, M.J. Cryle, S.G. Sligar, M.A. Schuler and I. Schlichting, 2008. Crystal structure of substrate-free and retinoic acid-bound cyanobacterial Cytochrome P450 CYP120A1. Biochemistry, 47: 6552-6559.
Lakshmi, P.T.V., S. Radhika and A. Annamalai, 2011. Molecular docking analysis of phyto-ligands with multi drug resistant β-lactamases of Staphylococcus aureus. Trends Bioinform., 4: 23-34.
Laskowski, R.A., M.W. MacArthur, D.S. Moss and J.M. Thornton, 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J. Applied Cryst., 26: 283-291.
Laurie, A.T.R. and R.M. Jackson, 2005. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites. Bioinformatics, 21: 1908-1916.
Li, L., L.V. Modolo, L.E.L. Achnine, R.A. Dixon and X. Wang, 2007. Crystal atructure of Medicago truncatula UGT85H2-insights into the structural basis of a multifunctional (Iso) flavonoid glycosyltransferase. J. Mol. Biol., 370: 951-963.
Marti-Renom, M.A., A.C. Stuart, A. Fiser, R. Sanchez, F. Melo and A. Sali, 2000. Comparative protein structure modeling of genes and genomes. Ann. Rev. Biophys. Biomol. Struct., 29: 291-325.
Mugilan, A., Ajitha, M. Cathrin, M. Kumar, Devi and Thinagar, 2010. In silico secondary structure prediction method (Kalasalingam University structure prediction method) using comparative analysis. Trends Bioinform., 3: 11-19.
Offen, W., C. Martinez-Fleites, M. Yang, E. Kiat-Lim and B.G. Davis et al., 2006. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J., 25: 1396-1405.

Prabhavathi, M., K. Ashokkumar, N. Geetha and K.M. Saradha Devi, 2011. Homology modeling and structure prediction of thioredoxin (TRX) protein in wheat (Triticum aestivum L.). Int. J. Biosci., 1: 20-32.

Richman, A., A. Swanson, T. Humphrey, R. Chapman, B. McGarvey, R. Pocs and J. Brandle, 2005. Functional genomics uncovers three glycosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J., 41: 56-67.
Rupasinghe, S. and M.A. Schuler, 2006. Homology modeling of plant cytochrome P450s. Phytochem. Rev., 5: 473-505.
Schwede, T., J. Kopp, N. Guex and M.C. Peitsch, 2003. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res., 31: 3381-3385.
Shakyawar, S.K., A. Goyal and V.K. Dubey, 2011. Database of in silico predicted potential drug target proteins in common bacterial human pathogens. Am. J. Drug Discovery Dev., 1: 70-74.
Shao, H., X. He, L. Achnine, J.W. Blount, R.A. Dixon and X. Wang, 2005. Crystal structures of a multifunctional triterpenes/flavonoid glycosyltransferases from Medicago truccatula. Plant Cell, 17: 3141-3154.

Smith, A.A. and M.C. Plazas, 2011. In silico characterization and homology modeling of cyanobacterial phosphoenolpyruvate carboxylase enzymes with computational tools and bioinformatics servers. Am. J. Biochem. Mol. Biol., 1: 319-336.
Stout, C.D., 2004. Cytochrome P450 conformational diversity. Structure, 12: 1921-1922.
Wang, J. and B. Hou, 2009. Glycosyltransferases: Key players involved in the modification of plant secondary metabolites. Front Biol. China, 4: 39-46.
Yadav, S.K., 2009. Computational structural analysis and kinetic studies of a cytosolic glutamine synthetase from Camellia sinensis (L.) O. Kuntze. Protein J., 28: 428-434.
Yadav, S.K. and P. Guleria, 2011. Steviol glycosides from Stevia: Biosynthesis pathway review and their application in foods and medicine. Crit. Rev. Food Sci. Nutr., (In Press).

