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Abstract
Background and Objective: Myelodysplastic Syndromes (MDS) are clonal haemopoietic disorders with a high frequency of leukemic
transformation. The role of mast cells (MCs) in this process is not well clarified. The aim was to study the number of mast cells, the secreted
cytokines and the microvascular density (MVD) in MDS and controls to clarify the possible role of mast cells in the disease progression
in these patients. Materials and Methods: Seventy-three patients and 60 healthy individuals were involved in the study. Thirty-seven
belonged to the low/intermediate-1 risk group and 36 to the high/intermediate-2 group. Toluidine blue in bone marrow smears was used
for MCs measurement. Tryptase and chymase expression was estimated by immunocytochemistry. The CD34+ cells were calculated by
flow cytometry. Chymase and tryptase serum levels were measured by ELISA. The MVD was calculated by measuring the number of
endothelial cells per 0.0625 mm2 field area in paraffin sections. Results: An increased number of CD34+ cells, as well as MCs in the bone
marrow of patients, was found. The MCs in patients expressed predominantly tryptase and did not present dysplastic features. Serum
tryptase was higher in MDS compared to the normals. The MVD was higher in MDS compared to normals. There was a positive correlation
between CD34+ cells and MCs as well as between MCs and MVD. High/intermediate-2 patients had a higher number of MCs, CD34+ cells
and MVD compared to low/intermediate-1 cells and normals. Conclusion: The MCs in MDS do not seem to belong to the malignant clone,
accumulate probably reactively and may contribute to the clone evolution by supporting angiogenesis and tumour microenvironment.
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INTRODUCTION

Mast cells (MC) are derived from the haematopoietic
progenitor cell1 and the committed MC was isolated in 20052.
They  contribute  to  tissue  regeneration  and  tissue  and
organ homeostasis that present continuous increase and
reconstruction through mediators they produce and store3-17.
Their role in angiogenesis is also well-recognized18.

In  addition,  MCs  have  a  significant  role  in
neuroimmunological   regulation,   neurogenesis   and
behaviour15,16. They also recognize and react to antigens,
toxins and pathogens they have an antigen presentation
function and they have a role in immune tolerance through a
complicated network of receptors, mediators and enzymes19-52.

In malignancies the role of MCs is controversial. In most
cases increased presence of MCs is related to poor prognosis
and rapid disease progression53,54. In some cases, MCs are
related to better prognosis55. The MCs are attracted to the
tumour environment from factors secreted by the tumour.
They contribute to tumour growth through the secretion of
angiogenic and mitogenic factors56. Their antineoplastic
function is achieved through the inhibition of cell growth,
induction of apoptosis, reduction of cell mobilization and
enhancement of antineoplastic inflammation57.

In haematological malignancies, MCs have been
described to belong to the malignant clone or be reactive and
infiltrate the microenvironment.

Myelodysplastic syndromes are a heterogeneous group
of clonal hematopoietic stem cell malignancies characterized
by dysplastic features, ineffective haemopoiesis and frequent
evolution to acute leukaemia58-65.

There were some publications on MCs in MDS,
microvascular density (MVD) and disease progression. The
results are controversial and the number of patients is
small66,67.

Hence, this article studied the number of MCs, the
tryptase and chymase production and the MVD as well as their
relation to the risk status of the patient to contribute to the
study of the role of these cells in these syndromes.

MATERIALS AND METHODS

Study area: The study was carried out at the Department of
Hematology, University Hospital of Larisa, University of
Thessaly, Larisa, Greece from 2009 to 2017.

Patients: Seventy-three consecutive patients have been
studied 37 females and 36 males with MDS who were referred
to the University Hospital of Larisa between the years 2009

and 2012. The median age of males was 72 years (range 35-86)
and of females 69 years (range 59-81). For MDS classification
FAB2 and WHO 2008 classification systems were used.
According to these systems, 21 patients had refractory
anaemia (RA) (11 females and 10 males). The median age of
males was 62 years (range 59-86) and of females 78 years
(range 66-85). Eighteen patients had Refractory Anemia with
Excess of Blasts (RAEB) 8 males and 10 females with the
median age for males 60.5 years (range 35-75) and for females
74 years (range 58-79). Eighteen patients had Refractory
Anemia  with  Excess  of  Blasts  in  Transformation  (RAEB-T),
10  males  and  8  females,  with the median age for the males
66 years (range 55-77) and for the females 79.5 (range 59-80).
Sixteen patients had Refractory anaemia with ringed
sideroblasts (RARS) 8 males and 8 females with the median
age for males 64.5 years (range 63-86) and for females 75 years
(range 65-88). Patients with CMML and secondary MDS were
excluded.

In  addition,  the  patients  were  classified  according  to
IPSS-1997  as  low/intermediate-1  risk  (37  patients)  and
high/intermediate-2 risk (36 patients). The median age of
patients in the low/intermediate-1 risk group was 72.5 years
(range 57-88) and in the high/intermediate-2 risk group was
68 years (range 35-80).

In the study,  60 normal individuals have been included
32 males and 28 females.  The median age for the males was
75 years (range 56-90) and for females 74 years (range 66-90).

Methods: Bone marrow (BM) smears and paraffin sections
were prepared from the posterior iliac crest. Mast cells were
calculated using toluidine blue stain (mean value of positive
cells per 1000 nucleated cells in 3 slides). For estimating the
expression of tryptase and chymase mouse-anti-human
moAbs were used (ABCAM -Discovery Drive, Cambridge
Biomedical Campus Cambridge, CD2 OAX, UK and MA5-11717,
CC1 -Thermo Fisher Scientific, Waltham, Massachusetts, USA,
respectively) and PAP kit DAKO-(Agilent, Waldbronn,
Germany). Every cell was graded from 0+-4+ depending on
the intensity of the stain and the score was calculated as the
mean value of 200 cells as Komi and Redegeld68 described.

Haemopoietic progenitor CD34+ cells were measured by
flow cytometry using the anti-CD34 moAb (K567-FITC).

The levels of chymase and tryptase in serum were
measured using ELISA kits (INVITROGEN-Thermo Fisher
Scientific, Waltham, Massachusetts, USA) according to the
manufacturer’s instructions.

Microvascular  density  (MVD)  was  investigated  as
Kyriakou et al.67 described. Microvessels were measured per
0.0625 mm2 field area.
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Statistical analysis: For statistical analysis, the t-test was used
for the comparison of parametric values and Wilcoxon’s test
(Bonferroni’s correction) for nonparametric values. The
correlation coefficient (R2) was used for examining possible
correlations between various parameters.

RESULTS

CD34+ cells in bone marrow: Table 1 shows the percentage of
CD34+ cells in each group of patients is shown. In detail, CD34+

cells in the normal individuals were 1.08±0.87%. In MDS
patients they were 5.3±3.83%. Specifically, in various MDS
categories, CD34+ cells were 2.52±1.2% in RA, 1.37±0.5% in
RARS, 8.94±2.01%in high/intermediate-2 and 2.027±1.117%
in low/intermediate-1. There was a significant difference
between high/intermediate-2 and normals (p<0.01), between
high/intermediate-2  and  low/intermediate-1  (p<0.01),
between  low/intermediate-1  and  normals  (p<0.01)  and
between RA and normals (p<0.01). There was no significant
difference between RARS and normals (p>0.1).

Mast cells in bone marrow (BMMCs): The percentage of mast
cells in bone marrow in each group of patient are shown in
Table 1. In normals, the percentage of mast cells was
1.82±0.93%. In MDS it was 5.767±3.45%. In RA it was
4.38±1.16%, in RARS 2.18±0.75%, in low/intermediate-1
3.43±1.48% and in high/intermediate-2 8.16±3.26%. There
was a significant difference between high/intermediate-2 and
low/intermediate-1 (p<0.01) as well as the normals (p<0.01).
There was a significant difference between low/intermediate
and normals (p<0.01) as well as between RA and normals
(p<0.01). There was no difference between RARS and normals
(p>0.1). In the total MDS group, the mast cells were higher
than the normals (p<0.01).

Immunocytochemical detection of tryptase and chymase in
the bone marrow: Results are presented in Table 1. In the total
MDS group, the tryptase positivity score in bone marrow mast
cells (BMMC) was 2.328±1.45 while in the normals it was
0.8±0.82 and the difference was statistically significant
(p<0.01). In high/intermediate-2 the score was 3.694±0.467
and it was significantly higher than that of low/intermediate-1
(1±0.57, p<0.01) and normal (p<0.01). In low/intermediate-1

the score did not differ from the score in normals (p>0.1). In
MDS-RA and MDS-RARS the scores were 1.19±0.60 and
0.75±0.447, respectively and did not differ from the normals
and low/intermediate-1(p>0.1), but it was significantly lower
than that of high/intermediate-2 (p<0.01).

The  chymase  score  in  BMMC  in  the  total  MDS  group
was 0.78±0.71, while in the normals it was 0.9±0.3. In
high/intermediate-2 MDS the score was 0.804±0.749 and the
difference between the 3 groups was not significant (p>0.1).
In the low/intermediate-1 group the score was 0.75±0.68, in
MDS-RA 0.66±0.58 and in MDS-RARS it was 0.875±0.718.
There was no statistically significant difference among all
groups (p>0.1).

Serum tryptase and chymase levels: The levels of serum
tryptase in the normals were found 7.8±3.21 ng mLG1, in total
MDS group were 40.96±35.4, in high/intermediate-2 were
73.31±20.87, in low/intermediate-1 were 9.48±4.217, in
MDS-RA   10.75±4.83,   in   MDS-RARS   7.806±2.503.   There
was a significant difference between total MDS and
high/intermediate-2 compared to the low/intermediate-1 and
normals (p<0.1). The levels of serum chymase (pg mLG1) were
not detected in any category of MDS and normals (Table 1).

Correlation of tryptase levels and BM CD34+ and mast cells:
There was a strong positive correlation between serum
tryptase levels and BMMC (R2 = 0.6837). There was also a
positive  correlation  between  BMMCs  and  BM  CD34+  cells
(R2 = 0.4369) ( Fig. 1 and 2).

Microvascular density in bone marrow (MVD): The MVD
(microvessel number/0.0625 mm2) in the entire group of MDS
was 6.3±3.3 and was significantly higher than the normals
(2.23±0.38, p<0.01). In high/intermediate-2 the MVD was
7.89±2.8, in low/intermediate-1 it was 4.8±2.2, in MDS-RA it
was 4.98±1.8 and in MDS-RARS it was 5±2.0. There was a
significantly  higher  MVD  in  high/intermediate-2  compared
to low/intermediate-1, MDS-RA, MDS-RARS and normal
(p<0.01). There was also a significant difference between
low/intermediate-1,  MDS-RA,  MDS-RARS  and  normals
(p<0.01). There was a positive correlation between BMMC and
MVD (Fig. 3).

Table 1: Studied parameters in each group of patients and controls (CD34+ cells, BMMCs, MVD, tryptase score+, chymase score and serum tryptase)
Patients’ group CD34+ cells (%) BMMCs (%) MVD microvessels/0.0625 mm2 Tryptase score Chymase score Serum tryptase (ng mLG1)
MDS 5.3±3.83 5.767±3.45 6.3±3.3 2.328±1.45 0.78±0.71 40.26±35.4
MDS-RA 2.52±1.2 4.38±1.16 4.98±1.8 1.19±0.60 0.66±0.58 10.75±4.83
MDS-RARS 1.37±0.5 2.18±0.75 5.0±2.0 0.75±0.447 0.875±0.718 7.806±2.503
MDS low/int-1 2.027±1.117 3.43±1.48 4.8±2.2 1.0±0.57 0.75±0.68 9.48±4.217
MDS high/int2 8.94±2.01 8.16±3.26 7.89±2.8 3.694±0.467 0.804±0.749 73.31±20.87
Normals 1.08±0.87 1.82±0.93 2.23±0.38 0.8±0.82 0.9±0.447 7.8±3.21
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Fig. 1: Correlation between bone marrow mast cells (x-axis) and serum tryptase levels (y-axis) in MDS patients
There is a strong positive correlation between the 2 parameters (R2 = 0.6837)

Fig. 2: Correlation between BMMCs (y-axis) and BMCD34+ cells (x-axis) in MDS patients
There was a positive correlation between the 2 parameters (R2 = 0.4369)

Fig. 3: Correlation between bone marrow mast cells (x-axis) and bone marrow microvessel density-MVD (y-axis) in MDS patients
There is a positive correlation between the 2 parameters (R2 = 0.4904)
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DISCUSSION

An increased number of MBMCs and MVD in MDS
possible pathogenetic connection between them was found
in our study. There were several publications regarding the
presence of mast cells in malignant diseases, including
haematological malignancies and their role in disease
progression is controversial. The mechanisms by which they
contribute are not completely clarified53,54,57,69,70.

A higher number of mast cells in higher-risk MDS as well
as higher numbers of BMMC in the entire MDS group
compared to normals was found. This was in agreement with
what has been reported earlier by Alexandrakis et al.66. This
also found in agreement with earlier reports by Pejler et al.71

that, these cells secrete tryptase predominantly that was
detected by immunocytochemistry in BM as well as in the
serum of patients. In reactive mastocytosis such as in allergic
conditions, it has been reported that the mast cells are
tryptase and chymase-producing72 and are peripheral and not
BM mast cells. Although in a previous study there was no
difference in BMMC numbers in the various MDS categories66,
an increase in BMMC in higher-risk MDS was found. The fact
that was detected increased numbers of BMMC were in higher
risk MDS which is considered a more advanced stage of the
disease probably means that the number of BMMC increases
with disease progression. Whether they contribute to the
disease progression or they accumulate reactively is not clear.
In earlier reports, it has been found that in some cases, the
mast cells belong to the malignant clone and in these cases,
they present dysplastic features66,73,74. In this study dysplastic
features (elongated shape, abnormal granulation and
abnormal accumulation) were not found in BMMC but this
does not exclude the neoplastic origin of these cells. Studies
during disease progression in each case, genetic studies and
MC cultures could help to clarify the origin of these cells.
Probably the majority of BMMCs accumulate in response to
tumour-secreted factors in BM but it is not known if the
cytokines that BMMCs secrete contribute to disease
progression.

It  has  been  reported  that  MC  is  involved  in
angiogenesis16-18,56,57,75 and neoangiogenesis is important for
tumour growth76-78.

We found increased MVD in MDS compared to the
normals. We also found higher MVD in high/intermediate-2
risk MDS compared to the low/intermediate-1, in contrast to
a previous study by Kyriakou et al.67. The MVD is positively
correlated with the number of BMMC. This raises the
suggestion that BMMCs may contribute to tumour
progression by enhancing angiogenesis. The heterogeneity of
the MDS group may be responsible for the contradictive
results in the literature67.

Many previous studies suggested that MC involvement in
fibrosis in many situations like liver cirrhosis, lung fibrosis,
renal fibrosis, scleroderma, etc.3,10,79. There are no adequate
data to clarify the mechanism through which MCs exert their
fibrotic action. We did not have enough patients to study the
possible relation of BMMCs in MDS with BM fibrosis.

CONCLUSION

An increase in BMMCs in MDS was found and they were
higher in the advanced stages of the disease. To clarify
whether they contribute to disease progression further studies
are required with MC cultures and clonality investigation in
various stages of the disease.

SIGNIFICANCE STATEMENT

The microenvironment plays an important role in MDS
evolution. Studying the factors of the microenvironment that
contribute to malignant clone growth and evolution and the
use of proper agents targeting the microenvironment might
help in delaying disease progression.
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