

**American Journal of
Food Technology**

ISSN 1557-4571

Research Article

Sanitary and Nutritional Quality Assessment of Edible Mushrooms from Benin

¹Houssou-Goe Mawutin Justine Bérénice, ¹Tchekessi C.K. Célestin, ¹Ahondokpe Cécilia Sêna,

²Konfo T.R. Christian, ¹Gandeho Justin, ³Dabade D. Sylvain, ⁴Badoussi M. Eric, ¹Banon Jultesse,

¹Assogba T. Karl, ¹Ohin Brice, ¹Sachi Pivot and ¹Baba-Moussa A.K. Farid

¹Laboratory of Microbiology, Food Technology and Phytopathology, Faculty of Science and Technology, University of Abomey-Calavi, Benin

²Laboratory of Food Science and Technology, Bioresources and Human Nutrition, National University of Agriculture, Benin

³Laboratory of Food Science and Technology, Faculty of Agricultural Sciences, University of Abomey-Calavi, Benin

⁴Laboratory of Biochemistry and Food and Medicinal Formulations, National Higher School of Biosciences and Applied Biotechnologies, National University of Science, Technology, Engineering and Mathematics, Benin

Abstract

Background and Objective: Edible mushrooms represent an invaluable food resource consumed worldwide, including in Africa and Benin. However, their sanitary quality and nutritional value remain poorly documented in Beninese ecosystems. This study aimed to assess the sanitary, nutritional and physicochemical quality of three widely consumed edible mushroom species: *Lactifluus gymnocarpoides*, *Lentinus squarrosulus* and *Volvariella volvacea*. **Materials and Methods:** Standard physicochemical, nutritional and microbiological analyses were conducted on three edible mushroom species. Microbial tests screened for hygiene indicators and pathogens, while metal presence was analyzed using HACH 12 and complexometric methods. Aflatoxins were quantified by ELISA and nutrients (proteins, lipids, sugars, ash) were measured using Kjeldahl, Soxhlet, colorimetry and AACC 08-0117 standards. Data were statistically analyzed using ANOVA in SAS v9.2. **Results:** Chemical contamination levels were generally low, with *Lentinus squarrosulus* showing the lowest aflatoxin B1 and cadmium concentrations. *Lactifluus gymnocarpoides* met microbiological safety standards, while all species were nutritionally rich. *Volvariella volvacea* exhibited the highest protein and iron contents among the three-mushroom species. **Conclusion:** These findings highlight the potential of these mushrooms to improve food and nutrition security in Benin. Their valorization through appropriate conservation and processing strategies offers a sustainable pathway to enhance food availability and quality.

Key words: Edible mushrooms, sanitary quality, nutritional value, Benin

Citation: Bérénice, H.G.M.J., T.C.K. Célestin, A.C. Sêna, K.T.R. Christian and G. Justin *et al.*, 2026. Sanitary and nutritional quality assessment of edible mushrooms from Benin. Am. J. Food Technol., 21: 1-9.

Corresponding Author: Houssou-Goe Mawutin Justine Bérénice, Laboratory of Microbiology, Food Technology and Phytopathology, Faculty of Science and Technology, University of Abomey-Calavi, Benin Tel: (+229) 0166086929

Copyright: © 2026 Houssou-Goe Mawutin Justine Bérénice *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

The rapid development of low- and middle-income countries is accompanied by a growing tendency to adopt the dietary habits of industrialized nations. These habits, characterized by high consumption of added sugars, salt and carbonated beverages, are considered nutritionally imbalanced and contribute to the rising prevalence of chronic diseases. Simultaneously, traditional African food systems, based on the use of local food resources, are declining. These resources, often neglected or underutilized, hold substantial potential for diversifying and enhancing dietary intake.

Local food resources include plants (edible wild plants, seeds, tubers, herbs and spices), animal products and organisms such as edible mushrooms, which are notable for their rich nutritional composition due to the diversity of their natural constituents¹. Among these overlooked resources, edible mushrooms exhibit remarkable ecological diversity and offer health benefits that remain largely underexplored, including antitumor, immunostimulatory, anti-inflammatory, antidiabetic properties and promotion of gastrointestinal health². Despite their importance, only about 14% of the global fungal diversity has been described, with the total number of species estimated to 5.1 million³.

Mushrooms, immobile organisms lacking leaves, roots, stems and chlorophyll, belong to a distinct biological kingdom: Fungi. They are categorized into three main ecological groups: (i) Symbiotic fungi, which form mutualistic relationships with other organisms, such as lichens (fungus-algae associations), mycorrhizae (associations with plants) and termitophiles (associations with termites); (ii) Saprotrrophic fungi, which grow by decomposing organic matter and (iii) Parasitic fungi, which feed on living hosts, including plants, animals, or other fungi⁴.

Due to their nutritional profile and health-promoting properties, edible mushrooms represent a valuable global food resource, particularly in Africa. Their sustainable exploitation and large-scale valorization could improve food security on the continent and mitigate malnutrition-related risks¹.

In Benin, fungal diversity is particularly rich, with an estimated 18,000 species, including 3,600 higher fungi³. Among them, *Lactifluus gymnocarpoides* is an ectomycorrhizal symbiotic species associated with trees of the *Caesalpiniaceae* and *Phyllanthaceae* families in the Sudanian-Guinean region of northern Benin. *Lentinus squarrosulus* is a ubiquitous saprotrophic species, whereas *Volvariella volvacea* is a saprotrophic species primarily found in palm oil-producing regions in southern Benin.

Despite this diversity, data on the sanitary quality and nutritional potential of these edible mushrooms remain scarce. This study aims to evaluate the sanitary quality and nutritional value of three edible mushroom species consumed in Benin. This approach will enhance understanding of their role in local diets. Sanitary assessment will include the detection of chemical and microbiological contaminants posing potential health risks. Physicochemical and nutritional characterization will determine moisture, fiber, protein, lipid, carbohydrate, sugar, ash, vitamin B2, phenolic compounds and mineral content.

Such a study provides valuable insights for the valorization of these local mushrooms, whether for direct consumption or incorporation into processed food products, thereby contributing to improved food security in Benin.

MATERIALS AND METHODS

Study area and sampling design: Samples were collected from three regions in Benin representing sites of mushroom fruiting and drying: Gbessakpérou in the North, Bantè in the Central Region and Covè in the South. Dried edible mushroom samples were collected randomly, with three samples per targeted species. *Lactifluus gymnocarpoides* samples were obtained from Gbessakpérou, Kalalé (Borgou Department, Northern Benin), from three different female vendors. *Lentinus squarrosulus* samples were collected from three separate vendors in Gbessakpérou (North), Bantè (Collines Department, Central Benin) and the "Ahito" market in Covè (Zou Department, South).

Volvariella volvacea samples were collected from three different female vendors at the "Ahito" market in Covè (South). Vendors sourced their mushrooms from multiple suppliers, including cultivators and wild collectors. In total, twenty-seven dried mushroom samples were collected. All samples were visually free from mold and contamination by other species. Samples were transported to the laboratory in sterile packaging and stored at 4°C until analysis. Physicochemical, nutritional and microbiological analyses were performed in triplicate for each sample. The various samples of *Lactifluus gymnocarpoides*, *Lentinus squarrosulus* and *Volvariella volvacea* were collected from November 5 to 30, 2024.

Sanitary quality assessment: Sanitary quality was evaluated through both toxicological (toxic metals: Arsenic, lead, cadmium, aluminum, mycotoxins: total aflatoxins and aflatoxin B1) and microbiological analyses (pathogens and indicator organisms: *Salmonella* spp., *Escherichia coli*, *Staphylococcus aureus*, yeasts and molds, mesophilic aerobic bacteria and enterobacteria).

Microbiological analyses: Microbiological analyses targeted both pathogenic microorganisms and hygiene indicator organisms in food products (*Salmonella* spp., *E. coli*, *Staphylococcus* spp., yeasts and molds, mesophilic aerobic bacteria, enterobacteria)⁵. Appropriate culture media were prepared according to the manufacturer's instructions.

A stock dilution was prepared by homogenizing 10 g of each sample in 90 mL of tryptone salt broth using a stomacher bag, followed by further decimal dilutions. Inoculations were performed following established standards: Total mesophilic aerobic bacteria were enumerated on plate count agar (PCA) after incubation at 37°C for 72±2 hrs⁶, *Staphylococcus aureus* counts were performed on baird-parker agar (BPA) supplemented with egg yolk and potassium tellurite, incubated at 37°C for 24-48±2 hrs⁷, *Escherichia coli* detection used Tryptone Bile X-Glucuronide (TBX) agar poured into Petri dishes, incubated at 44°C for 24±2 hrs⁸, *Salmonella* spp., were tested according to ISO-6579-1⁹. In addition, yeasts and molds were enumerated on Sabouraud agar supplemented with chloramphenicol, incubated at 25°C for 4 days¹⁰ while Enterobacteria were enumerated on Eosin Methylene Blue (EMB) agar after incubation at 30°C for 24±2 hrs¹¹. Microbial counts were conducted in accordance with the corresponding ISO and national standards.

Toxicological analyses (mycotoxins and metals): Metal concentrations were determined on mineralized samples using methods developed by HACH¹² and complexometric approaches. Arsenic was quantified by the HACH 8013 method using silica diethyldithiocarbamate. Cadmium was measured via the HACH 8017 method employing DithiVer Metals, a stable dithizone powder. Aluminum was determined using the HACH 8326 method with Eriochrome cyanine R as the reagent. Lead was analyzed by a complexometric method using 0.0200 mol/L ethylenediaminetetraacetic acid (EDTA).

Total aflatoxins and aflatoxin B1 were quantified using an Enzyme-Linked Immunosorbent Assay (ELISA). The procedure involved ethanol extraction, sample dilution, incubation at 40°C with ELISA strips and reading using the S-FLOW Reader and its associated S-FLOW SYMMETRIC software.

Nutritional quality: The physicochemical and nutritional composition of the mushroom samples was comprehensively characterized, including the determination of moisture, protein, lipids, total sugars, total carbohydrates, crude fiber, ash, minerals (K, Mg, Zn, Fe, Ca, Cu, Cr), vitamin B2 and phenolic compounds, following established standard methods¹³.

Moisture and dry matter were assessed by weight loss after drying at 103±2°C until a constant mass was achieved¹⁴. Protein content was calculated from total nitrogen using the Kjeldahl method (6.25×N)¹⁵, whereas lipids were extracted using the Soxhlet method with a hexane/alcohol solvent system¹³. Total sugars, expressed as glucose, were quantified colorimetrically by the phenol-sulfuric acid method¹⁶, while total carbohydrates were estimated by difference, subtracting the sum of moisture, protein, crude fat, crude fiber and ash from 100%.

Energy density (kcal/100 g) was calculated using Atwater factors (4 kcal/g for protein, 4 kcal/g for carbohydrates and 9 kcal/g for lipids). Ash content was determined according to AACC 08-01¹⁷, involving carbonization followed by incineration of 5 g samples in a muffle furnace at 550°C for 24 hrs.

Mineral analysis was performed using atomic absorption spectroscopy and complexometric techniques: Potassium, magnesium and zinc by atomic absorption spectroscopy (Varian SpectrAA-200, Varian Spectra v5.5), iron using the 1,10-phenanthroline spectrophotometric method, calcium by volumetric titration with EDTA and copper and chromium using HACH-developed methods (HACH 8026 for copper via bicinchoninate and HACH 8023 for chromium via 1,5-diphenylcarbazide).

Vitamin B2 content was determined based on absorbance measurements at 760 nm and 415 nm following an adapted AOAC¹⁵ method and phenolic compounds were quantified using the Folin-Ciocalteu method¹⁸⁻²⁰.

Statistical analysis: All analytical results were coded, entered and processed using SPSS v20.0 for descriptive statistics, including means and percentages¹⁹. Quantitative data were subjected to Analysis of Variance (ANOVA) using the PROC GLM procedure in SAS v9.2²⁰. Multiple mean comparisons were performed using the Student-Newman-Keuls test at the 5% significance level ($p<0.05$).

RESULTS AND DISCUSSION

Microbiological profile of edible wild mushrooms: Table 1 presents counts of mesophilic aerobic bacteria, enterobacteria, *Staphylococcus aureus*, yeasts and molds, *Salmonella* and *Escherichia coli* for the three edible mushroom species. The analysis indicates the absence of *Salmonella* spp. and *E. coli* in all three species. Among the species studied, *Volvariella volvacea* exhibited the highest microbial loads.

The results indicate that all three studied edible mushrooms were free of major pathogenic microorganisms such as *Salmonella* spp., consistent with findings by Hainghumbi *et al.*²³ on edible truffles, who reported the absence of *Salmonella* and low levels of hygiene indicator microorganisms such as total coliforms.

Regarding mesophilic aerobic flora, *Volvariella volvacea* exhibited the highest microbial load, significantly exceeding that of the other two species. Similar observations were reported by Hainghumbi *et al.*²³, who noted higher mesophilic aerobic counts in unwashed truffles compared to washed samples, highlighting the role of washing in reducing microbial contamination.

Volvariella volvacea was also significantly more contaminated with yeasts and molds than *Lactifluus gymnocarpoides* and *Lentinus squarrosulus*, aligning with the study by Öncül and Çiftçi²⁴, who detected yeast and mold contamination on fresh *Lactarius* spp. in Turkey. Comparable results were reported by Hainghumbi *et al.*²³ for truffles.

Analysis of *Staphylococcus aureus* revealed its presence in the mushroom samples, as similarly observed by Öncül and Çiftçi²⁴ and Gaglio *et al.*²⁵ also detected several microbial species in fresh wild edible mushrooms collected in Italy. The higher risk of contamination in wild mushrooms is attributed to their growth in open environments, where pathogens can be transmitted via animal feces, insects, or environmental exposure to ascocarps²⁴.

Importantly, *Salmonella* spp. and *Escherichia coli* were absent in all three species. ANOVA of microbial counts (mesophilic aerobic bacteria, enterobacteria, *Staphylococcus aureus*, yeasts, molds) revealed highly significant differences among species (Table 1). This variability may be influenced by the mushrooms' chemical composition (nutrient and bioactive compound content), surface properties, microstructure and moisture levels, which can promote microbial growth²⁶.

According to US Food and Drug Administration²⁷, staphylococcal enterotoxins are produced only above 10 CFU/g a threshold not reached in any of the species studied. Similarly, the risk of *Clostridium perfringens* multiplication, sporulation and enterotoxin production remain low below 10 CFU/g.

Comparing the results to microbiological criteria of the FCD²¹ and those used by Ludewig *et al.*²² (Table 1), as well as the analytical tolerance set at 3 m, *Lactifluus gymnocarpoides* exhibited microbial loads below critical thresholds and *S. aureus* concentrations fell between m and M (below 3 m), indicating acceptable hygiene, compliance with analytical tolerances and no presumed risk of enterotoxin production.

In contrast, *Volvariella volvacea* (with enterobacterial counts exceeding standard limits) and *Lentinus squarrosulus* (with elevated *S. aureus*) exceeded the M threshold (10^3 CFU/g) and the analytical tolerance ($3 \text{ m} = 3 \times 10^2$ CFU/g), rendering them unsatisfactory. Although concentrations remained well below the 10 CFU/g threshold for enterotoxin production according to Luxembourg standards, these findings suggest the need for improved hygiene during harvesting and careful thermal treatment to reduce microbial loads, as also recommended by Ludewig *et al.*²².

These results further indicate that rural populations do not consistently follow good hygiene practices during mushroom processing. Uncontrolled environments are prone to contamination²⁸, emphasizing the potential for developing processing technologies aimed at reducing microbial loads.

Mycotoxin analysis: Results of mycotoxin screening are presented in Table 2. All mushroom samples tested positive for total aflatoxins and aflatoxin B1. Among the species, *Volvariella volvacea* exhibited the highest total aflatoxin concentration ($9.07 \pm 0.04 \mu\text{g/kg}$). Significant differences were observed in total aflatoxin levels among the three species.

Mycotoxin contamination: Analysis of the results revealed that *Volvariella volvacea* exhibited the highest total aflatoxin contamination. This observation is likely linked to the substrate in which this species grows; the sap from oil palms may favor mycotoxin production. Ajis *et al.*²⁶ and Magan and Aldred³⁰, reported that when water availability reaches a water activity (aw) of approximately 0.75-0.85, spoilage fungi proliferate. In addition, the slow rate of traditional drying further promotes mycotoxin development.

Similarly, Hainghumbi *et al.*²³ detected total aflatoxins in truffle samples, with the highest concentration in unwashed truffles ($27.7 \mu\text{g/kg}$) and the lowest in washed truffles ($26.3 \mu\text{g/kg}$). Compared to these results, the current study shows much lower contamination levels, all within the FAO and WHO²⁹ regulatory limits.

However, significant differences were observed for aflatoxin B1 contamination among the mushroom species. *Lactifluus gymnocarpoides* was the most contaminated, with a concentration of $4.49 \pm 0.04 \mu\text{g/kg}$.

Heavy metals and aluminum: The concentrations of heavy metals and aluminum in the edible mushrooms are summarized in Table 3. Lead, cadmium, arsenic and aluminum were detected in all analyzed samples. Analysis of Variance (ANOVA) indicated significant differences in metal concentrations among the three mushroom species ($p < 0.05$).

Table 1: Microbiological characteristics of the three studied edible wild mushrooms

Searched Parameters (CFU/g)	Mushrooms			F-value	Probability	Acceptability criteria
	<i>Lactifluus gymnocarpoides</i>	<i>Volvariella volvacea</i>	<i>Lentinus squarrosulus</i>			
Mesophilic aerobic bacteria	$(1.80 \pm 0.00) \times 10^{5b}$	$(1.30 \pm 0.06) \times 10^{6a}$	$(2.00 \pm 0.00) \times 10^{4c}$	437.76***	0.0001	$\leq 10^6$ B, $\leq 10^7$ A
Yeasts and molds	$(4.75 \pm 0.43) \times 10^{3b}$	$(2.05 \pm 0.26) \times 10^{4a}$	$(8.50 \pm 0.29) \times 10^{3b}$	28.92**	0.0008	$\leq 10^4$ B'
Enterobacteria	$(7.70 \pm 0.75) \times 10^{3b}$	$(5.4 \pm 0.23) \times 10^{5a}$	$(8.85 \pm 0.03) \times 10^{3b}$	529.56***	0.0001	$\leq 10^4$ B
<i>Salmonella</i> spp.	Not detected in 25 g	Not detected in 25 g	Not detected in 25 g	-	-	Absence/25 g A
<i>Escherichia coli</i>	$< 10^1$	$< 10^1$	$< 10^1$	-	-	$< 10^1$ A
<i>Staphylococcus aureus</i>	$(2.15 \pm 0.20) \times 10^{2c}$	$(6.35 \pm 0.49) \times 10^{3a}$	$(1.15 \pm 0.09) \times 10^{3c}$	131.77***	0.0001	$< 10^2$ A

A: Standards of the federation of commerce and distribution (FCD) for unblanched frozen mushrooms²¹, B: German Society for Hygiene and Microbiology (DGHM) criteria, B': Internal standard used for dried mushrooms²², *: Significant, **: Highly significant, ***: Very highly significant and mean values sharing the same superscript letter in a row are not significantly different at p<0.05

Table 2: Total aflatoxin and aflatoxin B1 contents in the three studied edible mushrooms

Target parameters (μ g/kg dry weight)	Mushrooms			F-value	Probability	Standard criteria ¹ (μ g/kg dry weight)
	<i>Lactifluus gymnocarpoides</i>	<i>Lentinus squarrosulus</i>	<i>Volvariella volvacea</i>			
Total Aflatoxin	8.61 ± 0.01^a	7.75 ± 0.68^a	9.07 ± 0.04^a	2.91 ^{ns}	0.1305	10
Aflatoxin B1	4.49 ± 0.04^a	3.97 ± 0.03^c	4.11 ± 0.04^b	53.60***	0.0001	10

Notes: ns = not significant; *** = very highly significant, Mean values sharing the same superscript letter in a row are not significantly different at p < 0.05. Different letters indicate significant differences at p<0.05, ¹Maximum limit according to FAO and WHO²⁹

Table 3: Lead, cadmium, arsenic and aluminum contents in the three studied edible mushrooms

Parameters (mg/100 g dry weight)	Mushrooms			F-value	Probability	Standard criteria ¹ (mg/kg)
	<i>Lactifluus gymnocarpoides</i>	<i>Lentinus squarrosulus</i>	<i>Volvariella volvacea</i>			
Lead	0.01 ± 0.00^c	0.30 ± 0.00^a	0.20 ± 0.00^b	infinity***	0.0001	0.025
Cadmium	0.58 ± 0.00^a	0.01 ± 0.00^c	0.26 ± 0.00^b	infinity***	0.0001	0.007
Arsenic	0.01 ± 0.00^c	0.18 ± 0.01^b	0.22 ± 0.01^a	559.50***	0.0001	0.015
Aluminium	0.07 ± 0.00^a	0.01 ± 0.00^b	0.07 ± 0.00^a	infinity***	0.0001	2.000

***:Very highly significant, mean values with the same superscript letter in a row are not significantly different at p<0.05, different letters indicate significant differences at p<0.05 and ¹PTWI: Provisional Tolerable Weekly Intake per kg body weight²⁹⁻³¹

The highest levels of specific metals were observed as follows: Lead was most abundant in *Lentinus squarrosulus* (3.00 ± 0.00 mg/kg dry weight), cadmium was highest in *Lactifluus gymnocarpoides* (5.80 ± 0.00 mg/kg dry weight) and arsenic was most concentrated in *Volvariella volvacea* (2.20 ± 0.01 mg/kg dry weight).

This contamination can be attributed to the differing ecologies of the studied mushrooms and to species-specific uptake characteristics, as reported by Kokkoris *et al.*³² and Ivanić *et al.*³³. This hypothesis is further supported by Thachunglura *et al.*³⁴, Chawngthu *et al.*³⁵, who noted that species physiology, collection site, soil mineral composition and proximity to pollution sources all contribute to heavy metal accumulation in mushrooms.

The provisional tolerable weekly intakes (PTWIs) established by FAO/WHO²⁹ and JECFA³¹ for arsenic, cadmium and lead are 15, 7 and 25 μ g/kg body weight, respectively. The aluminum content of the sampled mushrooms is low (Table 3) relative to the PTWI of 2.0 mg/kg body weight³¹. Therefore, an adult weighing 60 kg could safely consume weekly 72 g of *Lactifluus gymnocarpoides*, 500 g of

Lentinus squarrosulus, or 160 g of *Volvariella volvacea* without health risk. The concentrations measured in this study (0.02-0.06 mg/kg for lead and 7.29-32.31 mg/kg for cadmium) are consistent with findings reported by Keleş and Gençcelep³⁶ in Turkey on 20 species of dried mushrooms.

Nutritional characterization of three edible mushrooms:

Table 4 and 5 summarize the macronutrient and micronutrient compositions of the analyzed mushrooms. Analysis shows that, except energy density, all parameters varied significantly at the 5% level. *Volvariella volvacea* exhibited the highest protein content ($30.33 \pm 0.27\%$), phenolic compounds (20.25 ± 0.23 mg/100 g) and vitamin B2 (3.09 ± 0.16 mg/100 g). *Lentinus squarrosulus* was distinguished by its high lipid content ($6.56 \pm 0.07\%$), total carbohydrates ($62.37 \pm 0.31\%$), ash content ($4.31 \pm 0.19\%$) and phosphorus (1476.34 ± 2.53 mg/100 g). In contrast, *Lactifluus gymnocarpoides* showed the highest levels of total sugars ($10.72 \pm 0.17\%$), dietary fiber ($8.24 \pm 0.14\%$), potassium (1120.58 ± 0.28 mg/100 g), magnesium (224.82 ± 0.85 mg/100 g) and calcium (322.00 ± 0.58 mg/100 g).

Table 4: Physicochemical and nutritional characteristics of the three studied mushrooms (macronutrients)

Parameters analyzed per 100 g of dry weight	Mushrooms				
	<i>Lactifluus gymnocarpoides</i>	<i>Lentinus squarrosulus</i>	<i>Volvariella volvacea</i>	F-value	Probability
Moisture	9.41±0.07 ^b	9.64±0.06 ^b	10.92±0.32 ^a	17.95**	0.0029
Proteins	20.49±0.25 ^b	10.50±0.16 ^c	30.33±0.27 ^a	1865.52***	0.0001
Lipids	4.50±0.04 ^c	6.56±0.07 ^a	5.43±0.16 ^b	96.86***	0.0001
Carbohydrates	54.90±0.21 ^b	62.37±0.31 ^a	44.39±0.06 ^c	1675.61***	0.0001
Total sugars	10.72±0.17 ^a	8.62±0.23 ^c	9.65±0.19 ^b	28.00***	0.0009
Fiber	8.24±0.14 ^a	6.61±0.23 ^b	5.64±0.12 ^c	61.34***	0.0001
Ash	2.47±0.06 ^c	4.31±0.19 ^a	3.27±0.04 ^b	63.05***	0.0001
Energy density (kcal/100 g)	342.02±0.89 ^b	350.57±2.08 ^a	347.79±0.94 ^a	9.50*	0.0138

*:Significant, **:Highly significant, ***:Very highly significant, mean values in the same row sharing the same letter are not significantly different at the 5% level, mean values in the same row with different letters are significantly, highly significantly and very highly significantly different at the 5% level

Table 5: Physicochemical and nutritional characteristics of the three studied mushrooms (micronutrients)

Searched parameters (mg/100 g dry weight)	Mushrooms				
	<i>Lactifluus gymnocarpoides</i>	<i>Lentinus squarrosulus</i>	<i>Volvariella volvacea</i>	F-value	Probability
Phenolic compounds (mg GAE/100 g)	9.54±0.12 ^b	7.78±0.12 ^c	20.25±0.23 ^a	1637.34***	0.0001
Vitamin B2	2.27±0.08 ^b	1.92±0.05 ^b	3.09±0.16 ^a	30.51***	0.0007
Phosphors	1476.34±2.53 ^c	1680.71±0.24 ^a	1583.94±0.83 ^b	4369.44***	0.0001
Potassium	1120.58±0.28 ^a	1069.37±0.77 ^c	1074.48±1.89 ^b	562.79***	0.0001
Magnesium	224.82±0.85 ^a	188.45±0.26 ^c	196.52±0.57 ^b	981.11***	0.0001
Calcium	322.00±0.58 ^a	107.90±0.52 ^c	191.05±0.55 ^b	38654.7***	<.0001
Zinc	8.72±0.08 ^a	6.94±0.23 ^b	5.95±0.19 ^c	61.00***	0.0001
Iron	84.50±0.29 ^c	90.60±0.29 ^b	280.15±0.09 ^a	213145***	<.0001
Copper	0.29±0.00 ^b	0.32±0.00 ^a	0.25±0.01 ^c	37.00***	0.0004
Chromium	0.01±0.00 ^b	0.30±0.00 ^a	0.01±0.00 ^b	lnfinity***	<.0001

***:Very highly significant, mean values in the same row with the same letter are not significantly different at the 5% level, mean values in the same row with different letters are significantly, highly significantly, or very highly significantly different at the 5% level and GAE: Gallic Acid Equivalent

Regarding trace elements, *Lentinus squarrosulus* had the highest copper (0.32 ± 0.00 mg/100 g) and chromium (0.30 ± 0.00 mg/100 g) contents, while *Lactifluus gymnocarpoides* exhibited the highest zinc concentration (8.72 ± 0.08 mg/100 g) and *Volvariella volvacea* the highest iron content (280.15 ± 0.09 mg/100 g).

The physicochemical and nutritional compositions of *Lactifluus gymnocarpoides*, *Lentinus squarrosulus* and *Volvariella volvacea* were determined to evaluate their dietary significance. These edible mushrooms, harvested from various ecosystems, were traditionally preserved by solar drying for later consumption. Statistical analysis revealed highly significant differences ($p<0.05$) among the three species for all parameters except moisture content. This variability can be attributed to genetic and ecological differences, as previously reported by Kokkoris *et al.*³² and Ivanić *et al.*³³. Indeed, these authors showed that the absorption of substances by mushrooms is competitive and depends on mycelial structure, species-specific genome, the element to be absorbed and environmental factors.

The low moisture content of the dried mushrooms ($9.41\pm 0.07\%$ to $10.92\pm 0.32\%$) complies with the standard for edible mushrooms and derived products (<12% w/w;⁵ and

aligns with the value reported by Ugbogu *et al.*³⁷ (9.85%). These levels support safe storage, indicating proper solar drying and storage practices that prevent rehydration by the local populations.

Nutritional coverage analysis highlights the potential of these mushrooms to supply a substantial portion of daily nutrient requirements. Based on the nutrient contents (Table 4 and 5) and the recommended dietary allowances (RDA) for a 60 kg adult with a total energy intake of 2200 kcal/day³⁸, the contribution of each mushroom species was assessed. Protein contents ranged from $10.50\pm 0.16\%$ to $30.33\pm 0.27\%$, consistent with the 19-35% dry weight range reported by Wang and Zhao², except for *Lentinus squarrosulus*, which exhibited the lowest value. Accordingly, 100 g of *Volvariella volvacea*, *Lactifluus gymnocarpoides*, or *Lentinus squarrosulus* can provide approximately 63.19, 42.69 and 21.88% of the RDA for protein (48 g/day), respectively.

Lipid contents were low ($4.50\pm 0.04\%$ to $6.56\pm 0.07\%$), as previously noted by Wang and Zhao². One hundred grams of *Volvariella volvacea*, *Lactifluus gymnocarpoides*, or *Lentinus squarrosulus* supply approximately 6.70%, 5.56% and 8.10% of the RDA for lipids (81.5 g/day). Carbohydrates were the predominant macronutrient ($44.39\pm 0.06\%$ to $62.37\pm 0.31\%$),

contributing 17.76%, 21.96% and 24.95% of the RDA for carbohydrates (250–275 g/day) per 100 g of the respective species.

Dietary fiber levels in *Lactifluus gymnocarpoides* and *Lentinus squarrosulus* ($6.61 \pm 0.23\%$ to $8.24 \pm 0.14\%$) were substantially higher than the 1.9% reported by Ugbogu *et al.*³⁷ for the same species in Nigeria, while *Volvariella volvacea* ($5.64 \pm 0.12\%$) fell within the 4-9% range reported by Ali *et al.*³⁹. One hundred grams of *Volvariella volvacea*, *Lactifluus gymnocarpoides*, or *Lentinus squarrosulus* provide approximately 28.20%, 41.20% and 33.05% of the recommended dietary fiber intake (20-25 g/day).

Moreover, 100 g of the studied mushrooms satisfy the full RDA for vitamin B2 (1.6 mg/day), phosphorus (750 mg/day) and iron (9 mg/day) and contribute over 40% of the RDA for potassium (2-6 g/day), zinc (12 mg/day) and magnesium (420 mg/day). Compared with staple foods such as rice (2.64%), peanuts (3.84%), hybrid maize Oba Super 6 (12.2%) and brown cowpea (17.8%)⁴⁰, the intermediate fiber content of these mushrooms makes them valuable for dietary formulation.

In technological applications, phenolic compounds provide antioxidant, antibacterial and coloring properties, while vitamin B2 and dietary fiber can serve as natural colorants (yellow-orange: E101i) and texturizers, improving the texture and juiciness of dairy and meat products as well as the quality of bakery and pastry items⁴¹⁻⁴³. Consequently, dried mushrooms present potential as a nutrient-rich ingredient for the formulation of infant flours, providing protein and carbohydrate contents compliant with FAO⁴⁴ recommendations (12.06 g/100 g protein, 69.08 g/100 g carbohydrates).

CONCLUSION

This study on *Lactifluus gymnocarpoides*, *Lentinus squarrosulus* and *Volvariella volvacea* from diverse Beninese ecosystems demonstrates that these mushrooms are nutrient-dense, with species-specific nutritional profiles. Microbiological assessment indicates that while *Lactifluus gymnocarpoides* meets hygiene standards, *Lentinus squarrosulus* and *Volvariella volvacea* require careful thermal processing to ensure safety. Chemically, the levels of lead, aluminum, cadmium, arsenic, total aflatoxins and aflatoxin B1 were within safe limits, posing no significant health risks. Overall, edible mushrooms in Benin contribute to dietary enrichment and diversification, highlighting the need to improve post-harvest practices, including drying, packaging and storage.

SIGNIFICANCE STATEMENT

This study discovered the excellent nutritional quality and sanitary safety of three edible mushroom species-*Lactifluus gymnocarpoides*, *Lentinus squarrosulus* and *Volvariella volvacea*-that can be beneficial for enhancing food and nutrition security in Benin. The mushrooms showed low contamination, good microbiological standards and high protein and iron contents, highlighting their potential for sustainable dietary improvement. These findings emphasize the importance of mushroom valorization through safe processing and conservation practices. This study will help researchers to uncover critical areas of mushroom quality assessment, leading to a new theory on mushroom valorization.

ACKNOWLEDGMENT

The authors would like to sincerely thank all collaborators from the various laboratories of the National Universities of Benin who contributed to the drafting and preparation of this article.

REFERENCES

1. Fernandes, T., C. Garrine, J. Ferrão, V. Bell and T. Varzakas, 2021. Mushroom nutrition as preventative healthcare in Sub-Saharan Africa. *Appl. Sci.*, Vol. 11. 10.3390/app11094221.
2. Wang, M. and R. Zhao, 2023. A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues. *J. Future Foods*, 3: 1-7.
3. Blackwell, M., 2011. The fungi: 1, 2, 3 … 5.1 million species? *Am. J. Bot.*, 98: 426-438.
4. Li, A., C. Parsania, K. Tan, R.B. Todd and K.H. Wong, 2021. Co-option of an extracellular protease for transcriptional control of nutrient degradation in the fungus *Aspergillus nidulans*. *Commun. Biol.*, Vol. 4. 10.1038/s42003-021-02925-1.
5. Hadrya, F., A. El Ouardi, H. Hami, A. Soulaymani and S. Senouci, 2012. Microbiological quality assessment of dairy products marketed in Rabat-Salé-Zemmour-Zaer Region in Morocco. *Cah. Nutr. Diet.*, 47: 303-307.
6. Teramura, H., G. Betts, Y. Chen, M. Brodsky and Y. Salfinger, 2018. MC-Media Pad ACplus™ for enumeration of aerobic counts in a variety of foods. *J. AOAC Int.*, 101: 769-782.
7. de Buyser, M.L., B. Lombard, S.M. Schulten, P.H. In't Veld, S.L. Scotter, P. Rollier and C. Lahellec, 2003. Validation of EN ISO standard methods 6888 Part 1 and Part 2: 1999-enumeration of coagulase-positive staphylococci in foods. *Int. J. Food Microbiol.*, 83: 185-194.

8. Teramura, H., A. Ogura, L. Everis and G. Betts, 2019. MC-Media Pad EC for enumeration of *Escherichia coli* and coliforms in a variety of foods: AOAC Performance Tested MethodSM 011902. J. AOAC Int., 102: 1502-1515.
9. Mallinson, E.T., R.G. Miller, C.E. de Rezende, K.E. Ferris, J. de Graft-Hanson and S.W. Joseph, 2000. Improved plating media for the detection of *Salmonella* species with typical and atypical hydrogen sulfide production. J. Vet. Diagn. Invest., 12: 83-87.
10. Beuchat, L.R., E. Frändberg, T. Deak, S.M. Alzamora and J. Chen *et al.*, 2001. Performance of mycological media in enumerating desiccated food spoilage yeasts: An interlaboratory study. Int. J. Food Microbiol., 70: 89-96.
11. Biesta-Peters, E.G., S.M. Kinders and E. de Boer, 2019. Validation by an interlaboratory collaborative trial of EN ISO 21528-microbiology of the food chain-horizontal methods for the detection and enumeration of *Enterobacteriaceae*. Int. J. Food Microbiol., 288: 75-81.
12. Širić, I., P. Kumar, B. Adelodun, S. Abou Fayssal and R.K. Bachheti *et al.*, 2022. Risk assessment of heavy metals occurrence in two wild edible oyster mushrooms (*Pleurotus* spp.) collected from Rajaji National Park. J. Fungi, Vol. 8. 10.3390/jof8101007.
13. Yu, Q., M. Guo, B. Zhang, H. Wu, Y. Zhang and L. Zhang, 2020. Analysis of nutritional composition in 23 kinds of edible fungi. J. Food Qual., Vol. 2020. 10.1155/2020/8821315.
14. El-Ramady, H., N. Abdalla, K. Badgar, X. Llanaj and G. Törös *et al.*, 2022. Edible mushrooms for sustainable and healthy human food: Nutritional and medicinal attributes. Sustainability, Vol. 14. 10.3390/su14094941.
15. AOAC and AOACI, 2006. Official Methods of Analysis of AOAC International. 18th Edn., AOAC International, Gaithersburg, Maryland, ISBN: 9780935584776.
16. DuBois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.
17. AACC and AMC, 1983. Approved Methods of the American Association of Cereal Chemists. 8th Edn., American Association of Cereal Chemists, St. Paul, MN., USA., ISBN: 9780913250310, Pages: 530.
18. Singleton, V.L., R. Orthofer and R.M. Lamuela-Raventós, 1999. Analysis of Total Phenols and other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In: Methods in Enzymology, Packer, L. (Ed.), Academic Press, Cambridge, Massachusetts, ISBN: 9780121822002, pp: 152-178.
19. Gandeho, J.G., C.C.K. Tchekessi, O.D. Bello, S.K.U. Edikou and L.G.D. Atchouke *et al.*, 2022. Traditional processes of food products bio conservation based on plants extracts in south and central-Benin. World J. Adv. Res. Rev., 15: 98-114.
20. Célestin, T.C.K., H.G.M.J. Bérénice, K. Yaya, Y. Pélagie and K. Sylvain *et al.*, 2023. Microbiological, physicochemical and nutritional assessment quality of three types of *Kombucha drinks* produced from local herbs and Lipton tea in Benin. Am. J. Food Nutr., 11: 46-54.
21. FAO, 1992. Manual of Food Quality Control: 4. Rev. 1, Microbiological Analysis. Food and Agriculture Organization of the United Nations, Rome, Italy, ISBN: 9789251031896, Pages: 338.
22. Ludewig, M., J. Rattner, J.J. Künz, M. Wagner and B. Stessl, 2024. Quality and safety of dried mushrooms available at retail level. Appl. Sci., Vol. 14. 10.3390/app14052208.
23. Hainghumbi, T.A., W. Embashu, K.K.M. Nantanga, N.P. Kadila and L. lipumbu, 2022. Assessment of microbiological properties, mycotoxins, and heavy metals in underprized raw kalahari truffles sold in Namibia. J. Food Qual. Hazards Control, 9: 23-31.
24. Öncül, N. and M. Çiftçi, 2023. Microbiological quality of some fresh wild edible mushrooms. Food Health, 9: 323-330.
25. Gaglio, R., A. Saitta, M. Cruciata, A. la Rosa, P. Barbaccia, G. Moschetti and L. Settanni, 2019. Microbiological characteristics of wild edible mushrooms and effect of temperature during storage of *Morchella conica*. J. Food Qual. Hazards Control, 6: 2-7.
26. Ajis, A.H., L.J. Chong, Y.S. Tan and L.C. Chai, 2017. Microbial food safety assessment of dried edible mushrooms. J. Consum. Prot. Food Saf., 12: 265-269.
27. Soriano, J.M., G. Font, J.C. Molto and J. Maaes, 2002. Enterotoxigenic staphylococci and their toxins in restaurant foods. Trends Food Sci. Technol., 13: 60-67.
28. King, L.K., B. Awumbila, E.A. Canacoo and S. Ofosu-Amaah, 2000. An assessment of the safety of street foods in the Ga district, of Ghana; implications for the spread of zoonoses. Acta Trop., 76: 39-43.
29. FAO and WHO, 2023. Prevention and Control of Microbiological Hazards in Fresh Fruits and Vegetables- Parts 1 & 2: General Principles. FAO; WHO; Rome, Italy, ISBN: 978-92-5-138340-7, Pages: 158.
30. Magan, N. and D. Aldred, 2007. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol., 119: 131-139.
31. Schrenk, D., M. Bignami, L. Bodin, J. del Mazo and B. Grasl-Kraupp *et al.*, 2021. Evaluation of the shucking of certain species of scallops contaminated with lipophilic toxins with a view to the production of edible parts meeting the safety requirements foreseen in the Union legislation. EFSA J., Vol. 19. 10.2903/j.efsa.2021.6422.
32. Kokkoris, V., I. Massas, E. Polemis, G. Koutrotsios and G.I. Zervakis, 2019. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci. Total Environ., 685: 280-296.

33. Ivanić, M., M.F. Turk, Z. Tkalčec, Ž. Fiket and A. Mešić, 2021. Distribution and origin of major, trace and rare earth elements in wild edible mushrooms: Urban vs. forest areas. *J. Fungi*, Vol. 7. 10.3390/jof7121068.
34. Thachunglura, V.L., P.K. Rai, Zohmangaiha, B. Lalbiakmawia, Lalmuangsangi and J. Zothanzama, 2023. *Pleurotus giganteus* as a valuable source of nutrients. *Indian J. Sci. Technol.*, 16: 89-94.
35. Chawngthu, Z., V.L. Thachunglura, J. Zothanzama and J. Khumlianlal, 2024. Risk assessment of heavy metals in wild mushroom from Mizoram, India. *Environ. Pollut. Manage.*, 1: 147-151.
36. Keleş, A. and H. Gençcelep, 2020. Determination of elemental composition of some wild growing edible mushrooms. *J. Fungus*, 11: 129-137.
37. Ugbogu, E.A., O. Emmanuel, A.Z.M. Salem and M.M.M.Y. Elghandour, 2020. Nutritional composition of *Termitomyces robustus* (Agaricomycetes) and *Lentinus squarrosulus* (Mont.) singer in South East Nigeria. *Agrofor. Syst.*, 94: 1291-1300.
38. Porter, J. and J. Collins, 2022. Nutritional intake and foodservice satisfaction of adults receiving specialist inpatient mental health services. *Nutr. Diet.*, 79: 411-418.
39. Ali, S., N. Yousaf, M. Usman, M.A. Javed and M. Nawaz *et al.*, 2024. *Volvariella volvacea* (paddy straw mushroom): A mushroom with exceptional medicinal and nutritional properties. *Heliyon*, Vol. 10. 10.1016/j.heliyon.2024.e39747.
40. Okonwu, K., N.A. Egerton, A.E. Ajayi and J.U. Agogbua, 2022. Nutritional composition of some of the most consumed cereals and legumes in Nigeria. *Eur. J. Nutr. Food Safe.*, 14: 53-58.
41. Salehi, F., 2021. Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. *Food Sci. Nutr.*, 9: 4666-4686.
42. Marczak, A. and A.C. Mendes, 2024. Dietary fibers: Shaping textural and functional properties of processed meats and plant-based meat alternatives. *Foods*, Vol. 13. 10.3390/foods13121952.
43. Tolve, R. and B. Simonato, 2024. Fortified cereal-based foodstuffs: Technological, sensory, and nutritional properties. *Foods*, Vol. 13. 10.3390/foods13081182.
44. Siyame, P., N. Kassim and E. Makule, 2021. Effectiveness and suitability of oyster mushroom in improving the nutritional value of maize flour used in complementary foods. *Int. J. Food Sci.*, Vol. 2021. 10.1155/2021/8863776.