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Abstract: Accounting for spatial variability of soil properties commonly requires intensive
soil sampling, which inevitably involves a high cost. Geo-spatial statistical tools enable
characterization of spatial variability and development of sampling strategies from limited
data. This study outlines a simple approach of using classical and geo-spatial stafistics to
understand the spatial variability of soil Phosphorus (P) and discusses its relevance to
sampling strategy and variable rate P application. The Bray (T) extractable-P data, obtained
from a previous study, was first explored using descriptive statistics, box plot and normal
quantile plot analyses. Spatial description of the data was performed using qualitative
(data posting) and quantitative (variography) methods. Information derived from the fitted
semivariogram was used to perform data interpolation (kriging). A management zone concept
was used to delineate the Bray P test values. Results showed that Bray P exhibited a strong
spatial dependence with 94% of its variability explained. The spatial correlation length was
177 m. Spatial attributes of the data appeared to justify the sampling design employed with
regard to sample size, spacing and arrangement. To facilitate variable rate P application, three
management zones were established so as to receive low, moderate and high P rates,
respectively.
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INTRODUCTION

Many complex interactions occur among crop, management and environmental factors. The
dynamic nature of these interactions is further affected by substantial variability in soil properties. Soil
samples are collected to understand this variability. Numerous studies have been conducted to
determine the degree of spatial variability and the appropriate sampling size for determination of
representative soil properties. The properties studied include soil bulk density, hydraulic conductivity,
infiltration and pH (Russo and Bresler, 1981; Sisson and Wierenga, 1981; Es ef al., 1991; Webster and
Oliver, 1992; Pierce ef af., 1995). The Coefficient of Varation (CV) of these properties, except for soil
pH, were in the order of 100% or greater. Mulla and McBratney (1999) tabulated typical ranges of CV
values for various soil properties from a collection of published investigations based on the
classification scheme of Wilding (1985) in which CV values of 0-15, 16-35 and >36% indicate low,
moderate and high variability, respectively. Commonly, properties such as pH and porosity rank low
in varability while those pertaining to water or solute transport rank high in vanability.

In order to understand soil spatial variability, it is common to collect extensive soil samples. Often
this exercise poses a cost constraint. Depending on field variability, the number of samples per
1 ha ranges from 25 to 50 for hydraulic conductivity, 7 to 14 for infiltration rate and 24 to 55 for
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determining solute concentration (Hajrasuliha et al., 1980; Gajem et af., 1981; Vieira ef af., 1981).
Additionally, the large degree of spatial variation in the field necessitates collection of soil samples
from closer spacing in order to obtain an accurate estimate of a soil property. Sampling intervals as
small as 1 m for hydraulic conductivity, 0.05 to 2 m for infiltration rate and 0.2 to 80 m for electrical
conductivity have been suggested (Russo and Bresler, 1981; Sisson and Wierenga, 1981). The spatial
variability in soil properties inevitably affects fertilizer use efficiency within a field. Studies have
shown that such variability often justifies variable fertilizer recommendation, which is based on the
mutrient requirements of a specific site, rather than a uniform fertilizer recommendation for the entire
field (Carr ef af., 1991 ; Robert, 2002).

Collection of data for site-specific fertilization is not only expensive but also difficult to obtain
under field conditions. For this reason, geo-spatial statistical tools can be used to characterize the
spatial variability and to develop sampling strategies from limited data. This study explores the
statistical {classical and geo-spatial) attributes of Bray (1) extractable-P from a watershed-scale data
set and attempts to extract relevant information that could potentially address issues such as sampling
strategy and variable rate application for P.

MATERIALS AND METHODS

Data Acquisition

The data set used for this study was obtained from a site-specific herbicide management study
(Khakural ef af., 1999) conducted on a 32 ha paired mini-watershed in Blue Earth County, Minnesota.
A total of 243 soil samples at 0-15 cm depth were obtained from mine South to North-oriented parallel
transects (806 m long and 45.7 m apart). Geo-referenced soil samples were obtained at 30.5 m
intervals. The studied area was planted to corn (1996, 1998) in rotation with soybean (1997) and
comprised a wide range of soil and landscape characteristics. The following soil types were reported:
Lester (loamy, Mollic Hapludalf), Shorewood {silty clay loam, Aquic Argiudoll), Cordova {clay loam,
Typic Argiaquoll), Waldorf (silty clay loam, Typic Haplaquoll), Lura (silty clay loam, Cumulic
Haplaquoll) and Blue Earth (silty clay loam, Mollic Fluvaquent). The slope gradient ranged from 0 to
6%.

The Bray (1) extractable-P data from the above source were spatially characterized in June of
2001.

Data Analysis

Descriptive statistics were computed using Microsoft Excel. The 5-parameter summary consisting
of the smallest observation, the first quartile, the median, the third quartile and the largest observation
was graphed as a box plot. Supplementary to the box plot, a normal quantile plot was constructed to
describe data distributions. Both plots were generated using Statistix Version 1.0. Outlier testing was
performed using the Extreme Studentized Deviate (ESD) method, also known as Grubbs® Test.

Spatial description of the data was performed in two stages, viz. 1) exploratory analysis and 2)
spatial continuity analysis. Data posting was used as the exploratory tool. According to Isaaks and
Srivastava (1989), data posting is a useful way to check for simple trends in the data i.e., with regard
to location of minimum and maximum values. The data posting in the form of symbol map was created
using Surfer Version 7.0 (Golden Software, Tnc.). Exploratory analysis using data posting provides a
qualitative spatial description. This tool, however, does not address spatial continuity as a function
of distance and direction, which exists inherently in most earth science data sets. Isaaks and Srivastava
(1989) suggested three methods that describe spatial contimuity, viz. correlation function, covariance
function and variogram. Among these, the variogram has often been the most exploited method.
Variograms quantify and model spatial dependence of soil properties using semivariance (Burgess and
Webster, 1980). The semivariogram, which basically measures the increase in variance between sample
points as separation distance increases, can be estimated as follows:
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y(h):O.Sn(h)rf) (Z, -Z, + h} oy

i=1

where,

h = Separation distance between location %, or X,
7, or 7, = Measured values for the regionalized variable at location x; or X,
n (h)

No. of pairs at any separation distance h

Theoretically, the semivariogram equals the population variance at large separation distance
whereas at very small separation distance, the semivariogram approximates zero (Trangmar et /.,
1985). In practice, the semivariogram is modeled using several authorized models (Oliver, 1987,
Isaaks and Srivastava, 1989) such as linear, spherical and exponential. These models are then fitted to
the semivariogram data. An exhaustive discussion on the characteristics of various models and how
they are fitted to the semivariogram dafa can be found in the works of Trangmar ef «f. (1985),
Isaaks and Srivastava (1989), Mulla and McBratney (1999) and McBratney and Pringle (1999). Key
features of a semivariogram model are described by three parameters, namely nmugget (Cp), sill (C; + )
and range (A,). Definitions of these parameters, based on Trangmar ef af. (1985) and Isaaks and
Srivastava (1989), are summarized as follows: Nugget is a measure of the amount of variance imposed
by errors in sampling, measurement and other unexplained source(s) of variance. Sill refers to the total
vertical scale of the variogram whereby the semivariance becomes constant as distance between sample
location increases. The sill approximates the sample variance at large separation distances for
stationary data. Range is the scparation distance that reflects a cutoff between spatial dependence and
spatial independence. This implics that at separation distances greater than the range, sampled points
cease to be spatially correlated (ie., random). Semivariogram analysis was performed using
GS+Version 5.1.1 (Gamma Design Software).

Classical and geo-spatial statistics can be used for more than just to deseribe the sample data. In
addition, they can be used to predict values in areas that have not been sampled. This process is known
as interpolation. Several interpolation methods are available and their appropriateness for use would
depend on the estimation criteria. For univariate data sets, a common interpolation method is point
kriging. Kriging has the characteristics of Best Linear Unbiased Estimator (BLUE). According to Isaaks
and Srivastava (1989), kriging exhibits linearity because its estimates comprise weighted linear
combinations of the available data. Meanwhile, it is unbiased since it tries to nullify the mean residual
value (error) and it is best because it aims at minimizing the variance of the error. The latter serves as
the distinguishing feature of kriging. Detail discussions on the use of kriging as an interpolation tool
can be found in Trangmar ef af. (1985), Isaaks and Srivastava (1989) and Mulla and McBratney (1999).
Interpolated data, Z(x)), are obtained from the following expression:

7 (X,) =§ A Zix) (2)

where,

N = No. of neighboring measured data points used for interpolation

Z(x)= Measured data for Bray P at locations neigboring the interpolation point
A, = Woeighting factor which depends on the semivariogram model

The Bray P data were point-kriged based on properties of the sermivariogram model using Surfer
Version 7.0 (Golden Software, Inc.).
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RESULTS AND DISCUSSION

The mean for Bray P is 19.27 while the standard deviation is 25.91 (Table 1). The Coefficient
of Skewness (CS) is positive, indicating a distribution that has a long tail of high values to the right that
makes the median less than the mean. The CV of 134% falls within the typical range reported by Mulla
and McBratney (1999). The curve on the normal quantile plot shows a clear deviation from normality
(Fig. 1), which suggests the presence of some erratic high sample values in the data. These values could
potentially disrupt the final estimates. The box plot exhibits 8 probable outliers (Fig. 2). Based on the
outlier test, 4 data points in the upper range tested significant at p = 0.05 and hence were omitted from

the data set.

Table 1: Descriptive statistics for original data set

Statistical parameters (n = 234)

Bray P (ppm)

Mean

Standard deviation
Standard error

Sample variance

Median

Coetficient of skewness
Minimum

Maximum

Coefficient of variation (%)

19.27
2591
1.69
671.08
15.00
6.06
1.00
265.00
134.41

270 .
180 "

A, +
§ +

90 W

.
0 + o+
-3 2 -1 0 1 2

Normal quantile plot of Bray P

Rankits
Shapiro-Wilk W 0.4359 P(w) 0.0000 234cases

Fig. 1: Normal quantile plot of original data set

Bary P
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Box and Whisker plot

°

m»gooma o o

234 cases

Fig. 2: Box plot of original data set
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As a result of trimming the Bray P data, descriptive statistics and normal quantile plot were re-
computed (Table 2 and Fig. 3, respectively). Discarding the 4 outliers clearly reduces the numeric value
of most statistical parameters. Notably, standard error, standard deviation, CV and CS were
approximately halved, while sample variance was slashed 4-fold (Table 2). However, the trimmed data
fails to show substantial improvement toward normality due to a few high values at the upper range
(Fig. 3). The two options of dealing with such deviation from normality before proceeding to the next
analytical step are: 1) to assume that the data are normal or 2) to perform data transformation. For the
purpose of clarity, option 2 was explored.

Data transformation using the natural log was compared for normality with the original and the
outlier-free data sets (Fig. 4). In comparison to Fig. 3, it appears that the natural log transformation,
particularly without the outliers (Fig. 4b), renders reasonable improvement toward normality. As such,
the transformed Bray P data with four discarded outliers were used for subsequent data analysis. The
transformed data set registered the following statistics: mean (2.643), standard deviation (0.696) and
sample variance (0.485).

The elements of classical statistics such as descriptive statistics, box plot and normal quantile
plot, are among several ways of summarizing a univariate distribution. While the mean and variance
are useful statistics that provide measures of the location and spread of the distribution, respectively,
they do not describe the data from a spatial context. To capture spatial features of the data, geo-spatial
statistics are commonly employed.

Geo-Spatial Statistics
Data posting for transformed Bray P, represented as a symbol map, is shown in Fig. 5. The
symbol map is characterized by five classes of data values, which are arbitrarily referred to as low,

Table 2: Descriptive statistics for outlier-free data set

Statistical parameters (n = 230) Bray P (ppm)
Mean 16.43
Standard deviation 12.66
Standard error 0.83
Sample variance 160.31
Median 14.50
Coefficient of skewness 3.17
Minimum 1.00
Maximum 95.00
Coefficient of variation (%) 77.04

Trimmed data (230 cases)

100

80 "

0 + o+ e

3 2 -1 0 1 2 3
Rankits

Fig. 3: Normal quantile plot of outlier-free data set
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Fig. 4: Transformed data sets compared: (a) original and (b) outlier-free

somewhat low, moderate, somewhat high and high. These classes were generated using the equal
interval binning method, which assigns the class ranges such that the interval between the minimum
value and the maximum value is equal for each class. As a result, this method inevitably assigns
different numbers of points for each class. The majority (54.3%) of data values were classed as
moderate, followed by somewhat high (24.3%), somewhat low (10.4%), low (8.7%) and high (2.2%).
The moderate values appear evenly distributed. In contrast, values ranging from low to somewhat low
are clustered within the east central-northeast trough. Apparently, there are no isles of high values
surrounded by low ones and vice-versa. The blank stretch along the western boundary is
reflective of the four discarded high values. In general, there is no obvious data trend for
transformed Bray P.

The semivariogram fitted for transformed Bray P is shown in Fig. 6 and its corresponding
properties are given in Table 3. In constructing the semivariogram, several assumptions were adhered
to. To begin with, the data were assumed to follow a normal distribution substantiated by Fig. 4b. As
a result, the semivariances were also assumed to obey a normal distribution. Besides normality, the
data were assumed to be stationary and free from any form of trend supported by Fig. 5. Stationarity
of the data upholds the fact that the semivariance between any two locations in the study region
depends only on the distance and direction of separation between the two locations and not on their
geographic location. The semivariogram was assumed to be isotropic and omnidirectional, meaning that
pairwise squared differences were averaged without regard to direction. Spatial structure of the data

conformed to the exponential model, which is:
v (h) = CitCl1-exp(-h/A,)] (3)
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Fig. 6: Semivariogram fitted with an active lag of 250 m and a lag class interval of 23.5 m

Table 3: Semivariogram properties

Semivariogram model Exponential
Properties In (Bray P+1)
Nugget (CO)* 0.027
Sill, Co + ¥ 0.439
Scale, C 0.412
Effective range (3xA;) (m)* 177.000

R? 0.970
RS88 1.64x1073

¢ Random variation, ®: Total variation, ®: Structural variation, % Commonly defined as the point at which the model
includes 95% of the sill

where,

h = Lag classinterval

C, = Nugget variance (> 0)

C = Structural variance (> Cp)
A, = Range

Spatial dependence was defined using the mugget to sill ratio method of Cambardella e af.
(1994) whereby:
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Inference
Nugget/Sill <0.25 Strong spatial dependence
0.25< Nugget/Sill <0.75 Moderate spatial dependence
Nugget/Sill >0.75 Weak spatial dependence

Based on the above definition, the Bray P data, which yielded a nugget to sill ratio of 0.06, is
categorized as having strong spatial dependence. This physically means that 94% of the total varation
in the Bray P data can be explained while the remaining 6% is attributable to random or unexplained
sources of varation. The effective range of 177 m falls within the range tabulated by Mulla and
McBratney (1999).

Implications for Sampling Design

Good statistics is often about making accurate and reliable inferences from the data, which are
usually generated by sampling an unknown population. To derive a rigorous sampling protocol, it is
necessary that the sampling points closely represent the population. To this end, the sample mean is
assumed to provide a very good estimate of the population mean. Wollenhaupt ef af. (1997) advocated
that a sampling protocol should consider two important facts, viz. the optimal mumber of samples and
the spatial arrangement of samples.

Sample Size
Optimal number of samples can be estimated using the inference concept (Moore and
McCabe, 1999). It follows that:

n={z* o)/} {4

where,

n = The estimated sample size,

7' = The critical value which depends on the confidence level,

o = The estimated Standard Deviation (SD) of the population and D is the desired margin of error.

Since the population variance is often an unknown parameter, the sample standard deviation is
assumed as the best estimate. With reference to Table 2, the standard deviation for Bray P (with four
outliers removed) is 12.7. Based on Eq. 4, if the desired margin of error is set at D = 1, the sample size
(n) required to estimate the mean of Bray P at 95% Confidence Interval (CI) would be 620. When D
=3, n would be 49 and when D = 10, n would be 4. This indicates that to achieve a small margin of
error, a large sample size would be required. Typically, the D that corresponds to a 95% CI for a given
data set is an acceptable compromise. For the 230 sample Bray P data, the values of D at varying
confidence intervals are as follows:

Confidence interval (%) Margin of error
90 1.4
95 1.6
99 2.2

As such, it is reasonable to consider the 230 samples collected to characterize the population
mean of Bray P as optimal. When spatial correlation is expected, estimation of sample size is modified
to account for the fact that spatial correlation will entail a larger sample size to estimate the population
mean (Mulla and McBratney, 1999).
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Sample Spacing

The effective range, also referred to as the correlation length (Webster, 1985), derived from
semivariogram analysis is 177 m. The practical significance of this value is that sample points
separated at distances greater than 177 m will no longer exhibit spatial correlation. At this juncture, it
is worth noting that the semivariogram does not provide any information for distances shorter than the
mimmum spacing between samples. Sampling designs that are aimed at delineating spatial structures
usually employ separation distances that are lesser than the effective range. Flatman and Y fantis (1984)
recommended that samples be spaced between 0.25 and 0.5 of the effective range. In the Bray P data,
samples were spaced 45.7 m apart in the x direction and 30.5 m apart in the y direction. This sample
spacing corresponds to 0.26 and 0.17 of the effective range for the x and v direction, respectively. The
high CV (77%) probably justifies the close spacing in the Bray P data. Close spacing is also a way to
minimize the nugget effect. Due to the assumption that the semivariogram was isotropic, the difference
in spatial variation as affected by direction (x or y) was not explored.

Sample Arrangement

The sampled plot, as shown in Fig. 5 (data posting), is rectangular in shape. To accommodate the
optimal sample size and required spacing, sampling points appeared as regular rectangular grid cells
with a marginally greater dimension on the x direction. Clearly, the sample arrangement reflected a
systematic sampling scheme. Each sample point is a composite of several subsamples, which were
obtained in a randomized manner within each grid cell. The optimum number of subsamples would
depend on the CV and the shape of the semivariogram. Rectangular grid cells are usually prescribed in
situations where the sampled variable is believed to exhibit anisotropy as a result of topographic,
tillage or other types of influences (Mulla and McBratney, 1999). The symbol map of Bray P
(Fig. 5a) indicates a clear short range variability in north-south direction of the eastern region, which
probably justifies the use of a rectangular grid cell instead of the more frequently used square grid cell.

Interpolation

Distribution and pattern of Bray P values (both measured and interpolated) are illustrated as a
contour map with an accompanying color gradation scheme in Fig. 7. Back-transformation of Bray P
values was performed using an exponential function as follows:

Bray P = gi* B2y Fril ] {5

Features noticed in the preceding symbol map (Fig. 5) appear clearer in the contour map. For
instance, the east central-northeast trough is readily apparent in the contour map. An additional
feature, undetected in the symbol map, is the proximity of contour lines along the trough that indicates
a relatively steep gradient in data values. This gradient approximately corresponds to the close distance
between low and moderate values, suggesting short-range variability. The dotted line represents the
stretch that exhibits minimum continuity.

Variable Rate Application

From Fig. 7, it is clear that soil test values for Bray P are variable across the field. In such a
situation, P fertilization using a homogeneous rate for the whole field does not make sense. A plausible
option would be to vary the P rates as a function of soil test value. To perform variable rate
application, firstly, the field has to be divided into zones that are relatively homogeneous in soil test
P. Then, each of these zones should be fertilized with P at specific rates that correspond to the test
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values. Accumte and efficient agoregation of the field into menagerment zones will require an open
architecture Geographic Information System (GI5). The use of GIS to manage =soil attribite(s)
differertly isa key commponent of Precision Agriculture (Larson and FEobert, 1991 Robert, 2002, a
technal ogy- driven process that enables farm operators to adjust input use to rmatch varying soil, crop
and other field attributes.

Bazed on the contowr mmap (Fig. 7, the eastern region of the field appears to be dominated by
lower test walues, while the reverze 15 true for roach of the western region Using the contowr map, a
cursory approach to aggregating the field iz showen in Fig. 8 The field is aggregated into three P
mranagermnent zones where Zone B has the largest acreage followed by Zone C and Zone A Ferfilization
of P could be carnied using three different rates based on soil test values. Typically, zones A, B and
C would receive the lowest, medivn and the highest P rate, respectively
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Management key:

Low P rate
(Zone A)

Medium P rate
{Zone B)
g
g
High P rate
{Zone C)

T “T
100 200 300
Easting (m)

Fig. 8: Proposed P management zones
CONCLUSION

A simplified approach to quantifying and managing the spatial variability of soil P has been
described. Soil test values ranged between 1 and 95 ppm with a CV of 77%. Soil P exhibited a strong
spatial dependence with 94% of its variability explainable. This spatial dependence was characterized
by a moderate range of 177 m. Generally, the sample size, spacing and arrangement were appropriate
for the manifested variability. Site-specific P fertilization using three different rates is proposed.
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