{1 (e

)
R |
| I"rm IR
F | L, S | ] il
Il | | IlJ | I || |
I | | e i l
||| | i | II flb 54 V35 { J i
| f | /| ar it |
I | 'II / JI[JI 0 ,’I / y ‘:-' 118 | F,
] IJ. j|' f I I I|I| f.' | E Foc 3
| o T 4 I I | .y
| ||I | ‘-: [} ’ !I ! :"‘ s e |'II .I , 7..
) J'“ 7 X lr ' ".I‘ L i' T / -"'IIr 3’
/ 1l i ] Ir L L™ e "- / | / t! Lo /

Asian Journal of
Information
Management

ISSN 1819-334X

Academic
Journals Inc. www.academicjournals.com




Asian Journal of Information Management, 3 (1): 7-17, 2009
ISSN 1819-334X
© 2009 Academic Journals Inc.

Improving the Performance of Association Rule Mining Algorithms by
Filtering Insignificant Transactions Dynamically

'Rajendra K. Gupta and “Dev Prakash Agrawal
"Department of C3E and 1T, MITS, Gwalior (MP), India
"Union Public Service Commission, New Delhi, India

Abstract; Present study proposes an algorithm for finding frequent itemsets. Algorithm
uses a novel approach to the insignificant transactions dynamically. Tt divides the tuples of
the database to be mined intelligently in clusters. During a particular pass only those
clusters that seem to be statistically useful are to be scanned and as a consequence all
insignificant tuples will be filtered out dynamically. Further, the algorithm is based on a
vertical data layout and offers flexibility during mining process. Experiments have been
performed on real databases and the results have been presented. The results show that by
removing false frequent items and insignificant transactions dynamically, the performance
of association rule-mining algorithms can be improved. It has also been observed that the
performance gap increases with the large size of database and/or when there exist prolific
size frequent itemset in the database at the given value of minimum support.

Key words: Knowledge discovery, association rules algorithm, interesting patterns,
cluster based association rule mining

INTRODUCTION

Data mining relate to discovering of previously unknown patterns in large databases and is an
important step in the knowledge discovery process. It is emerging as a major application area for
databases (Agrawal et al., 1993; Bjorvand, 1998, Landau ef ol., 1998, Hunzikar ef af., 1998,
Aggarwal and Yu, 1999; Tiwari ef «f., 2008) had introduced different classes of data mining problem
involving clustering, classification, prediction and association.

Association rules are used to show the relationships between the data items. These uncovered
relationships are neither inherent nor casual, but rather based on co-occurrence of the data items. The
discovery of association relationships among huge amount of data is useful in various problems viz.,
decision analysis, Customer Relationship Management (CRM), cross marketing and fraud detection
etc. A popular area of application is introduced by Agrawal et al. (1993) is market basket analysis,
which studies the buying pattern of customers by searching for sets of items that are frequently
purchased together or in a sequence. It is important to improve the quality of business decisions by
analyzing past transaction data to discover customer purchasing behaviors. In order to support this
analysis, a sufficient amount of transactions needs to be collected and stored in a database. A
transaction in the database typically consists of customer identifier, transaction date and items
purchased in the transaction. Because the amount of these transaction data can be very large, an
efficient algorithm needs to be designed for discovering useful information.

Most of the algorithms to mine the association rules are divided into two phases, the first is to
find the frequent itemset; the second is to use the frequent itemset to generate association rules. The
identification of the frequent itemset is a computationally expensive task. Present study proposes an
algorithm for finding frequent itemsets. Algorithm uses a novel approach to the insignificant

Corresponding Author: Rajendra K. Gupta, Department of CSE and IT, MITS, Gwalior (MP), India
7



Asian J. Inform. Manage., 3 (1): 7-17, 2009

transactions dynamically. Tt divides the tuples of the database to be mined intelligently in clusters.
During a particular pass only those clusters that seem to be statistically useful are to be scanned and
as a consequence all insignificant tuples will be filtered out dynamically. Further, the algorithm is based
on a vertical data layout and offers flexibility during mining process. Experimental results show that
the algorithm recuces the size of database scanned during each pass causing reduction in execution time
to a large extent, especially when there exists prolific patterns in the database and/or the size of
database is very large.
Appendix shows the different notations used in the study.

ASSOCIATION RULE PROBLEM

The problem of mining association rules is to generate all rules that have support and confidence
greater than or equal to some user specified minimum support and minimum confidence threshold,
respectively. A formal statement of the association rule problem is given by Agrawal ef af. (1993).

Let T = {1, 1515 05cnn.ee. i, + be a set of m distinct literals called items, D is a set of
transactions (variable length) over 1. Each transaction contains a set of items 1, 1,, 15,14........... i, <
I. Each transaction is associated with an identifier, called TID. An association rule is an implication
ofthe form X = Y, where, X, Y cIand X n'Y =0. Here, X is called the antecedent and Y is called the
consequent of the rule. The rule X = Y holds in the transaction set D with confidence ¢ if among those
transactions that contain X «% of them also contain Y. The rule X = Y has support S in the
transaction set D if 8% of transactions in D contains X v Y. The selection of association rules is based
on these two values (some additional constraints may also apply). These are two important measures
of rule interestingness. They respectively reflect usefulness and certainty of a discovered rule. They
can be described by the following equations:

Support (X = Y)=Frequency (X u Y)|D|
Confidence (X = Y) =Frequency (X u Y) / Frequency (X)

where, | D | represents the total number of transactions (tuples) in D.

A frequent itemset is an itemset whose mumber of occurrences is above a minimum support
threshold. An itemset of length k is called k-itemset and a frequent itemset of length k as k-frequent
itemset. An association rule is considered strong if it satisfies a minimum support threshold and
minimum confidence threshold.

Factors Affecting the Efficiency

As explained earlier that the identification of the frequent itemsets is computationally expensive.
Once all sets of frequent itemsets are obtained, there is a straightforward algorithm, given by
Agrawal and Srikant (1994, for finding association rules. The naive algorithm for finding frequent
itemnsets is not practical in real world applications, since, it requires exhaustive search, which may
behave well in a small problem domain, but is not practical when applied to large databases. The
efficiency of an association rule algorithm usually depends upon the number of database scans, size
of database during scan, number of candidate itemset generated and tested (counted) and efforts
required to remove the duplicate rules etc. Hence, the primary goals of any association rule algorithm
are to reduce the number of candidate itemsets generated and tested as well as the number of scans of
database required and scan the database as small as possible. These activities require considerable
amount of processing time and memory. Therefore, it is crucial that exhaustive search is avoided in real
world applications and some heuristics should be introduced to climinate statistically insigrificant
items and/or transactions as early as possible in the frequent pattern discovery process.



Asian J. Inform. Manage., 3 (1): 7-17, 2009

A Critical Look on Currently Used Algorithms

In recent years several fast algorithms for generating frequent itemsets have been suggested in
literature by Mannila ef of. (1994), Savasere efaf. (1995), Agrawal and Srikant (1994), Yen and Arbee
Chen (2001), Park e ef. (1997), Houtsma and Swami (1995), Coenen ef /. (2001) and Tiwari et af.
(2008). An analysis of these has led the authors to identify the following limitations/shortcomings in
them:

+  Recently developed graph based approaches (Yen and Arbee Caen, 2001; Hanand Yin, 2000)
for mining association patterns (frequent itemsets) require the construction of the association
graph (Yen and Arbee Chen, 2001) and the frequent pattern tree (Han and Yin, 2000),
respectively for every new value of minimum support, by scanning the entire database. Even for
the case when database is incremented or mining is performed at some higher concept level
existing association graph or frequent pattern tree has to be reconstructed from scratch level.
Construction of the association graph or frequent pattern tree is a time consuming activity.
Further, these approaches do not offer flexibility and reusability of computation during mining
process

«  Most of the existing algorithms designed for generating frequent itemset mining algorithms tend
to generate and test unnecessary insignificant 2-candidate itemsets due to the presence of false
frequent items. False frequent items are those items which look like frequent but are actually not
frequent. Park e af. (1997) observed that execution time of the first two passes required by the
apriori algorithm (Agrawal and Srikant, 1994) is about 62% of the total execution time. This calls
for filtering false frequent items at the early stage, which reduces the generation and testing of
2-candidate itemsets, C

+  AIS (Agrawal et al., 1993), SETM (Houtsma and Swami, 1995), Apriori (Agrawal and Srikant,
1994) and its variants and the graph based association pattern mining algorithms (Yen and Arbee
Chen, 2001; Hanand Yin, 2000; Agarwal et /., 2000) do not have any advance information/
prediction regarding the maximum size of frequent itemsets present in the database prior to actual
mining, at a given minimum support. Hence, they continue to generate and test the candidate
itemsets till candidate itemsets in a pass become null. Due to this many insignificant candidate
itemsets are generated and tested. Testing of such insignificant candidate itemsets may also
demand one more database scan for algorithms (Agrawal ef of., 1993; Agrawal and Srikant, 1994,
Yen and Yin, 2001; Houtsma and Swammi, 1995) and one more frequent pattemn tree scan for
algorithm (Han and Yin, 2000)

«  Algorithms given (Agrawal ef af., 1993; Mannila ef al., 1994, Savasere et al., 1995,
Agrawal and Srikant, 1994; Park et af., 1997, Han and Yin, 2000; Toivonen, 1996) are not
suitable for verification driven association rule mining as they are based on horizontal data
layout

«  Most of the time users run association rule mining algorithm at different value of support,
confidence and abstract level to discover hidden, previously unknown and ultimately usefiil
knowledge from the huge volume of data. This may take a long time before giving the desired
results. Repeated execution of mining algorithm with varied constraints incurs prohibitive costs.
This calls for flexibility and reusability in the algorithm which does not exists in most of the
algorithm

PROPOSED ALGORITHM

To address the above-mentioned limitations/shortcomings, a new algorithm called Cluster Based
Association pattern mining algorithm (CBA) has been proposed in this study for mining the frequent



Asian J. Inform. Manage., 3 (1): 7-17, 2009

itemsets. CBA uses a complete, level-wise bottom-up szarch, with a vertical data layout (encoded) and
enumerates all frequent itemsets. It is an iterative algorithm that counts k-itemsets in pass k. CBA
uses a novel approach to reduce the disk I/O operations. First it predicts the size of the maximum
length frequent itemnset, designated by vy in the present study, which may present in the data in the
worst case at the given minimum support. Then divides the tuples of the database (encoded) to be
mined in y-1 clusters. During a particular pass only those clusters (or tuples) that seem to be
statistically useful are to be scanned, without losing any frequent itemset as illustrated by the following
example:

«  Suppose for a given database at the assumed minimum support of 15%, it is predicted that six
is the maximum size of the frequent itemset which may be present in the data in the worst case
(i.e., y=0). Then tuples of the database are divided in 5 clusters (i.e., v -1). First four clusters:
W, 6, w, and w;contain all those tuples containing 2, 3, 4 and 5 frequent items, respectively
and the last cluster, w, contain those tuples in which number of frequent items are greater than
or equal to 6. When frequent itemsets of size 5 are searched, these itemsets may only be present
in clusters w. and w,. Thus, for this particular case transactions available in clusters w,, w,and
w, are statistically insignificant and should not be scanned. Therefore, during each higher pass,
number of transactions scanned are reduced compared to the previous pass. This reduces the
amount of disk IO required and makes CBA more efficient especially in the situation where size
of database is large and mumber of 1-frequent items is also more. In the light of above following
lemma can be derived

Lemma 1

A frequent itemset of size k can not be present in any cluster w,, where x<(k-1) and w, is a cluster
containing tuples having x 1-frequent items.

Formal description of the proposed algorithm is given below:

Algorithm
Cluster Based Association pattern mining algorithm (CBA).

Input:
Data file, D
Minimum support, min_supp
Output:
Frequent itemsets, L
Process:
begin
L, = &; //L,is the set of 1-frequent items
L =¢,
L, = identify frequent item(count table, min supp);
/fdentifies 1-frequent items
if |L;| <2 then
print “No association pattern exist at given support”
exit(0);
else
£ =make_concentrator(D, L,);
/{Constructs the Concentrator — database in encoded form and having
// only significant items

10



Asian J. Inform. Manage., 3 (1): 7-17, 2009

HLoop 1
//Detection and filtering of false frequent items
forall 1e L, do
if l.count < min_supp then
/l Detection of false 1-frequent item
L,=LA1,
// Filtering of false 1-frequent item from L,
endif;
endfor;
if [L;] < 2 then
print “No association pattern exists at given support™
exit(0);
else //Prediction of maximum length of largest frequent itemset
alterable & add (hcount) attribute;
k=no of attribute(E),
/Loop 2
for 1=1;T1 < [g]; I++) do begin
for (j=2;j < |E|; j++) do begin
T R L TR
endfor;
endfor;
position = ME\*min_supp)/ IOOW;
£’ = select all from £ order by hcount desc;
Y= E’pnmmnnhcuunt;
£=e,
/1 Association Pattern Generation
/{Loop 3 Making of clusters
for(I=1;I < vy; I++) do begin
E(T) = select all from £ where Ehcount > T,
endfor;
/{Loop 4 Candidate itemset generation
for(k=2;L,, #¢ AND k < v, k™) dobegin
Cg = gen_pattern_cluster(L, ,, £(k));
/Generates new candidate itemsets of size k,
Mwhere 2 < k<
forall ¢ € C do
/Tests whether a candidate itemset is frequent
if c.count > min_supp then
L.=L.ucg;
endif
endfor;
L=LulL,
endfor;
endif;
endif;
end;

3

Brief description of the algorithm is given below:

11



Asian J. Inform. Manage., 3 (1): 7-17, 2009

First of all, the items present in the pre-mined data are encoded and individually counted.
Information regarding encoding and counting is recorded in encode decode table and count table,
respectively for use during frequent itemset generation and rule generation phase, respectively.
Further mining processes are performed only on this encoded data. Now, L, {(sct of frequent items of
size 1) and L (set of frequent itemsets) are initialized to null. Function identify_frequent_item() is
called which identifies 1-frequent items and assigns to L,. The input parameters to this function are
count_table and user defined mininmum support, min_supp. If |L,| < 2 then no association pattern exists
in the database at the given mimimum support and algorithm terminates. Otherwise, function
make_concentrator() is invoked which constructs the concentrator for given database at the user
defined support. The concentrator is a predefined structure containing mostly statistically significant
items and transactions in the encoded form. Hence, its overall size is reduced as compared to the
original data to be mined. Its construction requires one complete scan of the entire data to be mined.
After this, the algorithm will not scan the original data during mining performed at the support greater
than or equal to at which concentrator is constructed. The input parameters of this function are data,
D and 1-frequent items, I,. Formal description of function make concentrator() is given below:

function make_concentrator(D, L)
create table £(tid, L) as attributes;
I=1;
forall transaction t € D do
items = tn L,
if | items | = 2, then
forall j e items do

ELp=1,
endfor;
I=1+1;
else
forall j € items do
j.count=j.count— 1,
endfor;
endif;

endfor;
retirn &

Brief description of this function is as below:

When function make _conecentrator() is invoked, it creates a table (€) with tid and 1-frequent items
(each member of L, will be treated as independent attribute) as attributes. It then reads all the
transactions of data file one by one. For each transaction containing at least two frequent items, 1 is
entered in location (1, j) of the concentrator for each frequent item present in the transaction; where 1
and j are row and column in the concentrator corresponding to a Tid and frequent item of the database
respectively. If any transaction contains less than two frequent items then such a transaction is not
entered in the concentrator as a row (such transactions are statistically insigmificant). Thus, the
concentrator contains (| L, |+1) columns and each column (except the first) is a bit vector corresponding
to a specific element of L, and the nurnber of rows in the concentrator will be less than or equal to |D|.
The bit vector associated with item i is denoted as 3, and mumber of 1s in a bit vector B, by [y, The
resulting concentrator can be preserved in a secondary storage for future use in mining process.
Computations done during construction of the concentrator are shared and reused every time the user
requests for mimng of association rule at the same or higher support at which the concentrator is
constructed.

12



Asian J. Inform. Manage., 3 (1): 7-17, 2009

The extra space, that is required to store the concentrator is apparently an overhead. However,
the benefits in terms of faster response time, flexibility and reusability outweigh the expense.

Due to pruning of insignificant transactions during construction of the Concentrator, it may be
possible that the support of some of the items in the concentrator may fall below the minimum
required support. Such items have been designated as false frequent items in this study. Presence of
such items in the concentrator will require unnecessary generation and testing of candidate itemsets.
Thus, such items needed to be filtered out before starting the actual mining process. This also results
in the further reduction of the size of the concentrator. The false frequent items present in the
concentrator can be detected by using the following lemma.

Lemma 2

If for any item I of the concentrator the value of [, that is number of 1°s in column corresponds
to item I is less than the minimum supportie., |Piy| < min_supp, then item1 is the false frequent
item.

The real support of an item [ is obtained by counting number of 1s in 3, i.e., the value of (. If
the value of P, is less than the minimum support then item I is the false frequent item. Columns
corresponding to such items are filtered out from the concentrator and also removed from L.
Remaining items in L, are actual frequent items. The support of different items, which was calculated
before making the concentrator, is apparent support. The value of apparent support is always greater
than or equal to its real support.

After this function predict size() is called that could predict the maximum size (y) of the
frequent itemset present in the database at a given minimum support. Now tuples of the concentrator
are divided in -1 clusters (loop 3) in such a way that each cluster I, where 2 < I <y, contains only
those tuples in which number of 1°s are T (containing 1 1-frequent items) except last cluster which will
contain all those tuples for which number of 1°s are greater than or equal to v.

Now function gen pattern_cluster(} is called (loop 4) to generate candidate itemset of size ki.e.,
C,. by using frequent itemsets of previous pass i.e., (k-1). Each ¢ € C,is to be tested whether, it is
frequent or not by searching it in all those clusters, w, for which Iz k-1. Function gen pattern cluster()
scans only those transactions which are statistically significant (Lemma 1). Thus, during each higher
pass number of scanned transactions reduces drastically. For each itemset, occurrences are counted and
the itemset for which item.count> min supp is a frequent itemset and this itemset is appended in L,
which is k-frequent itemset. At the end of pass k, L, is appended to L. This process is repeated till
L, # & AND kcy. At the end, L gives the frequent itemsets. The formal deseription of
gen pattern cluster() is given below:

function gen_pattern_cluster(L, ,, £(k))
/This function generates the k-candidate itemsets from the given (k-1)-frequent itemsets
/fand also calculates the actual support of generated candidates.

G=4¢;
/Loop 5
for(I=1;1< |L,,|-1; I ) do begin
for (j=1+1; j < | Ly|; ™) dobegin

if deft(t, | & |-1y == (lefi(t, | § |-1)} then
/t, is the i row of L, ,

13



Asian J. Inform. Manage., 3 (1): 7-17, 2009

i1t is the j* row of Ly,
if lefit, | 4 [-1)— ¢ then
c.item =t u t;

clse
c.item =leftit, | t |-1) + right(t, 1);

endif;
¢.count = supp(c.item, £(k));
CG=Cug

else
exitfor;

endif;

endfor;
endfor;
return G

Performance Evaluation of the Proposed Algorithm

To see the effects of filtering insignificant tuples dynamically during mining process experiments
have been performed on a Pentium-4 based PC running on Window 98. Proposed Algorithm was
executed and results were compared with similar algorithm without clustering designated by CBA*.
All experiments have been performed on real-life datasets obtained from retail departmental stores. A
transaction contained data about the items purchased by the customer in a visit to the store.

The results indicate that execution time of CBA also increases like CBA™* with the decrease in
minimmum support (Table 1). However, in this case rate of increase of execution time on decreasing
support is less compared to CBA™*. It was as per expectation because at reduced minimum support
there were more candidate itemsets for testing. Table 1 also indicates that difference in execution time
taken at support 0.51 and 1.01% were approximately same. The reason is number of candidate
itemsets generated and tested at these support were approximately same.

Table 2 shows that for a given number of frequent items {eight) and a specified minimum support
0f 0.01% the execution time increases continuously as the size of the dataset (number of transactions)
increases. Similar trends at lower number of frequent items (five) and same mininmum support of 0.01%
is also noticed through Table 3. However rate of increase is rapid for the case given in Table 2. It may
be attributed increase in the number of frequent items.

It is noticed that the execution time increases as the number of frequent items increase. However,
the rate of increase for CBA is much less compared to CBA*. Further, it is to be noted that (Table 4)

Table 1: Execution times for different datasets at different minimum support
Minirmum suppoit (%6)

Algorithm Dataset 0.01 0.51 1.01
CBA* T12.18.DT0K 859 389 378
T12111.D70K 3091 820 836
CBA T12.18.DT0K 265 248 242
T12.111.D70K 519 296 283

CBA* is the algorithm without clustering

Table 2: Execution time for data having 8 frequent items at min _supp of 0.01%
No. of transactions in K

Algorithm 15 20 25 30 35 40 43 50 35 60 65 70
CBA* 154 168 189 211 232 251 269 289 310 324 347 859
CBA 122 138 147 162 169 179 193 202 215 229 242 267

CBA* is the algorithm without clustering

14



Asian J. Inform. Manage., 3 (1): 7-17, 2009

Table 3: Execution times for data having 5 frequent items at min _supp of 0.01%
No. of transactions in K

Algorithm 15 20 25 30 35 40 45 50 53 60 63 70
CBA* 68 74 77 83 90 96 98 106 109 115 119 126
CBA 70 79 88 99 102 111 123 133 143 156 174 193

CBA* is the algorithm without clustering

Table 4: Execution times at min_supp of 0.01%%
No. of frequent Items

No. of transactions Algorithm 3 4 5 6 7 8 11 17
TOK CBA* 49 76 125 313 620 859 3091 4085
TOK CBA 23 124 161 176 217 267 519 713

CBA* is the algorithm without clustering

5001(a) m CBA*
4s50{ DCBA

Pasg No.

1800+ (b) mCBA*
1600 oCBA

1400+
1200+
10004

800

Time (sec)

600
400+

_

Pass No.

Fig. 1: Time taken by CBA* and CBA in different passes (min_supp = 0.01), (a) T12.18.D70 k and
(b) T12.111.070 k

when frequent items are more than 5 CBA becomes more efficient compared to CBA*. Performance
gap increases with number of frequent items in the data at the given mimimum support. As both CBA*
and CBA have used same candidate itemsets generation and testing (counting) techniques, the
improvement in the execution times for CBA 1s mainly due to the reduction in scanned database size
during higher passes. It is noticed that CBA* scanned same size of database during each successive

15



Asian J. Inform. Manage., 3 (1): 7-17, 2009

pass while CBA reduced the scanned database size progressively during each higher pass. However,
during pass 1 both CBA* and CBA scanned the same size database and time required for CBA™ is less
than CBA as shown in Fig. 1. It was expected because during this pass CBA also performed some
computational efforts for making the clusters. Performance gaps between CBA™* and CBA increases
with higher passes.

CONCLUSION

An algorithm for discovering all frequent itemsets in a large transactional database has been
proposed. Its filters out the insignificant tuples dynamically and scanned reduced data at each higher
pass. Experiments have been performed on real databases and the results have been presented. The
results show that by removing false frequent items and insignificant transactions dynamically, the
performance of association rule-mining algorithms can be improved. It has also been observed that the
performance gap increases with the large size of database and/or when there exist prolific size frequent
itemset in the database at the given value of minirmum support.

APPENDIX
Nomenclature
D . Database
|D| : Number of transactions in the database
1 1 Set of items
t; . Transaction I in database
[t : Size of transaction
XY . Itemset
K} 1 Actual support
C : Actual confidence
k-itemset : An itemset having k items
min_supp : Minimum support
min_conf : Minimum confidence
I3 1 Concentrator
By : Bit vector corresponding to itemn I
Bin : Count of 1s in bit vector of item I
C, 1 Set of candidate k-itemsets
Ty 1 Set of frequent k-itemsets
L : Set of frequent itemnsets of all size
L : Set of maxpatterns
Loe . Set of k-maxpatterns
1 . A single frequent itemset
¥ . Maximum size of frequent itermset(s) that may present in data (worst case) at given minimum support
X=Y : Association rule having itermnset X in antecedent and Y in consequent
Dataset Description
TX-X 1 Average mumber of items in transactions
IY-Y . Number of frequent itemns present in the data

DZK-Z . Number of transactions in data and K-represents thousand
REFERENCES
Agrawal, R., T. Imielinski and A. Swammi, 1993. Mining association rules between sets of items in large

databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, May 25-28, New York, USA., pp: 207-216.

16



Asian J. Inform. Manage., 3 (1): 7-17, 2009

Agrawal, R. and R. Srikant, 1994. Fast algorithm for mining association rules in large databases.
Proceedings of the 20th International Conference on Very Large Data Bases, Sept. 12-15, San
Francisco, CA, USA., pp: 487-499.

Aggarwal, C.C. and P.S. Yu, 1999, Data mining techniques for associations, clustering and
classification. Proceedings of the 3rd Pacific-Asia Conference, PAKDD-99, Beijing, China,
pp: 13-23.

Agarwal, R.C., C. Aggarwal and V.V.V. Prasad, 2000. A tree projection algorithm for generation of
frequent item sets. J. Parallel Distributed Comput., 61: 350-371.

Bjorvand, A.T., 1998. Object mining: A practical application of data mining for the construction and
maintenance of software components. Proceedings of the 2nd European Symposium, PKDD-98,
Nantes, France, pp: 121-129.

Coenen, F., G. Graham and L. Paul, 2001. Computing association rules using partial totals. Proceedings
of the 5th European Conference, PKDD 2001, Freiburg, Germany, pp: 141-149.

Han, J.,J. Peiand Y. Yin, 2000. Mining frequent patterns without candidate generation. Proceedings
of ACM SIGMOD International Conference on Management of Data,, 2000, Dallas, TX., pp:
1-12.

Houtsma, M. and A. Swami, 1995. Set oriented mining for association rules in relational databases.
Proceedings of the 1 1th IEEE International Conference on Data Engineering, 1995, Twenty Univ.,
Enschede, pp: 25-33.

Hunzikar, P., M. Andreas, N. Alex, T. Markus, W. Douglas and Z. Peter, 1998. Data mimng at a major
bank: Lessons from a large marketing application. Proceedings of the 2nd European Symposium,
PKDD-98, Nantes, France, pp: 345-351.

Landau, D., R. Feldman, O. Zamir, Y. Aumann, M. Fresko, Y. Lindell and O. Lipshtat, 1998. Text vis:
An integrated visual environment for text mining. Proceedings of the 2nd European Symposium,
PKDD-98, Nantes, France, pp: 56-64.

Mannila, H., H. Toivonen and A. Inkeri Verkamo, 1994. Efficient algorithms for discovering
association rules. Proceedings of the AAAT Workshop on Knowledge Discovery in Databases,
(KDD-94), IEEE, pp: 181-192.

Park, I.S., 8. Ming and S. Philips Yu, 1997. Using a hash-based method with transaction trimming for
mining association rules. IEEE Trans. Knowledge Data Eng., 9: 813-825.

Savasere, A., E. Omieccinski and S. Navathe, 1995. An efficient algorithm for mining association rules
in large databases. Proceedings of the 21st International Conference on Very Large Databases,
1995, Zurich, Switzerland, pp: 432-443.

Tiwari, A., RK. Gupta and D.P. Agrawal, 2008. Mining frequent item sets using prime number based
approach. Proceedings of the 3rd International Conference on Advanced Computing and
Communication Technologies (ICACCT), Nov. 08-09, India, pp: 138-141.

Toivonen, H., 1996. Sampling large databases for association rules. Procesdings of International
Conference on Very Large Databases, 1996, Bombay, India, pp: 134-145.

Yen, S.J. and L.P. Arbec Chen, 2001. A graph-based approach for discovering various types of
association rules. IEEE Trans. Knowledge Data Eng., 13: 839-845.

17



	ajim.pdf
	Page 1


