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ABSTRACT

An increasing interest has emerged with respect to the importance of microbial diversity in sail
habitats. The extent of the diversity of microorganisms in scil is seen to be critical to the
maintenance of soil health and quality, as a wide range of microorganisms i1s invelved in important,
soil functions. Since, the first estimate of prokaryotic abundanee in soil was published, researchers
have attempted to assess the abundance and distribution of species and relate this information on
community structure to ecosystem function. Present study has investigated the linkage of specific
organisms to ecosystem function and an inecreasing interest has emerged with respect to the
importance of microbial diversity in scil habitats. The two main drivers of scil microbial
community structure, 1.e., plant type and soil type, are thought to exert their funetion in a complex
manner. This review focuses on recent data relating how plant type, soil type, affects the microbial
diversity and abundance of soil. Statistical analyses of the microbial counts indicated a significant,
correlation for bacteria (p<0.01) and no significant correlation, for fungi and actinomycetes,
however, microbial enumeration indicated that bacteria were most numercus followed by
actinomycetes and fungi, respectively.
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INTRODUCTION

Knowledge of microbial diversity and function in sails 1s litmted because of the taxonomic and
methodological limitations associated with studying these organisms (Kirk et al., 2004). Soil
microorganisms are vital for the continuing cycling of nutrient and for driving above ground
ecosystems. It is important to study microbial diversity not only for basic scientific research, but also
to understand the hnk between diversity and community structure and function. Soil bacteria and
fungi play pivoetal roles in various biogeochemical cyeles (BGC) (Molin and Molin, 1997; Trevors,
1998; Wall and Virginia, 1999). Soil microorganisms also influence above-ground ecosystems by
contributing to plant nutrition (George ef al., 1995; Timonen et al., 1996), plant health
{(Srivastava ef al., 1996), sail structure (Dodd et al., 2000) and sail fertility (O'Donnell et af., 2001).
However, activity and species composition of microbes are generally influenced by many factors
including physic-chemical properties of the saoil, temperature and vegetation. The dynamies of sail
microorganisms have important implications for the response of subsurface scil ecosystems to
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perturbations. Despite all attempts to measure fluxes and gross microbial pools, the soil and its
microbiota still remain a black box. Most soil micreorganisms are still unknown (Crecchio et al.,
2004). The comparison between direct microscopic counts and plate counts indicates that as less
than 0.1% of agricultural scil microorganisms are cultivable (Atlas and Bartha, 1998).
Understanding the diversity and dynamic of indigenous micrebial populations represents one
challenge of modern scil ecology. In this context, we undertook a study to evaluate bacterial
community structures and diversities located in different ecosystems and tilts correlation with the
soil and plant type.

MATERIALS AND METHODS

Study site and species studied: The study was conducted in three field sites (Table 1) located on
the same geographic area of Mascara (Northern-Algerian West, 2°11' W, 35° 28" N) . These
fields have not the same sail type and topographical features and have received different
soil management practices and cropping systems. For each site a farming profile per species
was realized.

Total micerobial count: Soil microorganisms were extracted by shaking 10 g of soil in 100 mL of
one-quarter strength Ringer solution (Oxoid). Data from triplicate readings were expressed as
Colony Forming Units (CFU) g7t dry soil. The total number of bacteria was determined on meat.-
peptone agar with beef extract and glucose (MPA), actinomyeetes-on glveerine-glycine medium,
microscopic filamentous fungi-on Martin’s medium with Bengal rose and streptomycin sulfate.

Soil physical and chemical analysis: So1l samples were taken from different depths (5-10,
10-15 and 15-20 em) and cellected randomly from 27 different sites. The samples were analyzed
for pH, scil chemistry and texture.

Statistical analysis: All samples (n = 27) were analysed in triplicate. Pearson’s correlation
coefficients using a traditional Euclidean distance (Legendre and Legendre, 1998) were conducted
on the socil physical and chemical variables, as well as on the vegetation cover and microbial
properties analysed to determine how these variables were interrelated. All data processing the
Pearson’s correlation coefficients were performed by STATISTICA 7.

RESULTS AND DISCUSSION

Microbiological results: Marked effects were found to have taken place on the bacterial
populations under different ecosystems. Thisis clearly demonstrated by the total number of bacteria
CFU recorded from the plates. Our results showed that microbial population was different in soils
under different. plant. covers, soil types and depths (Fig. 1. The total number ofisolated bacteria
varied in different samples of studied soils, a maximum of 1,8. The 10" CFU g™ was signalled in
the Lens sp., rhizosphere (0-5cm) and a minimum of 2,7 10° CFU g™ ! in Vieia sp., rhizosphere
(5-10 and 10-20 em). Ecological characterization of studied soil is shown in Table 1.

Soll types had influence on soil microbial organisms’ activities. The highest density of fungi
was observed in Triticum sp., rhizosphere (0-5 cm) (1, 35. 10° CFU g™! and the lowest one in
Vicia sp., rhizosphere (1, 8.10° CFU g1 (10-20 em). The actinomyecetes showed a maximum of 1,
98. 10'° CFU g in the Triticum sp., rhizosphere (5-10 em) and a minimum of 1,8, 10° CFU g™ in
Vicia sp., rhizosphere (10-20 e¢m). In the forest ecosystem, bacteria were abundant in all the
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Table 1: Keological characterization of studied soil

Average of Average of
annual annual
Site Altitude (m)  precipitation (mm) temperature ("C) Vegetation Ecosystem type
Experimental 494 m for 45.89 16.48 Vieig spp. (C1-C2-C3)
farm all stations Triticum spp. (C4-C5-CH) Agro ecosystem
Lens spp. (07-08-C9) ET T
El-Zakour P.1. 708 m 19.04 16.04 Pinus spp. (C10-C11-C12) __ Forest ecosyster
forest P.2. 693 m Asphodelus spp. (C13-C14-C15) = =
P.3. 666 m Tamarix spp. (C16-C17-C18)
Humid ecosyster
El-Kouayer P.1. 708 m 2553 18.00 Triticum spp. (C19-C20-C21)
station P.2. 693 m Cirsium spp. (C22-C23-C24)
P.3. 666 m Hordium spp. (C25-C26-C27)

rhizosphere of Pinus sp., Asphodelus sp. and Tamarix sp. with values of 2,7.10° CFU g™, The
highest density of fungi (1, 35. 10° CFU g™ ) was signalled in all of the horizons analysed of Pinus
sp. The actinomycetes were present with a maximum of 3,5. 10° CFU g™ in the rhizosphere of
Tamarix sp., (0-B em) but totally absent 1n Asphodelus sp. Among the sails prospected,
microbial enumeration indicated a higher abundance of bacteria in the humid ecosystem than in
agricultural and forest ecosystem, with the predominance of the Fseudomonas and Bacillus species.
They are the most diverse and ecologically significant group of bacteria on the rhizosphere
{Dommergues and Mangenot, 1970).

Physicochemical results: Soil physicochemical properties are presented in Fig. 2. Soils were fine
textured (Sand: 22.42; 5ilt: 65.57; Clay: 38.44 ) with neutral pH: 7.9, CaC0Q,: 19.72, electrical
conductivity (177.97) and water holding capacity (15.08) and organic matter (8.01).

Statistical results: A negative and significant (p<0.005) relationship between bacterial count, pH
and clay was observed (r = -0.59, r = -0.50), respectively but a poesitive relationship for the other
soils properties however, no significant (p>0.005) relationship between fungi, actinomyecetes and
all the scils properties (Fig. 3).

The results of soil physicochemical properties varied depending on the ecosystem type. The
dominating textural class is that of clay and silty clay (44%). On the basis of our results it appeared
that the presences of bacteria was important in the silty clay soils of the humid station.

Soil texture affects the microbial activities (Hassink, 1994; Scrensen and Jensen, 1995). Based
on the results, it appears that microbial biomass is influenced by soil texture. These data are in
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Fig. 1(a-c): Numbers of cultivable bacteria, fungi and actinomycetes as measured by plate spreading
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Fig. 2(a-c): Box plot of Sail (a) Physical and (b,c) Chemical properties
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Fig. 3(a-f): Significant correlation between of bacteria abundance and soil properties

agreement with previous results. Fine-textured soils typically contain greater quantities of organic
matter and microbial biomass than coarse-textured socils. Bonneau and Souchier (1994),
demonstrated that this fine texture promoted the bacterial growth (i.e., clay humic complex). Clay-
sized particles are thought to protect organic matter through adsorption and aggregation, shelter
soil micreorganisms from predation (Elhott et af., 1980). According to Alvarez et al. (2002), the fine-
textured soil (<B0 microns) have a protective effect on total microbial biomass, due to the higher
proportion of micropores compared to sandy soil which limited meso fauna development. Fine-
textured soils typically contain greater quantities of organic matter and microbial biomass than
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coarse-textured soils (Schimel, 1986). Clay-sized particles are thought to protect organic matter
through adsorption and aggregation and increase substrate-use efficiency (Martin ef al., 1976).

This is consistent with the correlation tests between bacterial abundance and these fractions
where correlation was significant (p<0.005) and no significant for fungi and actinomycetes
{(p>0.058). For fungi and actinomycetes this fine texture had not affects on their abundance.
Insam ei al. (1989) found a significant but weak, correlation (R?* = 0.02) between scil texture
{e.g., clay content) and microbial biomass in temperate agricultural soils. They used two measures
of soil texture (silt+clay and clay content), but found no relationship between those variables and
microbial C. Although, several studies have demonstrated that soil texture has a significant
influence on soil microbial biomass (Van-Veen et al., 1985), this relationship may only be of
importance within a particular climatic regime.

Bacterial abundance displayed a positive linear relationship (p = 0.005) with soil pH, Bardgett
and Leemans (1995) recognized that a reduction in the pH from 5.4-4.7 occurred following the
interruption of any fertilization led to a decrease of 18% of the microbial biomass. The highest
values were signaled in agroecosystem and the humid ecosystem scils. However, no correlation
(p>0.05) with CaCO,, certain authors recognized that this one had a propriety to replace the
hydrogen ions and to exhibit atypical high acidity.

The electrical conductivity occur either naturally or as a result of inappropriate soil use and
management and the humid ecosystem station tended to be more saline (1163 psec em™) and the
correlation was significant only for bacteria.

Soil organic matter (OM) was higher in the forest ecosystem soils but lowest in the
agroecosystem sails. These values can be explained by the fact that any OM fraction incorporated
was quickly assimilated by microorganisms present especially by the most pathogens (i.e., presence
of competition). It may be pointed out that only amount to a smaller percentage of organic soil C,
contributes substantially to plant available nutrient content (IDiaz-Ravina et al., 1995). According
to diverse authors the ratio of microbial C and extractable C to total organic C are related to
substrate quality. As previously observed no significant correlation (p>0.05) between OM and
microbial abundance (bacteria: r = -0.08; fungi: r =-0.27; actinomycetes: r = -0.09),

The reduction of OM content observed in the soils could also be a cause of reduced so1l enzyme
activity (i.e., class of OM not hydrolysable). It has been demonstrated by Namour (1999), that the
density of heterotrophic community 1s slightly correlated with the quantity of the substrate
available. These results are in agreement with previous report of Namour (199%9), focused on the
OM kinetic. As described by Servais (1989}, the OM i1s divided inte four classes of decreasing
lability: a class directly comparable to effectively control micrebial growth, two classes slowly
hydrolysable and finally a class not used by microorganisms (not assimilated). Our data indicate
that this organic matter in these ecosystems was relatively recalcitrant.

In summary, our results suggest that plant type influences micrebial abundance and diversity.
Plant type displayed a positive linear relationship (p<0.001) with bacterial abundance (r = 072) but,
a inverse relationship between fungi and actinomycetes (r = -0, 19, r = -0, 55), respectively, this
correlation was significant for fungi {(p = 0.001) and not for actinomyecetes (p =0,32). Present study
suggests that plant production holds promise in predicting patterns of labile organic matter pools
and microbial biomass at much larger spatial scales.

CONCLUSION

The diversity and abundance of soilborne microbes may be strongly influenced by some abiotic
and biotic factors; however, few studies have described the diversity and dynamies of soilborne
bacteria, fungi and actinomyeetes in the region of Mascara (Northern-Algerian West).
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To obtain an accurate representation of the function and structure of soils, it 1s necessary to
study the inter-relationship between physical, chemical, biochemical and biological properties.
Measurement of only one or some of these properties will give only a partial evaluation of the state
of the scil ecosystem. The results showed that field data interpretation of scils properties is difficult,
particularly when several factors exerting an influence on microbial communities are involved.
Further studies are necessary in order to confirm these preliminary field data.
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