

Asian Journal of **Cell Biology**

ISSN 1814-0068

Comparative of Effect of Inhibitors on the ATPases from the Excretory System of the Usherhopper, *Poekilocerus bufonius* and Desert Locust, *Schistocerca gregaria*

Z.I.A. AL-Fifi

Department of Biological Sciences, Faculty of Science, King Abdulaziz University P. O. Box 80094-Jeddah 21589, Saudi Arabia

Abstract: The bafilomycin A1 and N-ethylmaleimide (NEM)-sensitive (V-type) ATPase was partially purified from the apical membranerich fractions of excretory system (Malpighian tubules and hind gut) of Poekilocerus bufonius and Schistocerca gregaria. Enzymatic activity was inhibited by bafilomycin A_1 (IC₅₀ = 0.48 and 1.3 μ M for S. gregaria and P. bufonius, respectively) and NEM (IC₅₀ = 10.1 and 2.8 μ M of P. bufonius and S. gregaria, respectively). The V-type ATPase activity is confined to the apical membrane fraction, while the activity of Na⁺/K⁺ -ATPase forms the major part of the basal membrane fraction of both insects. The chloride salts also caused an increase in activity in the following ascending order: RbCl, LiCI, choline Cl, NaCI, KCl and tris-HCl of both insects. The present results show that the properties of V-type ATPase of P. bufonius and S. gregaria are similar to those reported for other insect tissues.

Key words: *Poekilocerus bufonius*, *Schistocerca gregaria*, excretory system, V-type ATPase, Na⁺/K⁺ -ATPase, bafilomycin A₁, *N*-ethylmaleimide

Introduction

It has been proposed that in *Locusta* Malpighian tubules an electrogenic (Na*/K*)- ATPase energizes the basolateral membrane by the active efflux of Na* into the haemolymph, enabling the cotransport of Na* and K* into the cell by a loop diuretic-sensitive Na*/K*/2Cl⁻ cotransporter (Baldrick *et al.*, 1988). Such a cotransporter has been identified on the basolateral membrane Malpighian tubules of *Manduca sexta* (Klein *et al.*, 1991) and indirect evidence exists for its presence in *Locusta* (Fogg *et al.*, 1991; Hopkin *et al.*, 1999; 2001). Further, a basolateral conductance for K* may be present on the basal membrane, since the permeability of this cation is considerably greater than that of Na* (Morgan and Mordue, 1983).

One of the characteristic features of the (Na*/K*)- ATPase is its inhibition by ouabain and other cardiac glycosides (Keynes, 1973; Anstee and Bowler, 1984; Al-Robai *et al.*, 1990; 1993b). However, it has been reported that some insect species are able to ingest and store cardiac glycosides, to act as a deterrent to predators (Duffy and Scudder, 1972; Martel and Malcolm, 2004). Indeed, the Malpighian tubules of *Oncopeltus fasciatus* are able to concentrate ouabain (Maddrell, 1977). The usherhopper, *Poikilocerus bufonius*, is known to feed on the usher milkweed, *Calotropis procerus*, which is rich in cardiac glycosides (Euw *et al.*, 1967). The (Na*/K*)- ATPase of the excretory system of *P. bufonius* is considerably less sensitive to ouabain than that of *Schistocerca gregaria*, a non-cardenolide ingesting species (Al-Robai *et al.*, 1990).

Harvey *et al.* (1983) initially suggested that a K⁺-activated ATPase might transport K⁺ across the apical membrane and subsequent investigations suggest that secondary active transport of K⁺ into the tubule lumen occurs via a K⁺/nH⁺ antiporter driven by a V-type ATPase-generated proton gradient

(Bertram et al., 1991; Weiczorek et al., 2000; for additional references, see Al-Fifi et al., 1998a). A similar, dedicated Na*/nH* exchanger may be present in Locusta tubule cells (Pivovarova et al. 1994; Hopkin, 2001) though a common cation antiporter has not been ruled out (Al-Fifi et al., 1998b). In view of the physiological importance of the Malpighian tubule apical membrane V-type ATPase and the unusual insensitivity of the usherhopper basolateral (Na*/K*)-ATPase to ouabain, the aim of the following study was to investigate the biochemical properties of a putative V-type ATPase in the apical membrane fraction of the excretory system of P. bufonius.

A number of recent studies have reported the presence of V-type H*-ATPase activity at the apical surface of the membrane of epithelial cells (Klein *et al.*, 1991; Garayoa *et al.*, 1995; Al-Fifi *et al.*, 1998a; 2002; O'Donnell and Spring, 2000). The properties of the enzyme, in the all species studied to date, support that the enzyme create a proton motive force across the apical membrane and acts in parallel with a K*/H* antiporter to affect the active transport of K* across the apical membrane which in turn is the driving force for fluid secretion (Al-Fifi *et al.*, 1998a, b; Hopkin *et al.*, 1999).

The activity of V-type H⁺ -ATPase has been measured at the apical membrane of the insect epithelial cells from different species (Harvey, 1992; Klein *et al.*, 1991; Garayoa *et al.*, 1995; Al-Fifi *et al.*, 1998a, 2002; Wieczorek *et al.*, 1999b; O'Donnell and Springk, 2000). It has been stated that the V-type H⁺-ATPase creates a Proton Motive Force (PMF) across the apical membrane (Schweikl *et al.*, 1989; Wieczorek *et al.*, 1989; 1991; 1999a, 2000; Wieczorek, 1992; Zhang *et al.*, 1994; Harvey *et al.*, 1998). The PMF acts in parallel with a K⁺/H⁺ antiporter to affect the active transport of K⁺ across the apical membrane, which in turn is the driving force for fluid secretion (Harvey *et al.*, 1983; O'Donnell *et al.*, 1996; Hopkin *et al.*, 1999). The activity of the V-type H⁺-ATPase and hence of cation transport, is controlled hormonally (Davies *et al.*, 1995; Hopkin *et al.*, 1999; Al-Fifi *et al.*, 1998b; O'Donnell and Spring 2000; Coast *et al.*, 2001). The insect physiologist sees the enzyme as an energizer of plasma membranes; the transmembrane voltage it generates drives nutrient uptake and fluid secretion, in some cases alkalizing the gut lumen (Harvey *et al.*, 1998; Wieczorek *et al.*, 1999b; Grüber *et al.*, 2001).

It has been reported that insects feeding on plants high in K⁺ were shown to be insensitive to ouabain (Jungreis and Vaughan, 1977; Moore and Scudder, 1986). The usherhopper, *Poekilocerus bufonius*, in nature probably feeds exclusively on toxic plants, one of which is *Calotropis procera* (Euw *et al.*, 1967; Duffey, 1980; Al- Robai *et al.*, 1998). This plant contains cardiac glycosides (Al-Robai *et al.*, 1998) and a minute amount of its latex is toxic to both vertebrates and invertebrates (Detweiler, 1967; Mahmoud *et al.*, 1979a, b; Al-Robai *et al.*, 1993a, b; Al-Robai, 1997).

It has been previously investigated that the activity of Na⁺/K⁺-ATPase in the microsomal preparations of the excretory system (Malpighian tubules and hindgut) and mid gut of usherhopper and other species was resistant to inhibition by ouabain (Al-Robai *et al.*, 1990; Al-Robai, 1993; Mebs *et al.*, 2000, 2005). Al-Fifi *et al.* (2002) recently, reported that the properties of V-type H⁺ ATPase of the excretory system of usherhopper, *Poekilocerus bufonius*, are similar to those reported for other insect tissues.

Materials and Methods

Mature adult usherhoppers *Poikilocerus bufonius* (Klug) were collected from Gizan area. They were kept in cages in the department of biological sciences at $28\pm1^{\circ}$ C, with very access to branches of fresh *Calotropis procera*. Mature adult locusts, *Schistocerca gregaria*, were used and these were taken from a population maintained under crowded conditions at $28\pm1^{\circ}$ C and 60% relative humidity. The photoperiod was 12 h light: 12 h dark.

Preparation of Membrane Microsomes

Animals were killed by decapitation and the excretory system, comprising of the Malpighian tubules and the hindgut, was removed and the contents discarded. Tissue from approximately 30 animals was added to 10 mL of ice-cold homogenization medium (250 mM sucrose and 5 mM Tris-

HCl buffer, pH 7.5). All subsequent steps were carried at 4°C. Homogenization was performed in a glass homogenizer with a Teflon pestle (clearance 0.1-0.15 mm) with 20 passes of the plunger at 1000 revs/min. Membrane microsomes were then isolated by differential centrifugation according to the protocol of Al-Fifi *et al.* (1998a).

Assay of ATP ases Activity

The ATPase activity of the isolated membrane fractions was measured according to the method of Al-Fifi *et al.* (1998a). Briefly, each incubation medium, containing 250 μ L of an appropriate ionic medium (see below) and 125 μ L of membrane preparation, was equilibrated in a waterbath for 15 min at 35°C. The assay was initiated by the addition of 125 μ L of 12 mM ATP (Tris salt) and run for 30 min at 35°C. ATP (Tris salt) concentrations were varied between 0 and 4 mM in assays employed to elucidate the effect of ATP concentration on V-type ATPase activity. One thousand microliter of a 1:1 mixture of 1% Lubrol and 1% ammonium molybdate in 0.9 M sulphuric acid was used to halt the reaction (Atkinson *et al.*, 1973), after which the tubes were left for 10 min at room temperature to allow colour development to occur. Following centrifugation at 10000 rpm for 10 min, absorbancy was measured at 390 nm. The intensity of the yellow colour developed was proportional to the amount of inorganic phosphate in the assay. Thus, enzyme activity was measured by determining the amount of inorganic phosphate released. The following ionic media were used to assay different ATPase activities (final concentrations):

Assay of Na⁺/K⁺-ATP ase Activity

(1) 4 mM MgCl₂; (2) 4 mM MgCl₂, 100 mM NaCl and 20 mM KCl; (3) 4 mM MgCl₂, 100 mM NaCl, 20 mM KCl plus 1 mM ouabain. Each medium contained 20 mM imidazole/HCl (pH 7.2). Na $^+$ /K $^+$ -ATPase activity was determined as the difference in the amount of inorganic phosphate liberated in the presence of ionic medium 2 and 3.

Assay of V-Type ATP ase Activity

This was performed as described by Schweikel *et al.* (1989), by assaying the azide- and orthovanadate-insensitive ATPase activity of the membrane fraction (Al-fifi *et al.*, 1998a, 2002). The ionic media used were; (1) 1 mM MgCl₂, 20 mM KCl, 50 mM Tris-MOPS, 0.1 mM EGTA, 1 mM 2-mercaptoethanol, 0.5 mM NaN₃ 0.1 mM sodium orthovanadate, 0.3 mg BSA/mL and 0.05% Triton X-100 (pH = 7.5); (2) Medium (1) plus *N*-ethylmalimide (NEM) (0.0-1.0 mM); (3) Medium (1) plus bafilomycin A₁ (0.0-1.0 mM).

Additionally, the effect of various salts on V-type ATPase activity was determined in the presence of 1 mM MgCl₂, 5 mM Tris-HCl (pH 7.5), 0.1 mM EGTA, 0.5 mM NaN₃ and 0.1 mM Na₃VO₄. The salts used included monovalent chlorides (K⁺, Na⁺, Rb⁺ and Li⁺) and choline chloride and anion salts of K⁺ (SO₄²⁻, Fl⁻, Br⁻, gluconate and NO₃⁻). All the above salts were used at a concentration of 30 mM.

V-type ATPase activity was also examined over a pH range of 6.0 to 10.0. The reaction medium used contained 50 mM Tris-MOPS, 20 mM KCl, 1 mM EGTA, 0.5 mM NaN₃, 0.1 mM Na $_3$ VO₄, 0.05% Triton X-100 and 0.3 mg mL⁻¹ BSA (pH 7.5), allied to a 30 mM Bis-Tris Propane buffer system.

Appropriate controls were used to determine the extent of non-enzymatic hydrolysis of ATP. All ATPase activities are expressed in nmoles Pi liberated mg protein⁻¹ min⁻¹.

Estimation of Protein Concentration

Protein concentrations were determined according to the method of Lowry et al. (1951), with Bovine Serum Albumin (BSA) fraction V as the standard.

Reagents

All solutions were prepared in glass-distilled deionised water. All inorganic salts were AnalaR grade or the purest commercially available. Bafilomycin A_1 was dissolved in DMSO before adding it to the appropriate solution and the final concentration of DMSO in the experimental solution was <0.1%. The same concentration of solvent was included in the controls. All reagents were purchased from Sigma, St. Louis, MO.

Results

ATPases Distribution of the Apical and Basal Membranes

The present extensive studies on the distribution of ATPases (Total ATPase, Mg^{2+} -dependent ATPase, Na^+/K^+ -ATPase and V-type ATPase) activity of the basal membrane fraction (P_4), in Fig. 1 and apical membrane fraction (P_5), in Fig. 2, of *S. gregaria* and *P. bufonius* excretory system. The results indicate that the four types of enzyme activities are found in both basal and apical membrane fractions. However, the activity of V-type ATPase is confined to the apical membrane fraction, while that of Na^+/K^+ -ATPase form part of basal membrane fraction of both insects.

The Na⁺/K⁺-ATPase and NEM sensitive (V-type) ATPase activities in the basal and apical membrane fractions of *P. bufonius* and *S. gregaria* are summarized in Table 1. V-type ATPase activity was found to be greatest in the apical membrane fractions and was 1897.2±137.6 nmoles Pi liberated

Table 1: Distribution of ATPases activity in the Apical and Basal Membrane fractions obtained from the excretory system of S. gregaria and P. bufonius

		ATPases activity $*(nmoles\ P_i\ liberated\ mg\ Protein^{-1}\ min^{-1})$		
Insect	Membrane fractions	Na ⁺ /K ⁺ -ATPase	V type -ATPase	
S. gregaria	Basal membrane fraction (P4)	562.6±112.8	301.3±89.4	
	Apical membrane fraction (P5)	58.1±13.4	2087.9±155.6	
P. bufonius	Basal membrane fraction (P4)	539.8±119.3	277.1±89.4	
	Apical membrane fraction (P5)	39.7± 9.4	1897.2±137.6	

^{*}Each point represents the mean \pm SEM (n = 3)

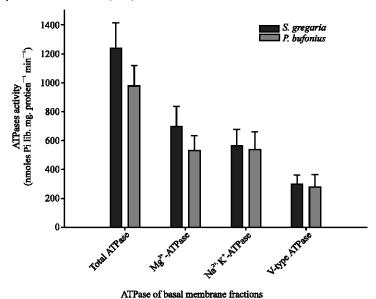


Fig. 1: Distribution of ATPases activity from basal membrane fraction of *S. gregaria* and *P. bufonius*. (Each point represents the mean \pm SEM n = 3)

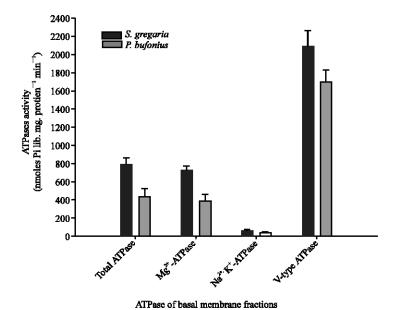


Fig. 2: Distribution of ATPases activity from apical membrane fraction of *S. gregaria* and *P. bufonius*. (Each point represents the mean \pm SEM n = 3)

mg protein⁻¹ min⁻¹ of *P. bufonius* and 2087.9±155.6 nmoles Pi liberated mg protein⁻¹ min⁻¹ of *S. gregaria*. In contrast, Na⁺/K⁺-ATPase activity was highest in the basal membrane fraction, the maximum activity being 562.6±112.8 and 539.8±119.3 nmoles Pi liberated mg protein⁻¹ min⁻¹ of *S. gregaria* and *P. bufonius*, respectively. The low activities of Na⁺/K⁺-ATPase and V-type ATPase activities in the apical and basal fractions respectively may be due to contamination.

Effect of NEM concentration on V-type ATP ase

Figure. 3 and 4 show the effect of different concentrations of NEM (0.0-1 mM) on the V-type ATPase of P. bufonius and S. gregaria, respectively. The sensitivity of V-type ATPase to NEM in which residual activity plotted as a percentage of the inhibited rate against the $-\log_{10}$ NEM concentrations. The concentration resulting in 50% inactivation of V-type ATPase activity (IC₅₀) was 10.1 and 2.8 μ M of P. bufonius and S. gregaria, respectively. It is clear that V-type ATPase activity in the apical fraction of both insects are highly sensitive to NEM.

Effect of Bafilomycin A, Concentration on V-type ATP ase

The V-type ATPase Activity was measured in incubation medium (1 mM MgCl₂, 20 mM KCl, 50 mM Tris-MOPS, 0.1 mM EGTA, 5 mM NaN₃, 0.1 mM Na₃VO₄ and 0.3 mg mL⁻¹ BSA, pH 7.5) containing different concentrations of Bafilomycin A₁ (0.0-1000 nM). The enzyme activity of the excretory system of P. bufonius (Fig. 5) and S. gregaria (Fig. 6) was extremely sensitive to Bafilomycin A₁. However, the enzyme of P. bufonius was more tolerant to Bafilomycin A₁. The enzyme activity was reduced by approximately 19 and 7% of that of the controls of P. bufonius and S. gregaria, respectively, when 10^{-8} M Bafilomycin A₁ included in incubation medium. Almost total inhibition of V-type ATPase activity was obtained 10^{-7} M Bafilomycin A₁. The calculated IC₅₀ of V-type ATPase activity was 0.48 and 1.3 μ M for S. gregaria and P. bufonius, respectively.

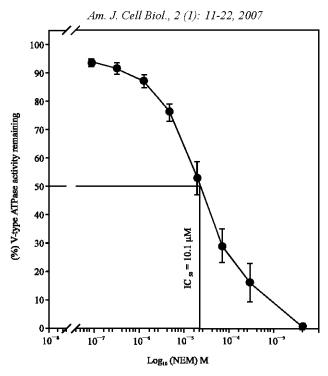


Fig. 3: Effect of different concentrations of NEM on V-type ATPase activity of P. bufonius excretory system. Enzyme activity expressed as n moles Pi liberated mg protein⁻¹ min⁻¹. (Each point represents mean \pm SEM n = 3)

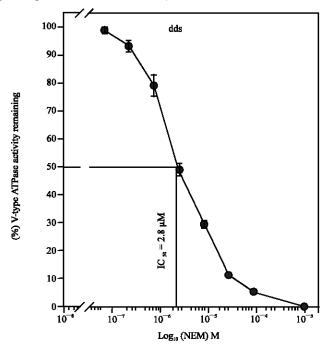


Fig. 4: Effect of different concentrations of NEM on V-type ATPase activity of *S. gregaria* excretory system. Enzyme activity expressed as n moles Pi liberated mg protein $^{-1}$ min $^{-1}$. (Each point represents mean \pm SEM n = 3)

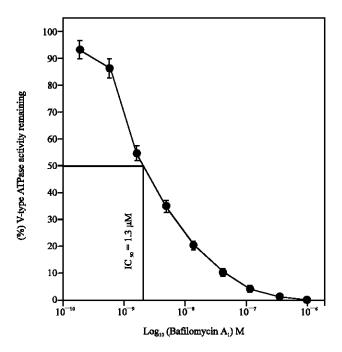


Fig. 5: Effect of different concentrations of bafilomycin A_1 on V-type ATPase activity of P. bufonius excretory system. Enzyme activity expressed as n moles Pi liberated mg protein $^{-1}$ min $^{-1}$. (Each point represents mean \pm SEM n=3)

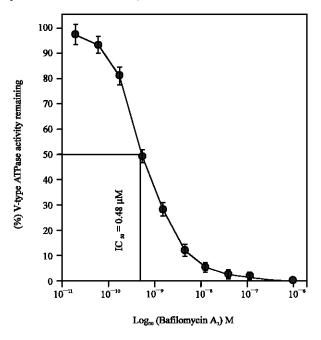


Fig. 6: Effect of different concentrations of bafilomycin A_1 on V-type ATPase activity of *S. gregaria* excretory system. Enzyme activity expressed as n moles Pi liberated mg protein⁻¹ min⁻¹. (Each point represents mean \pm SEM n=3)

Table 2: Comparative influence of various salts on V-type ATPase activity of excretory system of S. gregaria and P. bufonius

	Relative specific activity of V-type ATPase (Mean ±SEM)				
Salt (30 mM)	S. gregaria	P	P. bufonius	P	
No salt*	100%		100%		
KCl	224.3±20.1	< 0.001	183.9±13.1	< 0.002	
NaCl	180.7±19.5	< 0.002	174.9±22.0	< 0.01	
Choline Cl	161.3±20.3	< 0.01	154.1±18.3	< 0.02	
RbCl	134.7±11.5	< 0.05	129.7±13.5	< 0.05	
LiCl	167.1±19.8	< 0.05	138.4±17.6	< 0.05	
KHCO ₃	278.4 ± 28.1	< 0.0001	261.3±31.2	< 0.0001	
NaHCO ₃	262.4±8.4	< 0.0001	241.9±29.1	< 0.0001	
Tris-HCl	241.5±20.1	< 0.0001	212.5±26.7	< 0.001	
KBr	115.9±11.5	ns	109.1±19.4	ns	
K Gluconate	140.4±14.0	< 0.05	156.3±21.0	< 0.05	
KSO_4	138.3 ± 8.2	< 0.05	132.8±27.8	< 0.05	
KF	130.3±11.6	< 0.05	138.2±16.7	< 0.05	
KNO_3	29.2 ± 2.1	< 0.0001	33.6±5.7	< 0.0001	

*(No salt) Unstimulated ATPase activity obtained in assay medium: 1 mM MgCl₂, 5 mM Tris-HCl (pH 7.5), 0.1 mM EGTA, 0.5 mM NaN₃ and 0.1 mM Na₃VO₄. The specific activity recorded in this assay medium depended on each salt experiment. Mean values ±SEM. p-values were obtained by comparing the activity in the presence and absence of salt using Student's t-test, (n = 3). ns = non significant

Effect of Various Salts on the Activity of V-type ATP ase

The results presented in Table 2 summarizes the response of the V-type ATPase of *P. bufonius* and *S. gregaria* to a number of different salts, in comparison to the activity of the enzyme in the standard reaction medium (1 mM MgCl₂, 5 mM Tris-HCl (pH 7.5), 0.1 mM EGTA, 0.5 mM NaN₃ and 0.1 mM Na₃VO₄). With the exception of KBr, all the salts tested had a significant effect on the specific activity of V-type ATPase.

Firstly, the effect of changing the concentrations of a range of monovalent cations (K^+ , Na^+ , Rb^+ , Li^+ , Choline and Tris) indicates that maximal activation occurred with Tris and was approximately 213 and 241% of V-type ATPase of *P. bufonius* and *S. gregaria*, respectively. The cations were stimulatory in the following sequence; $Tris > K^+ \approx Na^+ > choline > Li^+ \approx Rb^+$. K^+ had a stimulatory effect of approximately 175%, whilst Rb^+ effect was the smallest, at approximately 130%.

The effect of the anion salts of (HCO_3^- , SO_4^{2-} , F^- , Br^- , gluconate and NO_3^-) is also illustrated. KHCO₃ produced the greatest stimulation of enzyme activity, with a value of approximately 261% of *P. bufonius* enzyme activity and 278% of *S. gregaria* enzyme activity; in contrast, NO_3^- was inhibitory to V-type ATPase activity, which was reduced to approximately 34 and 29% of the control value of *P. bufonius* and *S. gregaria*, respectively. The anions were stimulatory in the following sequence; HCO_3^- > gluconate $\approx F^- \approx SO_4^{2-} > Br^- > NO_3^-$. Br^- elicited no effect on ATPase activity, though the sodium salt of HCO_3^- caused a similar level of stimulation to its potassium salt counterpart of both insects.

Discussion

The present results indicate that four components of ATPase activity has been demonstrated in microsomal fractions of the apical and basal membranes of excretory system of *S. gregaria* and *P. bufonius*. They are total ATPase, Mg²⁺-dependent ATPase, Na⁺/K⁺-transporting ATPase and V-type ATPase. The activity of V-type ATPase is confined to the apical membrane fraction, while that of Na⁺/K⁺-ATPase form part of basal membrane fraction of both insects. Similar enzyme components have been reported in microsomes from a variety of tissues of various animals' sources (Forgac, 1989; Gluck *et al.*, 1995; Al-Fifi *et al.*, 1998b, 2002). It appears that the V-type ATPase sensitive to NEM is an important component of the apical membrane, whereas the Na⁺/K⁺-transporting ATPase is

confined to the basal membrane of epithelial cells of the excretory system of both insects. The present results substantiates the study of Wieczorek *et al.* (1989) and Al-Fifi *et al.* (1998a and 2002), which carried out on Malpighian tubules of *Locusta migratoria* and *P. bufonius* and proved that including 1 mM NEM to the incubation medium abolished the enzyme activity (Al-Fifi *et al.*, 1998a). It has been reported that NEM is an alkylating agent and is relatively selective for sulphydryl groups (Forgac, 1989) and may have toxic effect on V-type protein (Weltens *et al.*, 1992). All the evidence reported yet support the role played by V-type ATPase in ion and fluid transport across the excretory system of animals (Bertram *et al.*, 1991; Klein 1992; Klein *et al.*, 1991; Dow, 1994; Dijkstra *et al.*, 1994).

Although the present study is still in progress, it shows that the properties, studied yet, of V-type ATPase as well as Na^+/K^+ -ATPase of excretory system of *S. gregaria* and *P. bufonius* (influence the concentration of ATP, Na^+ , K^+ , Mg^{2+} and NEM) are similar. Other studies on various tissues (Forgac, 1989; Bertram *et al.*, 1991; Al-Fifi *et al.*, 1998a, 2002) coincide with results reported in the present study.

The question that ought to be answered is whether the V-type ATPase of both insects, used in the present study, differ in its properties or no. Pervious study showed that locust refrained from feeding on usher leaves (Al-Robai, 1997), which contains high concentration of toxic cardiac glycosides in all parts (Al-Robai *et al.*, 1998). On the other hand, usherhopper consumed, ingest, sequesters and concentrates toxic cardiac glycosides in bilobed poison gland and various parts of its body (Al-Robai *et al.*, 1998). It is already established that the Na⁺/K⁺ - transporting ATPase of the excretory system the usherhopper is tolerant to toxic cardiac glycosides while that of locust is very sensitive to such compounds (Al-Robai *et al.*, 1990; Al-Robai, 1993). The present study proved that the properties of V-type ATPase of both insects are similar and insensitive to food type. It appears that Na⁺/K⁺-transporting ATPase is liable to be influenced by food type consumed.

The molecular studies on the cardenolide binding site of the Na⁺, K⁺-ATPase confirmed that African *D. chrysippus aegyptius* specimens have an identical amino acid sequence in this particular region of the enzyme like specimens from Turkey and Papua New Guinea (Mebs *et al.*, 2000; 2005). The same applies to *A. ochlea ochlea*, another member of the Danaidae family. Since a mutation at position 122 (Asn to His) renders the enzyme of *D. plexippus* insensitive to cardenolides (Holzinger and Wink, 1996; Holzinger *et al.*, 1996; Mebs *et al.*, 2000; 2005), the other members of this butterfly family must have developed different modifications at the Na⁺, K⁺-ATPase preventing cardenolide binding or other strategies to tolerate the high toxicity of these compounds. Whether the replacement of glutamine by lysine (position 111) in *A. ochlea ochlea* is affecting cardenolide binding is an open question.

References

- AL-Fifi, Z.I.A., S.L. Marshall, D. Hyde, J.H. Anstee and K. Bowler, 1998a. Characterization of ATPases of apical membrane fractions from *Locusta migratoria* Malpighian tubules. J. Insect Biochem. Mol. Biol., 28: 201-211.
- AL-Fifi, Z.I.A., S.L. Marshall, D. Hyde, J.H. Anstee and K. Bowler, 1998b. The action of inhibitors of protein kinases on fluid and ion secretion by Malpighian tubules of *Locusta migratoria* L. J. Insect Physiol., 44: 973-980.
- AL-Fifi, Z.I.A., A. Al-Robai and S.M. Khoja, 2002. Properties of the V-type ATPase from the excretory system of the usherhopper, *Poekilocerus bufonius*. J. Insect Biochem. Mol. Biol., 32: 1143-1150.
- AL-Robai, A.A., S.M. Khoja and Z.I.A. AL-Fifi, 1990. Properties of ouabain-resistant Na⁺/K⁺ transporting ATPase from the excretory system of *Poekilocerus bufonius*. Insect Biochemi., 20: 701-707.

- AL-Robai, A.A., 1993. Different ouabain sensitive of Na⁺/K⁺-ATPase from *Poekilocerus bufonius* tissues and possible physiological cost Comparative Biochem. Physiol., 106: 805-812.
- Al-Robai, A.A., A.N. Abo-Khatwa and E.Y. Danish, 1993a. Toxicological-studies on the latex of usher plant *Calotropis procera* (Ait.) R. Br. In Saudi Arabia, II-Ultrastructural changes in cardiac muscle and variation in the blood scrum composition of treated Albino rats. Arab. Gulf J. Sci. Res., 11: 425-440.
- AL-Robai, A.A., A.N. Abo-Khatwa and E.Y. Danish, 1993b. Toxicological studies on the latex of Usharplant, *Calotropis procera* (Ait.) R. Br. In Saudi Arabia. III-Effect of Usher latex on the fine structure, oxygen consumption and Na⁺ K⁺-transporting ATPase of rat kidney. Arab. Gulf J. Sci. Res., 11: 441-445.
- AL-Robai, A.A., 1997. Toxicological studies on the latex of Usharplant, *Calotropis procera* (Ait.) in Saudi Arabia. IV. Effect of partly purified usher latex and of the poison gland secretion of the usherhopper, *Poekilocerus bufonius* Klug on the desert locust. *Schistocerca gregaria* Forskal. (Orthoptera: Acrididae). Arab. Gulf J. Sci. Res., 15: 709-716.
- AL-Robai, A.A., A.N. Abo-Khatwa and Z.A. Jamal, 1998. Toxicological studies on the latex of Usharplant, *Calotropis procera* (Ait.) in Saudi Arabia. V-Seasonal variation of total cardiac glycosides in the ushar plant latex and in various tissues of the Usherhopper, *P. bufonius*. Arab. Gulf J. Sci. Res., 16: 129-144.
- Anstee, J.H. and K. Bowler, 1984. Techniques for Studying Na⁺,K⁺-ATPase In: Measurement of Ion Transport and Metabolic Rate in insects. Bradly, T.J. and Miller, T.A. (Eds.).,Springer-Verlag, New York, Berlin. Chapter 8, pp. 187-220.
- Atkinson, A., A.D. Atenby and A.G. Lowe, 1973. The determination of inorganic orthophosphate in biological systems. Biochem. Biophys. Acta, 320: 195-204.
- Baldrick, P., D. Hyde and J.H. Anstee, 1988. Microelectrode studies on Malpighian tubule cells of *Locusta migratoria*: Effects of external ions and inhibitors. J. Insect Physiol., 34: 963-975.
- Bertram, G., L. Schleithoff, P. Zimmerman and A. Wessing, 1991. Bafilomycin A₁ is a potent inhibitor of urine formation by Malpighian tubules of *Drosophila hydei*: Is a vacuolar-type ATPase involved in ion and fluid secretion?. J. Insect Physiol., 37: 201-209.
- Coast, G.M., S.G. Webster, K.M. Schegg, S.S. Tobe and D.A. Schooley, 2001. The *Drosoplila melanogaster* homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J. Exp. Biol., 204: 1795-1804.
- Davies, S.A., G.R. Heusmann, S.H.P. Maddrell, M.J. O'Donnell, J.A.T. Dow and N.J. Tublitz, 1995. CAP2b, a cardioacceleratory peptide, is present in Drosophila and stimulates fluid secretion by Malpighian tubules via cyclic GMP. Am. J. Physiol., 269: R1321-R1326.
- Detweiler, D.K., 1967. Comparative pharmacology of cardiac glycosides. Federation Proceedings, 26: 119-124.
- Dijkstra, S., E. Lohrman, E. Van Kerkhove and R. Greger, 1994. Characteristics of the luminal proton pump in Malpighian tubules of the ant. Renal Physiol. Biochem., 17: 27-39.
- Dow, J.A.T., 1994. V-ATPases in Insects. In: Organellar Proton-ATPases. Nelson, N. (Ed.), Austin, Texas: R.G. Landes Company, pp: 75-102.
- Duffey, S.S. and G.G.E. Scudder, 1972. Cardiac glycosides in North American Asclepiadaceae: A basis of unpalatability in brightly colored Hemiptera and Coleoptera. J. Insect Physiol., 18: 63-78.
- Duffey, S.S., 1980. Sequestration of plant material products by insects. Ann. Revue Entomol., 25: 447-477.
- Euw, J.V., L. Fishelson, J.A. Parsons, T. Reichstein and M. Rothlschild, 1967. Cardenolides (heart poisons) in a grasshopper feeding on milkweed. Nature, 214: 35-39.
- Fogg, K.E., J.H. Anstee and D. Hyde, 1991. Studies on the subcellular distribution of (Na⁺+K⁺)-ATPase, K⁺-stimulated ATPase and HCO₃⁻-stimulated ATPase activities in Malpighian tubules of *Locusta migratoria* L. Insect Biochem., 21: 749-758.

- Forgac, M., 1989. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol. Rev., 69: 765-796.
- Garayoa, M., A.C. Villaro, U. Klein, B. Zimmermann, L.M. Montuegan and P. Sesma, 1995. Immunocytochemical localization of a vacuolar-type ATPase in Malpighian tubules of the ant Formica polyctena. Cell Tiss. Res., 282: 343-350.
- Gluck, S.L., D.R. Nelson, B.S. M. Lee, L.S. Holliday and M. Iyori, 1995. Properties of kidney plasma membrane vacuolar H1-ATPase: Proton pumps responsible for bicarbonate transport, urinary acidification and acid-base homeostasis. In: Organellar Proton ATPases. Nelson, N. (Ed.), Austin, TX: Landes.
- Grüber, G., H. Wieczorek, W.R. Harvey and V. Müller, 2001. Structure-function relationships of A-, F- and V-ATPases. J. Exp. Biol., 204: 2597-2605.
- Harvey, W.R., M. Cioffi, J.A.T. Dow and M.G. Wolfersberger, 1983. Potassium ion transport ATPase in insect epithelia. J. Exper. Biol., 106: 91-117.
- Harvey, W.R., 1992. Physiology of V-ATPases. J. Exp. Biol., 172: 1-17.
- Harvey, W.R., S.H.P. Maddrell, W.H. Telfer and H. Wieczorek, 1998. H⁺ V-ATPases energize animal plasma membranes for secretion and absorption of ions fluids. Am. Zoologist, 38: 426-441.
- Holzinger, F. and M. Wink, 1996. Mediation of cardiac glycoside insensitivity in the monarch butterfly (*Danaus plexippus*): Role of an amino acid substitution in the ouabain binding site of NaC, KC-ATPase. J. Chem. Ecol., 22: 1921-1937.
- Holzinger, E., C. Frick and M. Wink, 1996. Molecular basis for the insensetinity of the monarch (*Danacus plexippus*) to cardiac glycosides. FEBS Lett., 314: 477-480.
- Hopkin, R.S., J.H. Anstee and K. Bowler, 1999. An investigation into the effects of stimulators of fluid production on *Locusta* Malpighian tubule intracellular elemental composition. J. Comparative Physiol., 169: 429-438.
- Hopkin, R.S., J.H. Anstee and K. Bowler, 2001. An investigation into the effects of inhibitors of fluid production by *Locusta* Malpighian tubule Type I cells on their secretion and Elemental Composition. J. Insect Physiol., 47: 359-367.
- Jungreis, A. and G.L. Vaughan, 1977. Insensitivity of lepidopteran tissues to ouabain: Absence of ouabain binding and Na⁺/K⁺-ATPase in larval and adult midgut. J. Insect Physiol., 23: 503-509.
- Keynes, R.D., 1973. Comparative aspects of Transport Through Epithelia. In: Transport Mechanisms in Epithelia, Ussing and Thorn, (Eds.), Munksgaard, Copenhagen, pp. 505-511.
- Klein, U., G. Loffelmann and H. Wieczorek, 1991. The midgut as a model system for insect K⁺-transporting epithelia: Immunocytochemical localization of a vacuolar-type H⁺ pump. J. Exp. Biol., 161: 61-75.
- Klein, U., 1992. The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: Immunological evidence for the occurrence of a V-ATPase in insect ion-transporting epithelia. J. Exp. Biol., 172: 345-354.
- Lowry, O.H., N.J. Rosenbrough, A.L. Farr and R.J. Randall, 1951. Protein measurements with the folin phenol reagent. J. Biol. Chem., 193: 265-275.
- Maddrell, S.H.P., 1977. Insect Malpighian Tubules. In: Transport of Ions and Water in Animals. B.L. Gupta, R.B. Moreton, J.L. Oschman and B.J. Wall (Eds.), Academic Press, London, New York, San Francisco, pp. 541-569.
- Mahmoud, O.M., S.E.I. Adnan and G. Tarour, 1979a. The effect of *Calotropis procera* on small ruminants. I. Effect of feeding sheep with the plant. J. Comparative Pathol., 89: 241-250.
- Mahmoud, O.M., S.E.I. Adnan and G. Tarour, 1979b. The effect of *Calotropis procera* on small ruminants.I. Effect of administration of the latex to sheep and goats. J. Comparative Pathol., 89: 251-263.
- Martel, J.W. and S.B. Malcolm, 2004. Density-dependent reduction and induction of Milkweed cardenolides by a sucking insect herbivore. J. Chem. Ecol., 30: 545-561.

- Mebs, D., R. Zehner and M. Schneider, 2000. Molecular studies on the ouabain binding site of the Na⁺, K⁺-ATPase in milkweed butterflies. Chemoecology., 10: 201-203.
- Mebs, D., E. Reuss and M. Schneider, 2005. Studies on the cardenolide sequestration in African milkweed butterflies (Danaidae). Toxicon, 45: 581-584.
- Moore, L.V. and G.G.E. Scudder, 1986. Ouabain-resistant Na⁺/K⁺ ATPase and cardenolide tolerance in the large milkweed bug, *Oncopeltus fasciatus*. J. Insect Physiol., 32: 27-33.
- Morgan, P.J. and W. Mordue, 1983. Electrochemical gradients across *Locusta* Malpighian tubules. J. Comp. Physiol., 151: 175-183.
- O'Donnell, M., J.A.T. Dow, G.R. Huesmann, N.J. Tublitz ansd S.H.P. Maddrell, 1996. Separate control of anion and cation transport in Malpighian tubules of *Drosophila melanogaster*. J. Exp. Biol., 199: 1163-1175.
- O'Donnell, M.J. and J.H. Spring, 2000. Modes of control of insect Malpighian tubules: Synergism, antagonism, cooperation and autonomous regulation. J. Insect Physiol., 46: 107-117.
- Pivovarova, N., S.L. Marshall, J.H. Anstee and K. Bowler, 1994. An Xray icroanalysis study of Locusta Malpighian tubule function using rubidium. Am. J. Physiol., 266: R1551-1561.
- Schweikl, H., U. Klein, M. Schindlbeck and H. Wieczorek, 1989. A vacuolar-type ATPase, partially purified from potassium transporting plasma membranes of tobacco hornworm midgut. J. Biol. Chem., 164: 11136-11142.
- Wieczorek, H., S. Weerth, M. Schindlbeck and U. Klein, 1989. A vacuolar-type proton 'pump' in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J. Biol. Chem., 264: 11143-11148.
- Wieczorek, H., M. Putzeniechner, W. Zeiske and U. Klein, 1991. A vacuolar-type proton pump energizes K⁺/H⁺-antiport in an animal plasma membrane. J. Biol. Chem., 266: 15340-15347.
- Weltens, R., A. Leyssens, S. Zhang, E. Lohrmann, P. Steels and E. Van Kerkhove, 1992. Unmasking of the apical electrogenic H⁺ pump in isolated Malpighian tubules (*Formica polyctena*) by the use of barium. Cell Physiol. Biochem., 2: 101-116.
- Wieczorek, H., 1992. The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: Molecular analysis of electrogenic potassium transport in the tobacco hornworm midgut. J. Exp. Biol., 172: 335-343.
- Wieczorek, H., D. Brown, S. Grinstein, J. Ehrenfeld and W.R. Harvey, 1999a. Animal plasma membrane energization by proton-motive V-ATPases. BioEssays, 21: 637-648.
- Wieczorek, H., G. Grüber, W.R. Harvey, M. Huss and H. Merzendorfer, 1999b. The plasma membrane H*-V-ATPase from tobacco hornworm midgut. J. Bioenergetics Biomembranes, 31: 67-74.
- Wieczorek, H., G. Grüber, W.R. Harvey, M. Huss, H. Merzendorfer and W. Zeiske, 2000. Structure and regulation of insect plasma membrane H⁺ V-ATPase. J. Exp. Biol., 203: 127-135.
- Zhang, S., A. Leyssens, E. Van Kerkhove, R. Weltens, W. Van Driessche and P. Steels, 1994. Electrophysiological evidence for the presence of an apical H*-ATPase in Malpighian tubules of *Formica polyctena*: Intracellular and luminal pH measurements. Pflugers Arch., 426: 288-295.