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ABSTRACT

The aim of this study, is using exponential potential in the non-linear Schrodinger equation
well-known as Ginsburg-Pitaevski-Gross equation to study quantum turbulence. The non-linear
Schrodinger equation which arises in quantum turbulence is also important in various fields of
physics such as optics, elementary particle physics and mathematical physics. We assume
exponential potentials such as Morse and generalized Woods-Saxon potentials in this equation and
use Runge-Kutta-Fehlberg approximation method to obtain wave functions. We found that, the
wave function has periedic behavior for all exponential form of potentials.

Key words: Quantum turbulence, non-linear schrodinger equation, wave funetion, exponential
potential

INTRODUCTION

Traveled light through the atmosphere affected by a number of phenomena such as scattering,
absorption and turbulence (Mohammadein and Abu-Bakr, 2010; Momeni and Moslehi-Fard, 2008,
Lewandowski, 2003). Turbulence has been investigated not only in applied sciences but also in
basic science research, such as physics and mathematics research. Turbulence is a complicated
dynamical phenomenon which based on strong nonlinearity. This phenomencon is far from an
equilibrium state and may be understand in context of vortices. However, classical description of
vortices are not well-defined. Therefore quantum turbulence (Vinen, 2006; Tsubota, 2008,
Kobayashi and Tsubota, 2005) will be more convenient. Comparing quantum turbulence and
classical turbulence reveals definite differences which demonstrates the importance of studying
quantum turbulence. Turbulence in a classical viscous fluid admitted vortices, but these vortices
are unstable. Morecover, in order to have conserved circulation we need quantum turbulence.

Thus, quantum turbulence is an easier system to study than classical turbulence and has a
much simpler model of turbulence than classical turbulence (Vinen and Niemela, 2002). A vortex
in superfluid with circular quantization is called a quantized vortex. Quantized vortices also
appropriate to study any rotational motion of a superfluid which is different from a classical vortex
in viscous fluid. Thermal counter flow of superfluid turbulence has been studied experimentally,
where the normal fluid and superfluid flow assumed in opposite directions. By using an injected
heat current one can obtain flow which suggests that the superflow becomes dissipative if the
relative velocity between the two fluids exceeds a critical value (Gorter and Mellink, 1949),

Since, the dynamics of quantized vortices is nonlinear and non-local, one can understand vortex
dynamics chservations quantitatively. Superfluid turbulence 1s often called quantum turbulence,
which indeed study quantized vortices. Turbulence phenomenon also affect on the laser beam. The
subject of turbulence 1s also important in optics and laser researches. Some of the important effects
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of turbulence on the laser beam are for example phase-front distortion, scintillation and beam
broadening. Information about the turbulence profile is crucial to assist the tomographic process
in wide field Adaptive Optics (AQ) system. Also study of the turbulent layers may be used to reduce
the impact of the delays which exists in AO systems (Poyneer et al., 2009).

QUANTUM TURBULENCE
The turbulent. flow of a fluid 1s a phenomenon, widely extend in the nature. The air circulation
in the lungs and also gas movement in the interstellar medium are examples of turbulent flows.
Here, we interest to quantum turbulence in superfluid which 1s microscopic theory of superfluid
4He that will provide a proper description of its behavior on the small scales. In that case we deals
with an equation describing the static and dynamic behavior of the condensate wave function

which 1s the non-linear Schrodinger equation, or Ginshurg-Pitasvski-Gross equation
(Pitaevskii, 1961; Gross, 1963):

2
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where, |/ i1s the condensate wave function of particle and ¢ 1s the wave function of electron. Also
V, = 4ndh’/m and U, = 2nlh*/y are measures of the repulsive interatomic forces in the fluid, where,
1is the boson-impurity scattering length and d is the boson diameter. Moreover, p is the chemical
potential. We assume U, |V, and set h = 1 for simplicity. A single-quantum rectilinear vortex along

r = (in cylindrical pelar coordinates is desecribed by the following function:
y= (e’ (2)

where, f{r) = 0 and f(«) = f,. Therefore, non-linear differential Eq. 1 reduced to the following

equation:
£_8rdf® + 2m(pm — V())F =0 (3)

where, prime denote derivative with respect to r. In this study, we would like to solve the
Eq. 38 for wvaricus famous exponential potentials. First of all we consider constant potential.
Then, we examine Morse and Wood-Saxon potentials and also a general exponential form of

potential.

CONSTANT POTENTIAL
In the simplest case we assume:

V=E (4)

where, K is a constant. This situation is special form of exponential function, Ee, when r|1. In that
case the Eq. 3 has the following solution:
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f(r) = B[jacobi SN(BT,D)] (5)
where:
T=c, +13f2um’ — 2mE — 47d (6)
and

Boc, | mum_E) (7)
2me2+2ﬂd¢:22 —mE - 2nd

2 2
D=c, ¢, md(2pm —2mE—24nd) (8)
27nd + mE — pm’

where, ¢, and c, are integration constants. In the Fig. 1, we can see that the wave function is
periodic,

MORSE POTENTIAL

After studving the harmonic oscillator as a representation of molecule vibration, cne notice that
a diatomic molecule which was actually bound using a harmonie potential would never dissociate.
The Morse potential realistically leads to dissociation, making it more useful than the Harmonie
potential. The Morse potential is the simplest representative of the potential between two particles
where dissociation is possible. The Morse potential may be written in the following form:

V(1) = Cle™ —2¢7") (9)

where, C and a are arbitrary constants.

Fig. 1: Wave function in terms of r with constant potential for E = 4 {dotted line), E = 5 (sclid line),
E =6 (dashed line) and E = 25 (dash-dotted line)
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Fig. 2. Wave function in terms of r with Morse potential for a = 1 (dotted line), a= 5 (solid line) and
a = 2b (dashed line)

Numerically, we find behavior of the wave function in the Fig. £, which shows pericdic feature.

SIMPLE EXPONENTIAL POTENTIAL
Here, we consider simple exponential function which may be serves as a toy model for
interatomic potentials. In that case we assume that.

V(r)=4Ae" (10)

where, A and y are arbitrary constants. Numerically, we find behavior of the wave function in the
Fig. 3, which shows periodic feature. We find that the value of constant v should be negative,

We can see that the solution with potential Eq. 10 i1s similar to solution with the Morse
potential.

GENERALIZED WOODS-SAXON POTENTIAL

Woods and Saxon introduced a potential to study elastic scattering (Woods and Saxon, 1954),
The Woods-Saxon potential plays an important role in microscopic physics, since it can be used to
describe the interaction of a nucleon with the heavy nucleus. This potential 1s utilized to represent,
the mean field which is felt by valance electron in Helium model (Dudek et @l., 2004). Generalized
Woods-Saxon potential may be written as the following form:

V)= — (11

a+ er 2
1+e® (1+e™)

where, v, T and e are arbitrary constants. We can see that the generalized Woods-Saxon potential
with 1= 0, v = A and "»1 limit yields to the potential {(10). Numerically, we find behavior of the

wave function in the Fig. 4, which shows periodic feature. We can see that the solution with
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Fig. 3. Wave function in terms of r with exponential potential for y = -1 (dotted line), v = -5 (sohid
line) and v = -25 (dashed line)
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Fig. 4: Wave function in terms of r with various potentials. Constant potential (dash-dotted line),
Morse potential (dashed line), Exponential potential (dotted line), Generalized Woods-Saxon
potential (solid line)

potential (10) is similar to solution with the Morse and generalized Woods-Saxon potentials. We
compare all solution in a single plot to find differences of various models (Fig. 4).

CONCLUSION

In this study, we considered quantum turbulence and caleulated wave function from non-linear
Schrodinger equation which 1s known as (inshurg-Pitaevski-Gross equation with various
exponential potentials such as Morse and generalized Woods-Saxon potentials. We found that the
wave funection has periodic behavior for exponential form of potentials. There are still many
interesting potentials which may be used in the non-linear Schrodinger equation such as
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Dirac-Morse, Rosen-Morse, Dirac-Rosen-Morse, Dirac-Eckart and Dirac-Scarf potentials

(Alhaidari, 2001, 2003, 2004a, b).
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