

Asian Journal of **Poultry Science**

ISSN 1819-3609

Influence of Three Different Organic Acids on Broiler Performance

E. Talebi, A. Zarei and M.E. Abolfathi Department of Animal Science, Islamic Azad University, Darab Branch, Darab, Fars, Iran

Abstract: This study was conducted in order to evaluate three different organic acids on broiler performance. The broiler performance have compared together with using RCD design with 7 treatments and 4 replicates which 420 day-old commercial Ross 308 chicks were divided into 28 groups. The six groups out of seven groups birds fed a diet with organic acids (citric, benzoic and tartaric acids) consist 0.5 or 1% level and one group fed with a diet control without organic acids for 49 days. The average of body weight gain, feed intake, feed conversion ratio and carcass percentage were analyzed and compared finally. The results showed no significant effects of diets with 0.5% organic acids (p<0.05) on all characters. One percent benzoic acid diets caused a significant decrease in the average of feed consumption from 21 to 42 days of age (p<0.05). The average weight gain at 21 to 42 days showed a significant decrease (p<0.05) that this effect was resulted of benzoic acid at 1% of dietary. There were no significant effects of organic acids dietary on carcass characteristics.

Key words: Broiler, organic acid, performance

INTRODUCTION

During the last 50 years, as a growth promoter in farm animal, the use of antibiotics has been questioned. It is clear that antibiotics benefit for growth, performance and health in animal and poultry. Most of antibacterial performance promoters have been prohibited, because feeding of antibiotics is risky which the last ones removed in January 2006 (Neu, 1992). The adjustments following the withdrawal of these products in animal production have been difficult at times and many replacement solutions have been proposed, more or less successfully, by the feed additive industry. Organic acids are important approach that have potential to improve performance in poultry (Patterson and Burkholder, 2003; Ricke, 2003) and also provided people with healthy and nutritious poultry products (Patten and Waldroup, 1988; Ricke, 2003).

Generally, organic acids are weak acids and do not dissociate completely in water. They are widely distributed in nature as normal constituents of plants or animal tissues and formed through microbial fermentation of carbohydrates mainly in the large intestine (Partanen and Mroz, 1999). Organic acids are also found in their sodium, potassium or calcium form.

Citric acid, in biochemistry, it is important as an intermediate in the citric acid cycle and therefore, occurs in the metabolism of virtually all living things. More than 50% of citric acid production is being used as acidulent in beverages and some 20% in other food applications.

Corresponding Author: E. Talebi, Department of Animal Science, Islamic Azad University,

Darab Branch, Darab, Fars, Iran

Tel: +987326233990-5 Fax: +987326233900

Benzoic acid has higher molecular weight and are insoluble in molecular form and tartaric acid is a white crystalline diprotic organic acid. It is used as an antioxidant.

Roy et al. (2002) used propionic acid and they observed highly significant reduction in turkey mortality. Boling et al. (2000) showed that using of citric acid to a P deficient broiler diet linearly increased weight gain, weight and percentage of tibia ash. Snow et al. (2004) reported that the effect of citric acid on phytate P utilization is additive with the effects of phytase and 1-α cholecalciferol supplementation. Falkowski and Aherne (1984) revealed that feed conversion efficiency was improved (p<0.05) approximately 5 to 10% by addition of either acid to the diet. Supplementation of some organic acids to a P-deficient diet has been shown to improve phytate P utilization (Liem et al., 2008). In this study, we investigated the potential benefit of three different organic acids in broiler.

MATERIALS AND METHODS

Four hundred twenty day old broiler chicks of the Ross 308 strain reared during 2009 in the Department of Animal Science, Islamic Azad University, Darab Branch, Darab, Fars, Iran. The chicks were allocated to 28 cages, in a completely randomized design, consisting of 7 dietary treatments (Control, 0.5% citric acid, 1% citric acid, 0.5% tartaric acid, 1% tartaric acid, 0.5% benzoic acid and 1% benzoic acid) with 4 replicates. The experiments were conducted in electrically heated wire mesh floor battery brooders. The fluorescent lights were on 24 h each day. The temperature of the room was maintained at 22°C. Environmental conditions during the trial were appropriate to the age of the birds. The mash basal diets are shown in Table 1. Feed and water were supplied *ad libitum*. Feed intake and body weights were recorded at allotment day 21, 42 and 49. Subsequently, feed conversion ratios were computed. After termination of the growth trial, three birds of midian weight from each pen were sacrificed at day 49. Carcass yield, breast muscles, thigh muscles and abdominal fat were determined.

Data were analyzed using one-way ANOVA of SAS 9 for Windows when significant differences were found, means were separated. Comparisons of the treatment means were performed with Duncan's multiple range test (Duncan, 1955).

Table 1: Composition and chemical analysis of the organic basal diet and supplements for broiler chickens

	Starter (0-21 days)			Grower (22-42 days)			Finisher (23-49 days)		
Ingredients	I	II	Ш	I	II	Ш	I	II	Ш
Corn grain	62.14	61.69	61.49	69.12	69.12	68.62	73.16	73.66	72.16
Soybean meal (48% CP)	30.65	30.40	30.10	23.81	23.31	23.31	21.51	20.51	20.51
Fish meal (70% CP)	3.50	3.50	3.50	3.50	3.50	3.50	2.00	2.00	2.00
Oyster shell	1.95	1.95	1.95	1.88	1.88	1.88	1.67	1.67	1.67
Dicalciumphosphat	1.02	1.02	1.02	0.86	0.86	0.86	0.86	0.86	0.86
Salt (NaCl)	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Premix (Vit.+Min.)	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
DL-Methionine	0.14	0.14	0.14	0.03	0.03	0.03			
Organic acid		0.50	1.00		0.50	1.00		0.50	1.00
ME (kcal kg ⁻¹)	2851.03	2834.84	2821.45	2936.76	2908.88	2908.88	2982.13	2943.08	2959.83
Crude protein (%)	21.11	21.05	20.90	18.81	18.54	18.54	17.19	16.70	16.75
Lysine (%)	1.21	1.21	1.20	1.04	1.02	1.02	0.89	0.87	0.87
Met+Cys (%)	0.85	0.85	0.85	0.67	0.67	0.67	0.59	0.59	0.59
Ca (%)	1.10	1.30	1.19	1.10	1.10	1.10	0.97	0.97	0.97
Avia. Phosphorus (%)	0.42	0.60	0.42	0.38	0.38	0.38	0.34	0.34	0.34
Na (%)	0.14	0.14	0.14	0.14	0.14	0.14	0.12	0.12	0.12

I: Diets without organic acid, II: Diets with 0.5% organic acid, III: Diets with 1% organic acid

RESULTS AND DISCUSSION

The results showed no significant effects of diets with 0.5% organic acids (p<0.05) on average weekly feed intake, average weekly body weight gain and average weekly feed conversion (Table 2-4, respectively). The 1% benzoic acid diets caused a significant decrease in the average of feed consumption from 21 to 42 days of age (p<0.05). The average weight gain at 21 to 42 days showed a significant decrease (p<0.05) that this effect was resulted using benzoic acid at 1% of dietary. There were no significant effects of organic acids dietary on carcass characteristics (Fig. 1). The present finding are in conformity with the report of Fancher and Jensen (1988) that reported when propionic acid is supplemented up to 3% in the diet, no significant effects on feed intake. Liem *et al.* (2008) showed that addition of citric acid, malic acid and fumaric acid did not increase the 16-d body weight and gain:feed. The performance results were similar in birds fed the control diet and the diet with 0.1% of benzoic acid. The dietary inclusion of benzoic acid at 0.2% depressed the growth of broiler chickens (p<0.05) (Józefiak *et al.*, 2008).

Table 2: Effect of different organic acids on average weekly feed intake in broiler chickens (g)

	Weeks						
Treatments	0-3	3-6	6-7	0-7			
Control	839.000	2731.000ª	1121.000	4691.100			
Citric acid (0.5%)	835.500	2725.250°	1123.250	4684.110			
Citric acid (1%)	841.250	2728.000°	1133.250	4702.500			
Tartaric acid (0.5%)	836.000	2734.000°	1130.750	4700.750			
Tartaric acid (1%)	827.000	2718.000a	1107.750	4662.750			
Benzoic acid (0.5%)	840.750	2744.250ª	1129.000	4714.000			
Benzoic acid (1%)	835.500	2698.750b	1101.250	4635.500			
CV	1.497	0.536	1.253	0.847			

Means having the same subscript letters do not differ significantly at 5% level

Table 3: Effect of different organic acids on average weekly body weight gain in broiler chickens (g)

	Weeks						
Treatments	0-3	3-6	6-7	0-7			
Control	483.480	1223.600ª	465.780	2237.300			
Citric acid (0.5%)	487.430	1224.600°	452.830	2204.870			
Citric acid (1%)	492.000	1251.580 ^a	464.880	2238.410			
Tartaric acid (0.5%)	486.780	1225.600°	445.430	2197.830			
Tartaric acid (1%)	475.080	1220.250 ^a	437.550	2172.900			
Benzoic acid (0.5%)	491.630	1240.580°	468.200	2240.460			
Benzoic acid (1%)	468.620	1191.430 ^b	444.730	2149.760			
CV	3.434	1.485	5.831	2.243			

Means having the same subscript letters do not differ significantly at 5% level

Table 4: Effect of different organic acids on average weekly Feed Conversion Ratio (FCR)

	Weeks						
Treatments	0-3	3-6	6-7	0-7			
Control	1.735	2.635	2.632	2.057			
Citric acid (0.5%)	1.715	2.057	2.707	2.076			
Citric acid (1%)	1.710	2.028	2.655	2.054			
Tartaric acid (0.5%)	1.717	2.062	2.772	2.091			
Tartaric acid (1%)	1.745	2.066	2.767	2.095			
Benzoic acid (0.5%)	1.712	2.047	2.627	2.105			
Benzoic acid (1%)	1.785	2.089	2.702	2.103			
CV	2.238	1.220	3.267	1.808			

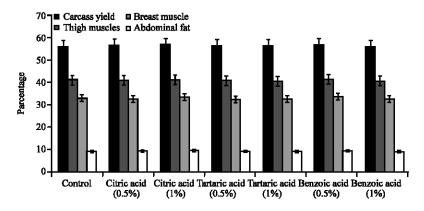


Fig. 1: Effect of different organic acids on slaughter comparison of broiler chickens

Garcia et al. (2007) revealed significantly better FCR in all the supplemented diets except for the 5,000 ppm of hydroalcoholic plant extract diet. Mroz et al. (1997) showed significant improvements of up to 5% in apparent ileal digestibility of crude protein and essential amino acids by dietary formic, fumaric and n-butyric acids. Bartov (1983) reported that supplementation with propionic acid (3%) however, significantly (p<0.05) increased dietary ME, increased retention of dry matter and protein and improved performance of chicks fed the moldy grains. Chowdhury et al. (2009) demonstrated that the addition of citric acid improved feed conversion efficiency (kg of weight gain/kg of feed intake) significantly (p<0.05) compared with control chicks or its combination with avilamycin.

Organic acids added to feeds should be protected to avoid their dissociation in the crop and in the intestine (high pH segments), where the bulk of the bacteria population is located. The beneficial effect of growth promoter substances on performance is related to a more efficient use of nutrients, which in turn results in an improved FCR.

ACKNOWLEDGMENT

The authors are thankful to Mr. M.B. Movahed, Chancellor in Islamic Azad University, Darab Branch, Darab, Fars, Iran for providing facilities for this study.

REFERENCES

Bartov, I., 1983. Effects of propionic acid and of copper sulfate on the nutritional value of diets containing moldy corn for broiler chicks. Poult. Sci., 62: 2195-2200.

Boling, S.D., D.M. Webel, I. Mavromichalis, C.M. Parsons and D.H. Baker, 2000. The effects of citric acid on phytatephosphorus utilization in young chicks and pigs. J. Anim. Sci., 78: 682-689.

Chowdhury, R., K.M. Islam, M.J. Khan, M.R. Karim, M.N. Haque, M. Khatun and G.M. Pesti, 2009. Effect of citric acid, avilamycin and their combination on the performance, tibia ash and immune status of broilers. Poult. Sci., 88: 1616-1622.

Duncan, D.B., 1955. Multiple range and multiple F-tests. Biometrics, 11: 1-42.

Falkowski, J.F. and F.X. Aherne, 1984. Furnaric and citric acid as feed additives in starter pig nutrition. J. Anim. Sci., 58: 935-938.

Fancher, B.I. and L.S. Jensen, 1988. Induction of voluntary feed intake restriction in broiler chicks by dietary glycolic acid supplementation. Poult. Sci., 67: 1469-1482.

- Garcia, V., P.C. Gregori, F. Hernández, M.D. Megias and J. Madrid, 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology and meat yield of broilers. J. Applied Poult. Res., 16: 555-562.
- Józefiak, D., D. Kaczmarek and A. Rutkowski, 2008. The effects of benzoic acid supplementation on the performance of broiler chickens. J. Anim. Physiol. Anim. Nutr., 94: 29-34.
- Liem, A., G.M. Pesti and H.M. Edwards Jr, 2008. The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks. Poult. Sci., 87: 689-693.
- Mroz, Z., A.W. Jongbloed, K. Partanen, K. Vreman, J.T.M. van Diepen, P.A. Kemme and J. Kogut, 1997. The effect of dietary buffering capacity and organic acid supplementation (formic, fumaric, or n-butyric acid) on digestibility of nutrients (protein, amino acids, energy and minerals), water intake and excreta production in growing pigs. ID-DLO Report No. 97. 014. Institute for Animal Science and Health, Branch Runderweg, Lelystad, The Netherlands.
- Neu, H.C., 1992. The crisis in antibiotic resistance. Science, 257: 1064-1073.
- Partanen, K.H. and Z. Mroz, 1999. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev., 12: 117-145.
- Patten, J.D. and P.W. Waldroup, 1988. Use of organic acids in broiler diets. Poult. Sci., 67: 178-1182.
- Patterson, J.A. and K.M. Burkholder, 2003. Application of prebiotics and probiotics in poultry production. Poult. Sci., 82: 627-631.
- Ricke, S.C., 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci., 82: 632-639.
- Roy, R.D., F.W. Edens, C.R. Parkhurst, M.A. Qureshi and G.B. Havenstein, 2002. Influence of a propionic acid feed additive on performance of turkey poults with experimentally induced poult enteritis and mortality syndrome. Poult. Sci., 81: 951-957.
- Snow, J.L., D.H. Baker and C.M. Parsons, 2004. Phytase, citric acid and 1 α-Hydroxycholecalciferol improve phytate phosphorus utilization in chicks fed a corn-soybean meal diet. Poult. Sci., 83: 1187-1192.