International Journal of
Plant Breeding

and Genetics

ISSN 1819-3595

@

Academic
Journals Inc. www.academicjournals.com




International Journal of Plant Breeding and Genetics 7 (2): 865-75, 2013
ISBN 1819-3595 / DOI: 10.3923/4jpbg. 2013.65.75
© 2013 Academic Journals Inc.

Correlation Between Meiotic Behaviour and Species
Reproductive Performance and Ecological Spread: A Case Study of
Eight Nigerian Solanum L. Species

'0.A. Oyelana and * C.C. Nwangburuka

'Department of Biological Sciences, Redeemer’'s University, 46 Km, Lagos-Tbadan Expressway,
Mowe, Ogun State, Nigeria

Department of Agricultural Science, Babcock University, Ilishan-Remo, Ogun State, Nigeria

Corresponding Author: O.A. Ovelana, Department of Biological Sciences, Redeemer's University, 46 Km,
Lagos-Tbadan Expressway, Mowe, Ogun State, Nigeria

ABSTRACT

The unstable genomes among the diploid Seolanum species viz:  Solanum
macrocarpon, S. aethiopicum, S. gilo, S, anguivi and the varieties of 5. melongena are indicative
of progressive evolutionary changes. The high occurrence of chromosome bridges, clumps unequal
anaphase chromosomes and faulty cytokinesis led to the production of poor quality pollen. However,
bivalents were regular in S. torvum, S. ertanthum and the tetraploid S. scabrum while their mitotic
chromosomes were small-sized and symmetrical. The diploids with unstable genomes were
cosmopolitan and found in the four ecological zones while the regular and normal diploids were
limited in their distribution to the savanna, arid and semi arid. However, the tetraploid S. scabrum
was restricted to the rainforest of Southern Nigeria. The colchicine induced tetraploid and its
intermediate aneuploids suggest the likely origin of the natural polypleids. Consequently, the
impact of genome changes was revealed in the evolution of different adaptive features and species
ability to occupy new environment.,
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INTRODUCTION

Meiosis 18 a complex but regulated cellular event that ensures continuity of life. Constant
genomic changes through specific gene interactions (Kumar and Bennetzen, 1999;
Bennetzen, 2002) and the synthesis of new cellular components (Kimura ef af., 1999) such as
required for the new adaptive complexes are essential for species survival in constantly changing
environment (Cai and Xu, 2007). The production of wiable gametes for next generation of
individual species is predicated on normal and harmonious meiosis (Pagliarini, 2000) and
dependent on nuclear content, cytoplasmic inclusions and including lots of abictic factors
{(Porch and Jahn, 2001; Erickson and Markhart, 2002). The emergence of novel characters
is a consequence of several cytogenetic interplay that regulates gene expression pattern
(Liu and Wendel, 2003; Levy and Feldman, 2004) and capable of producing new genotypes within
a population {Oyelana and Ogunwenmao, 2009a).

The production of gametes with inherent numerical or structural chromosome variations have
been well documented (Bretagnolle and Thompson, 1995; Page and Hawley, 2003; Kato and
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Palmer, 2003) and the expanded genomes in the emerging polyploids are maintained on a
somewhat different cytogenetic processes (Bennetzen and Kellog, 1997; Xu and Joppa, 2000) to
ensure stability, These several meictic processes including methylation and epistasis (Dovle ef al.,
2008; Leitch and Leitch, 2008) and loss of sequences of DNA (Raina ef al., 1994; Eilam et al., 2009)
subsequently ensure the production of balanced gametes. This is a critical step in polyploid
speciation (Rieseberg and Willis, 2007; Rezaei et al., 2010) and the basis for the functionality of
polyploid genomes (Carroll, 2000; Chen, 2007) and their colonization and success in new
environment (Scltis et al., 2003; Brochmann et al., 2004),

The population analyses of Solanum spp. in Nigeria including similar tropical environment
reveal a mix population of cytotypes viz.: dipleids (2n = 24) (Oyelana and Ugborogho, 1997,
Oyelana, 1997), triploids (2n = 36) (Bir and Neelam, 1984; Qkoli, 1988}, group of aneuploid
numbers (Omidiji, 1983; Govindarajan and Vijayakumar, 1986) and tetrapleids (Zn = 48)
{Ceschmedjiev, 1976; Oyelana, 2005) growing in close proximity and constantly exchanging genes.
This gives credence to a constantly expanding genome for members of this genus (Ugborogho and
Ovelana, 1999; Oyelana, 2005) and the ease by which polypleids are formed following
hybridization.

A number of polyploid hybrids including triploids (Gavrilenko et al., 1999), Colchicine induced
tetraploids (Oyelana and Ogunwenme, 20058), pentaploids (Oyelana and Ogunwenmao, 2009b) and
hexaploids (Oyelana et al., 2009) were successfully generated and were able to compete favourably
alongside the natural populations of dipleids and tetraploids. Hijmans et al. (2007) reported similar
mixed population of diploids, triploids tetraploids and pentaploids in Central and South America.
The genus Solanum is diversed morphologically and are mostly shrubs to small trees, annual and
rarely perennial (Omidiyi, 1983; Ghile, 1985). The different species express variation and rare
overlaps in growth habit and distribution (Lester and Seck, 2004) across the four ecological zones
in Nigeria in spite of similar and closely related genomes (Okeli, 1988; Oyelana, 2005). Some species
are habitat specific and inhabit the mountain zones, particularly the highlands of Mambilla,
Obudu Vogel peak and Jos Plateau across the Nigerian savanna and arid belt while others
are Lowland species (Heine, 1963; D'Arcy, 1979). The continuous morphological variations, near
similar genomes, overlaps in cytological features (Gbile, 1985; Edmonds, 1986; Knapp, 1991) and
emergence of new cytotypes (polyploids) could be attributed to the extensive hybridization and
breeding programmes involving a number of past intra and interspecific crosses (Marfil ef al., 20086;
Ovyelana and Ugborogho, 2008) aimed at improving species productivity and agronomic qualities,

The significance of meiosis in providing the platform for the synthesis of both morphological and
physiological features essential for species adaptation in new environment through a set of intrinsic
network of gene regulatory mechanism is the focus of this review. Consequently, the distribution
pattern of eight Selanum species involving ten taxa of different genomic constitution Table 1 1s
analysed to establish any correlation (s) between meiotic behaviour and the performance or
proeductivity of the different species across the four different ecological zones in Nigeria,

MEIOTIC BEHAVIOUR AND STRUCTURAL CHANGES IN THE SPECIES
CHROMOSOMES

The diploid and tetraploid chromosome numbers of 2n = 24, 48 (Onudiji, 1983; Okoli, 1988;
Oyelana and Ugborogho, 1997; Oyelana, 2005) revealed 12 and 24 bivalents, respectively for the
diploid and Tetraploid species However, the variants: n = 10, 13, 18 and 22 (Ceschmedjiev, 1976;
Labadie, 1976; Oyelana and Ugborogho, 1997) and 2n = 20, 22, 26 and 28 (Gill, 1975
Crompton and Bassett, 1976; Leslie, 1978; Bir et al, 1978, Oyelana, 2005) constitute the
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aneuploid cytotypes particularly among the diploid populations of Selanum. macrocarpon,
5. gilo, 5. aethiopicum, S. anguivi and the varieties of S. melongena. The few triplaids including
5. nigrum (Vasudevan, 1975) and hexaploid in S. erianthum (Crompton and Bassett, 1976;
Leslie, 1978) have been reported. Meiosis was normal with regular bivalents in S, erianthum,
5. torvum and the two sub species S. scabrum. Their somatic chromosomes length were found as
small-sized (1.29-1.88um), symmetrical and mostly metacentric to submetacentric. The
homomorphic pairs revealed 6 long and & short and all 24 short chromosomes, respectively for the
two dipleids (S, ertanthum and S. torvum) and the tetraploid (S, scabrum) (Oyelana, 2005),

The deviation from the basic chromosome number and the existence of aneuploid in
5. macrocarpon, S. gilo, S. anguivi, S. agthiopicum and S. melongena suggest extensive meiotic
irregularities. The unstable genomes and the high occurrence of diads and triads may have
generated the 2n gametes reported for some members of this group (Oyelana and Ugborogho, 1997;
Ovyelana, 200b6). Lagging and unequal anaphase chromosomes as commonly observed in
5. aethiopicum and the varieties of 5. melongena may have been responsible for the production of
diads and triads through faulty cytokinesis in these species.

Rezaei et al. (2010) attributed the production of polyads in wheat to this phenomenocn.
Lyrene et al. (2003) explained that the occurrence of unreduced gametes from faulty cytokinesis
may constitute a major mechanism for the emergence and wide spread of polyploids. Chromosome
breaks and shift in centromeric positions may have produced the large (2.33-2.52um) and
asymmetrically shaped chromosomes in S. melongena, S. macrocarpon, S. anguivi and S. gilo
{Oyelana, 2005). Genome arrangement involving relocation of chromosome segments equally gave
rise to asymmetrical chromosomes in Hepatica nobilis var. pubescens (Weiss-Schneeweiss et al.,
2007).

Evidently, the pachytene chromosomes revealed inversion loops in S. aethiopicum,
5. melongena ‘Melongenda’, S. anguivi and S. macrocarpon. A few x-shaped chromosomes in
5. aethioptcum and S. melongena ‘Golden’ suggests possible chromosome inversion and segment,
duplication in these diploid species as mentioned by Ovelana and Ugborogho (1897). Consequently,
the emergence of subtelocentric chromosomes in this second group of diploid species (Oyelana, 2005)
appears a recent development and suggesting that the metacentrie chromosomes are primitive
features in members of this genus as observed in the first and third groups of species.

This feature (Karyotype) has severally been used to assess phylogenetic relationships between
Angiosperm species (Pandit and Badu, 1993; Pringle and Murray, 1991). The presence of isolated
chromosomes may further explain the inclusion of foreign gene through past hybridization efforts
{Oyelana and Ughorogho, 1997) and the source of genomic instability in members of this second
group of diploids.

MEIOSIS, SPECIES REPRODUCTIVE SUCCESS AND VIGOUR

Excessive multivalents and chromosome clumps are known to generate illegitimate meiotic
recombination {Cai and Xu, 2007) thereby counteract genome expansion and produce unequal
cross-over (Wicker et @l., 2003; Ma ef al., 2004). These two major processes may have constituted
the major force ‘downplaying’ the potentials inherent in most dipleid Selanum species The hybrids
(2n = 24) from S. giloxS. aethiopicum (Ugborogho and Oyelana, 1999) had no fruits while the
hexaploid hybrid (8n = 72) of S. melongena ‘Golden’ (2n = 24)x5. scabrum sub species
seabrum (2n = 48) was morphoelogical similar to the male parent and without any special agronomic
feature of economic values (Oyelana et al., 2009). Also the inherent chromosome mutations
{Ugborogho and Oyelana, 1999) existing in the genomes of both or either parent species may have
downplayed the potential of an expanded genome in this hexaploid hybrid.
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The increasing number of polyploids in S. tuberosum was linked to the occurrence of 2n
gametes resulting from faulty asynapsis and desynapsis (Ramanna, 1983), abnormal spindle
orientation at the second division (Veilleux et al., 1982) and abnormal cytokinesis (Mck and
Peloquin, 1975). The presence of a modulating mechanism worked through these genomic changes
and significantly lowered pollen viability to 8 and 49.7%, respectively in the F, diploid hybrid and
its backeross from 5. gilox 5. aethiopicum compared to the 83.8 and 90% in both male and female
parents. The 71 and 97.4% pollen wviability in the male and female parents S. melongena
‘GoldenxS. seabrum sub species scabrum was reduced to 38.2% in the hexaploid hybrid and these
two hybrids produced intermediate values for most of the morphological features (Ugborogho and
Ovelana, 1999; Oyelana et al., 2009),

Meiotic abnormalities and consequent low meiotic indexes (few dividing cells) were equally
observed in Adesmia ciliate (Tedesco et al., 2002) and adduced for the low pollen fertility. Equally
the low percentage of pollen fertility in certain hybrids (Bione ef al., 2000) was attributed to meiotic
abnormalities.

Chromosome arm rearrangement was adduced for the reduction of fertility in hybrids invelving
interspecific crosses among certain taxa of the genus Draba (Skrede ef al., 2008). A possible large
dosage of recessive alleles from cross-over of genes and exchange of chromosome segments between
homologous pairs may have contributed to the reduction in fertility in this second group of diploids.
The high rate of multivalents and chromosome clumps in these diploid species equally help confirm
the extent of homogeneity of genomes in this group of species.

The low pollen fertility in two of the thirteen species of Leuecaena (Boff and Schifini-
Wittmann, 2002) was attributed to the degree of multivalent chromosomes and
chromosome stickiness. Jiang ef al. (2011) demonstrated that in Kpimedium acuminatum,
k. pubescens, E. chlorandrum, K. davidi and K. ecalcaratum with 11, 8.6, 31.6, 38.3 and 3.3%
meiotic abnormalities revealed a corresponding 82, 87, 80, 76.6 and 90% pollen fertility.

The occurrence of diads and triads has been linked to poor quality pollen in Solanum species
and the subsequent small sized fruits and low number of seeds in fruits (Oyelana and
Ogunwenmo, 2009a,b). Mendes-Bonato ef al. (2001) and Caetanc-Pereira and Pagliarini (2001)
linked the occurrence of sterile pollen to the formation of diads, triads and polyads and which often
manifests in reduction of the number of seeds in fruits (Stone et al., 1995),

The reduction in the sizes of most morphelogical features including number and dimension of
leaves in the tetraploid 5. scabrum shows an unexpected departure from the predicted additive
effects of genome doubling. An epigenetic modulating mechanism may have helped restored a
diploid-like behaviour and appearance in this tetraploid. Soltis ef al. (2007) observed a number of
natural autopolyploids which were typically morphologically similar to their diploid progenitors.
However, this natural autotetraploids (the two sub species of 5. scabrum) were resistant
to the larvae of Papilio polyxenes (Lepidoptera) and adults of Toxoptera graminum
(Homoptera) (Oyelana, 1997). This special feature offered them a competitive advantage over their
diploid relatives found growing in the rainforest where these insects were prevalent and according
to Felber (1991) and Schranz and Osborn (2004), higher tolerance of stress and diseases allow
polyploid plants to occupy new ecological niche and expand their geographical range.

MEIOSIS AND SPECIES GENOME UNDER DIFFERENT ENVIRONMENTAL
CONDITIONS

Meiotic behaviour and estimate of pollen fertility help assess species potentials
for reproductive success, genetic variability, biodiversity and survival in new environment
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{Boff and Schifini-Wittmann, 2002). The genomic instability in the second group of dipleid species
and their ability to be wide spread across the four eco-geographical zones of Nigeria over and above
the other diploid and Tetraploid species (with much stable genomes but somewhat restricted
distribution) may highlight the adaptability of genome in a new environment.

The whole process of meiosis is under some form of genetic and environmental control as
explained by Porch and Jahn (2001), Sun et al. (2004) and Bajpai and Singh (2006). The
temperature range of the typical savanna and semi arid zones may have impacted the processes
of meiosis and gametogenesis in this second group of diploid species and which led to the production
of the different aneuploid cytotypes. The unstable genome and irregular meiosis equally reflect in
high number of asymmetrical chromosomes in these species They are less fertile and the number
of hybrids produced from crosses involving these species was rarely fertile,

However, the first group of diploid species had smaller and symmetrically shaped chromosomes,
highly fertile and readily produce viable hybrids. Fuzinatto ef al. (2008) highlights the impact of
high temperature and reduction in microspore development and they linked this to low pollen
viability. According to Dafni and Firmag (2000) and Palma-Silva ef al. (2008), the quantity and
quality of pollen do not only ensure reproductive success but equally reflect the impact of
environment on the process of gametogenesis and the success of any breeding programme.

The preponderance of {(2n) gametes in the members belonging to the second group of diploids
was attributed to meiotic abnormalities and faulty cytokinesis (Oyelana and Ughborogho, 1997).
These two meiotic processes have been closely associated to the impact of the environment
{Brochmann et al., 2004; Parisod et al., 2010) and were equally confirmed to trigger the production
of (2n) gametes and subsequent development of polyploids.

The relative improvement in pollen viability, increase number of seeds and bigger fruits in the
backeross progeny from S. giloxS. aethiopicum (Ugborogho and Oyelana, 1999) and the vigorous
growth and bigger fruits in the pentaploid hybrid from the cross involving S. macrocarpon and its
colchicine induced mutant (Oyelana and Ogunwenmo, 2005) help confirm the presence of a
mechanism for genome repairs in these species This equally affirms that the inherent chromosomal
abnormalities in this group are transient (envircnmental) and not as a result of permanent
mutations.

IMPAIRED MEIOSIS, INCREASED ANEUPLOIDY AND HIGHER POLYPLOIDY

The members of the second group of dipleids have under gone intense breeding and
selection process for decades (Omidiji, 1983; Oyelana, 1997). They are majorly introduced plants
which later became domesticated as these species constitute both the fruit and leafy vegetables
among the different tribes in Nigeria and across the West Africa subregion (Ghile, 1985; Cyelana,
1997). The stress of adapting to new environment may have contributed to the observed genomic
changes in members of this group. The first group of diploid and the tetraploid are more of natural
species, less cultivated and grow in the wild. According to Parisod ef al. (2010), the rate of
autopolyploid formation increases with increasing environmental stress. Hence, the production of
unreduced gametes through which polyploids are frequently formed is stimulated by environmental
factors such as temperature, water and nutrient stress (Ramsey and Schemske, 1998).

The subsequent evolution of tetraploid genome in S. scabrum could be attributed to doubling
of chromosome number via faulty cytokinesis and fusion of 2n gametes following crosses involving
two distantly related diploid species Increased aneuploidy is equally an established phenomenon
of evolutionary significance in this group. The preponderant of aneuploid cytotypes in
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the second group of diploids may continue to generate other higher levels of ploidies (Mehra, 1976;
Aminuddin ef al., 1985; Oyelana, 2005) as described in some reports. This is may be a driven forece
in the evolution of higher ploidy in this group of species,

Ovyelana and Ogunwenmo (2005) successfully induced an autotetraploid mutant (2n = 48) from
a diploid genome (2n = 24) and other aneuploid intermediates using different concentrations of
colchicine. The regular bivalents and the small-sized chromosomes in the colchicine induced
autotetraploid may help confirm S. scabrun as natural autotetraploid. Biscutella laevigata (an
autotetraploid) showed successive downsizing of its genome (Konig and Mullner, 2005) while
Rivero-Guerre (2008) established a corresponding decrease in chromosome length for most
autopolyploids.

A number of triploids (Omidiji, 1983) and pentaploids (Sangowawa, 1986; Okoli, 1988) hybrids
have been reported for the genus and were claimed to have arisen through the production of 2n
gametes. Oyelana and Ogunwenmo (2009b) produced a pentaploid hybrid (2n = 60) by crossing
an aneuploid mutant with its natural relative (2n = 24). The hybrid was vigorous, stout and highly
fertile.

CONCLUSION

The haploid number viz: 10, 13 and 18 confirmed the preponderance of the aneuploid series
with 2n = 20, 22, 26 and 28 and the tetraploid 5. scabrum (2n = 24) as earlier reported. The
seemingly low meiotic index in the colchicine induced mutants and the high meiotic
irregularities helped trace the source of low pollen fertility in 5. melongena, S. macrocarpon,
S. angutvt and S, aethiopicum and the reason for poor hybrids from crosses invelving
members of this group. However, the viable and wvigorous hexaploid hybrid (2n = 72) from
5. melongenax5. scabrum supports the evidence of the presence of genomic repair mechanism
operating to restore normal meiosis and cytokinesis in some member species and subsequently the
possibility for an expanded genome through successful hybridization. The diploid species with
unstable genomes were broad-based (cosmopolitan) in distribution across the four ecological zones
in Nigeria, the tetraploid S. scabrum was restricted to the rainforest zone while S, ertanthum was
predominant in the savanna and arid ecological zones.
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