

Asian Journal of **Poultry Science**

ISSN 1819-3609

Asian Journal of Poultry Science 5 (1): 46-50, 2011 ISSN 1819-3609 / DOI: 10.3923/ajpsaj.2011.46.50 © 2011 Academic Journals Inc.

Gastro-intestinal Parasites of Domestic Ducks (*Anas platyrhynchos*) in Ibadan Southwestern Nigeria

J.O. Adejinmi and M. Oke

Department of Veterinary Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria

Corresponding Author: J.O. Adejinmi, Department of Veterinary Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria

ABSTRACT

A six month study (January to July, 2008) was carried out to determine the prevalence of gastro-intestinal parasites of domestic ducks (Anas platyrhynchos) in Ibadan and environs. A total of 175 faecal samples were collected from ducks in six different locations and examined using formol-ether concentration method and modified Ziehl Neelsen staining technique, sodium chloride floatation and zinc sulphate sedimentation methods. Out of the 175 faecal samples examined 167 (95.4%) were positive for Gastro-intestinal parasites. A total of five different helminths and three different protozoan parasites were isolated from the faecal samples and identified. Among the helminths identified, Ascaridia galli 82 (46.8%) was the most frequently observed followed by Heterakis gallinarum 41 (23.4%), Capillaria sp. 38 (21.7%), Echinuris uncinata 20 (11.4%) and Syngamus trachea 13 (7.4%). For intestinal protozoa. Eimeria sp., 60 (34.3%) was the most frequently encountered followed by Tyzzeria sp. 29 (16.6%) and Cryptosporidium sp. 27 (15.4%). Mixed infections with two or more parasites were common. A total of 75 (42.9%) had single infection, 38 (21.7%) double infection and 54 (30.8%) triple infection. We recommend intensive system of management for rearing ducks as well as adequate Veterinary care for the ducks and strict hygiene for the owners and/or attendants.

Key words: Duck, gastro-intestinal, ibadan, parasite, prevalence

INTRODUCTION

The types of poultry that are commonly reared in Nigeria are chickens, ducks, guinea fowl, turkeys, pigeons and more recently ostriches. The chickens are however the most predominant in terms of economic importance (Nnadi and George, 2010). In Nigeria ducks fulfill a great proportion of animal protein deficiency as in any other developing countries of the world in the form of meat and eggs (Hai et al., 2008). The population of duck in Nigeria is about 3.3 million (NBS, 2006). In Oyo State it is 1.1 million and about 10,588 ducks are slaughtered annually (NBS, 2006). Hence, ducks contribute immensely to household food security in this area. Parasitic diseases come first among other diseases that cause reduction in productivity of rural poultry. However, these diseases are often neglected because they are insidious and rarely result into epidemics like the viral and bacterial diseases (Eshetu et al., 2001). Helminth and protozoan parasites have been incriminated as major causes of reduced growth, decreased egg production, anaemia, emaciation, morbidity and mortality in poultry (Permin et al., 2002; Phiri et al., 2007; Nnadi and George, 2010). The available few reports show that gastro-intestinal parasites of poultry are common in Nigeria

(Nnadi and George, 2010) and generally in the tropics where the standard of husbandry is poor and climatic conditions are favourable for the development of parasites (Permin *et al.*, 1997; Muhairwa *et al.*, 2007; Yousuf *et al.*, 2009). The suitable climatic condition of adequate rainfall of over 95 mm and average daily temperature of 32°C in Ibadan and environ favours the rearing of duck. This suitable climate also favours the development, survival and spread of parasites.

The system of management of duck is semi-intensive whereby ducks are left to roam and fend for themselves in the daytime and then come into their habitation at night. This system of management coupled with ecology of parasites and their host-parasite relationship exert great influence on the occurrence of gastro-intestinal parasites of ducks (Farjana *et al.*, 2004; Muhairwa *et al.*, 2007). In Nigeria, there is a dearth of information on parasitism in ducks. This study was carried out to obtain information on the gastro-intestinal parasites of ducks in Ibadan and environ. Knowledge about these parasites would help elucidate the dynamics of parasite infection of ducks in this area.

MATERIALS AND METHODS

The ducks population under study comprised six flocks in different locations in Ibadan and environ between January and July 2008. The sampling included all the ducks in the locations.

All ducks in the study areas were housed in wooden cages placed on the farm or backyards of houses and were allowed to scavenge freely during the day at the homestead and the area around and return to their habitation at night. The ducks were also provided with water, left-over foods and occasionally chicken growers mash.

The farms had no special programme of routine internal parasites control. Faecal samples from individual duck were collected with the help of the farmer/owner and/or attendants from the six locations into universal bottles. The samples were taken in insulated containers to the parasitology laboratory section of the Department of Veterinary Microbiology and Parasitology University of Ibadan, Nigeria for processing or stored in a refrigerator at 4°C until examined within 48 h.

Faceal smears were prepared from fresh faecal samples by formol-ether concentration (Chesborough, 1987) and stained using modified Ziehl-Neelsen technique and examined under the microscope for cryptosporidal oocysts (Henrikson and Pohlenz, 1981). Three gram of each faecal sample was also emulsified in water and poured through a fine mesh sieve as described by Urguhart et al. (1988). The emulsion was centrifuged at 2000 rpm for 2 min and the sediment redissolved in saturated sodium chloride solution. Test tubes were subsequently filled with the preparation, covered with cover slips, allowed to stand for 5 min and thereafter examined under the microscope for helminth ova and protozoan oocysts. Faceal sedimentation method using Zinc sulphate solution was also carried out to detect trematode eggs as described by Urguhart et al. (1988).

Samples positive for helminth ova were cultured according to the method of Sellers and Dipeolu (1975) to identify the species of helminth. Larvae from each culture were identified using the criteria described by Soulsby (1982) and Taylor *et al.* (2007).

Positive faecal samples for oocysts were also cultured in potassium dichromate (BDH Ltd. England) and kept at room temperature as described by Adams *et al.* (1979) in order to identify genera and species of coccidian involved. Identification was based on the number of sporozoites per sporocyst as described by Soulsby (1982). No attempt was made to categorize the ducks into age groups.

All data obtained were analysed using simple averages, percentages, descriptive and quantitative statistics.

RESULTS AND DISCUSSION

The results of this study show out of a total of 175 ducks examined 167 (95.4%) were found to be positive for one or more species of helminth and protozoan parasites. A total of five different helminths and three different protozoan parasites were isolated from the faecal samples and identified. The identified helminths were Ascaridia galli, Heterakis gallinarum, Capillaria sp., Syngamus trachea and Echinuris uncinata. The intestinal protozoan parasites were Tyzzeria sp., Eimeria sp. and Cryptosporidium sp., Among the helminths A. galli 82 (46.8%) was the most frequently observed followed by H. gallinarum 41 (23.4%), Capillaria spp 38 (7.4%), E. uncinata 20 (11.4%), S, trachea 13 (7.4%). For intestinal protozoan parasites Eimeria sp., 60 (34.3%) was the most frequently encountered followed by Tyzzeria sp., 29 (16.6%) and Cryptosporidium sp., 27 (15.4%) (Table 1).

Mixed infections with two or more parasites were common. A total of 75 (42.9%) had single infection, 38 (21.7%) double infection and 54 (30.8%) triple infection (Table 2). Trematodes and cestodes were not encountered throughout the course of this investigation.

The present study demonstrated five different helminths and three different intestinal protozoa and marks the first report of gastro-intestinal parasites of ducks in Ibadan Southwestern Nigeria. Majority of ducks harboured single parasite. Mixed infections with up to three parasites were also found. The gastro-intestinal parasites encountered in ducks are common parasites of domestic chickens (Fowler, 1996; Muhairwa et al., 2007). This might be due to the fact that areas used by ducks were also used by domestic chickens with free access of wild birds. In some cases the ducks shared the same or close habitation with chicken and also shared the same food and water. Hence, the possibility of sharing the same parasitic infections.

Table 1: Gastro-intestinal parasites of ducks in different locations in ibadan and environ

		Helminths	No. and (%) p	ositive	Intestinal protozoa No. and (%) positive				
Location	No sampled	Ascaridia galli	Herterakis gallinarum	Capillaria sp.	Syngamus trachea	Echinuris uncinata	Tyzzeria sp.	Eimaria sp.	Cryptospori- dium sp.
Mirth agric	29	12 (6.8)	5 (2.8)	8 (4.6)	0 (0)	0 (0)	4 (2.3)	7 (4.0)	2 (1.1)
Sasa duck	32	20 (11.4)	13 (7.4)	7 (4.0)	3 (1.7)	5 (2.8)	9 (5.1)	11 (6.3)	5 (2.8)
Market									
Molete duck	28	17 (9.7)	10 (5.7)	10 (5.7)	7 (4.0)	3 (1.7)	7(4.0)	13 (7.4)	8(4.6)
market									
Hope farm	30	9 (5.1)	2(1.1)	1 (0.6)	0 (0)	2(1.1)	3 (1.7)	5 (2.8)	2(1.1)
I.A.R. and T	33	13 (7.4)	3 (1.7)	6 (3.4)	1(0.6)	4(2.3)	0 (0)	10 (5.7)	3 (1.7)
House-holds	23	11 (6.3)	8 (4.6)	6 (3.4)	2(1.1)	6 (3.4)	6 (3.4)	14 (8.0)	7 (4.0)
Total	175	82 (46.8)	41 (23.4)	38 (21.7)	13 (7.4)	20 (11.4)	29 (16.6)	60 (34.3)	27 (15.4)

Table 2: Infection per number of different species per duck

Location	No. Examined	No. positive	Single	Double	Triple
Mirth Agric.	29	29	20	9	-
Sasa duck market	32	32	12	7	13
Molete duck market	28	28	-	9	19
Hope farm	30	24	20	4	-
I.A.R. and T	33	31	23	7	1
Households	23	23	-	2	21
Total	175	167 (95.4%)	75 (42.9%)	38 (12.7%)	54 (30.8%)

Asian J. Poult. Sci., 5 (1): 46-50, 2011

The high prevalence of gastro-intestinal parasites observed in this study might be due to the semi-intensive management system of keeping ducks as suggested by Muhairwa et al. (2007). In this system ducks were exposed to the acquisition of eggs, oocysts, larvae or segment of helminths and intestinal protozoa from the soil while fending for themselves. In addition, overcrowding of ducks in their habitation which prevent proper cleaning and disinfection as well as contamination of food and water and the environment through indiscriminate disposal of faecal droppings containing eggs, oocysts, larvae and warm segments coupled with the favourable condition of adequate rainfall and optimum temperature which favours the survival and spread of gastro-intestinal parasites in these areas could push for the high prevalence (Farjana et al., 2004).

Utpal and Biswas (1997) in their study of endoparasitic infection of ducks in West Bengal India found 34.3% of endoparasitic infection in ducks and obtained a total of nine different species of helminths. Their study showed trematodes to be more than 26% of the helminths and 9 and 5% were cestodes and nematodes respectively in the area. This is contrary to our findings in this study but in agreement with the observations of Muhairwa et al. (2007) and Farias and Canaris (1986), who despite the high prevalence of gastro-intestinal helminths did not find trematodes and cestodes in adult ducks. They attributed their findings to inavailability of free water in form of rivers, ponds or lakes which are habitats of snail intermediate hosts of trematodes as it was the case in this study.

Since some of these parasites have been found to be pathogenic to chickens (Fowler, 1996) further studies on the health status, haematology and plasma serum biochemistry, feed conversion efficiency and growth rate to determine the effect of these parasites in ducks are on-going in our laboratory.

RECOMMENDATION

We recommend intensive management system for keeping ducks in which adequate care in terms of good housing, routine deworming programme, regular use of anticoccidial drugs and prevention of contamination of environment through hygiene in duck pens and proper disposal of duck faeces and dead ducks could be carried out. These would eliminate or reduce to low level incidence of gastrointestinal parasites and increase duck productivity through increased weight gain, increased feed conversion efficiency and decrease time to reach market weight leading to increase economic gain to farmers (Corwin et al., 1986).

Since some of the parasites encountered are zoonotic particularly *Cryptospordium spp* both man and ducks stand the risk of infection, we also recommend strict hygiene in rearing ducks by the owners and/or attendants and adequate veterinary care for the ducks.

ACKNOWLEDGMENTS

The authors are grateful to the Managers and attendants of Mirth Agric. Ikire, Sasa Duck Market, Molete Duck market, Hope Farm, I.A.R. and T., Farm, Households at Apata and Agbowo all in Ibadan and environs for their assistance in collecting faecal samples from their ducks and Mr. J.O. Olanrele for his technical assistance.

REFERENCES

Adams, K.M., J. Paul and V. Zaman, 1979. Medical and Veterinary Protozology. Churchill Livingston, Edinburgh, London, pp. 32-49.

Chesborough, M., 1987. Medical Laboratory Manual for Tropical Countries. Vol. 1, Butterworth and Co. Publisher, London, pp. 208–212.

- Corwin, R.M., N.K. Di Marco, A.E. McDowell and S.E. Pratt, 1986. Infernal Parasites. In: Diseases of Swine, Leman, A,D., B. Straw, R.D. Glock, W.L. Mengeling and R.H.C. Penny (Eds.). 6th Edn., Iowa State University Press, Ames, pp: 646-664.
- Eshetu, Y., E. Mulualem, H. Ibrahim, A. Berhanu and K. Averra, 2001. Study of gastro-intestinal helminths of scavenging chickens in four rural districts of Amhara region. Ethiopia Rev. Sci. Technol., 20: 791-796.
- Farias, J.D. and A.G. Canaris, 1986. Gastrointestinal helminths of the Mexican duck. *Anas platyrhynchos* drazi ridgway, from north central Mexico and Southwestern United States. J. Wildlife Dis., 22: 51-54.
- Farjana, T., M.A. Alim, P.M. Das and M.M.H. Mondal, 2004. Helminth infection in ducks at free range and semi intensive farming in two districts of Bangladesh. Bangladesh Vet. J., 38: 125-134.
- Fowler, N.G., 1996. How to Carry out a Field Investigation. In: Poultry Diseases, Jordan, E.T.W. and M. Pallison (Eds.). 4th Edn., W.B. Saunders Co., London, pp. 422-456.
- Hai, M.A., M. Mahiuddin, M.A.R. Howlider and T. Yeasmin. 2008. Pattern and problem of poultry consumption by the rural and urban families of *Fulbaria Upazila*. J. Bangladesh Agric. Univ., 6: 307-313.
- Henrikson, S.A. and J.F.H. Pohlenz, 1981. Staining of *Cryptosporidia* by a modified Ziehl-Neelsen technique. Acta Vet. Scard., 25: 322-326.
- Muhairwa, A.P., P.L. Msoffe, S. Ramadhani, E.L. Mollel, M.M.A. Mtambo and A.A. Kassuku, 2007. Prevalence of gastro-intestinal helminths in free-range ducks in morogoro municipality, Tanzania. Livest. Res. Rural Dev., 19: 2-2.
- Nnadi, P.A. and S.O. George, 2010. A cross-sectional survey on parasites of chickens in selected villages in the subhumid zones of South-Eastern Nigeria. J. Parasit. Res., 2010: 1-6.
- NBS, 2006. Estimated population of domestic livestock in Nigeria. Nigerian Bureau of Statistics. pp: 20-22. http://www.idrc.ca/en/ev-1-201-1-DO_TOPIC.html.
- Permin, A., H. Magwishu, A.A. Kassuku, P. Nansen M. Prisgaard, F. Frandsen and L. Gibbons, 1997. A cross-sectional study of helminths in rural scavenging poultry in Tanzania in relation to season and climate. J. Heminthol., 71: 233-240.
- Permin, A., J.B. Esmann, C.H. Hoj, T. Hove and S. Mukaratirwa, 2002. Ecto-,endo-and haemoparasites in free-range chickens in the Goronmonzi District in Zimbabwe. Preventive Vet. Med., 54: 213-224.
- Phiri, I.K., A.M. Phiri, M. Ziela, A. Chota, M. Masuku and J. Monrad, 2007. Prevalence and distribution of gastrointestinal helminths and their effects on weight gain in free range chicken in central Zambia. Trop. Anim. Health. Prod., 39: 309-315.
- Sellers, K.C. and O.O. Dipeolu, 1975. Technical note: A simpler baerman technique for the culture of third stage larvae of Nematode. J. Nig. Vet. Med. Assoc., 4: 97-100.
- Soulsby, E.J.L., 1982. Helminths, Arthropods and Protozoa of Domesticated Animals. 7th Edn., Bailliere Tindall, London.
- Taylor, M.A., R.L. Coop and R.L. Wall, 2007. Veterinary Parasitology. 3rd Edn., Blackwell Publishing, USA., pp: 130-250.
- Urquhart, G.M., J. Armour, J.L. Dunncan, A.M. Dunn and F.W. Jennings, 1988. Veterinary Parasitology. Ist Edn., Longman, London, UK.
- Utpal, D. and B. Biswas, 1997. Prevalence of endoparasitic infestation in duck (*Anasplatyrhynchos domesticus*) vis-a-vis its public health significance in West Bengal. Ind. Vet. J., 74: 743-744.
- Yousuf, M.A., P.M. Das, M. Anisuzzoman and B. Banowary, 2009. Gastro-intestinal helminthes of ducks: Some epidemilogic and pathologic aspects. J. Bangladesh Univ., 7: 91-97.