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Abstract
Background and Objective: High precision phenotype data improve efficiency during selections within breeding populations. The
objectives of this study were to evaluate precision of plant phenotyping methods within a  tomato breeding population assembled at
the University of Agriculture, Abeokuta, Nigeria. The precision of three phenotyping methods namely field evaluation of morphological
characteristics (FM), laboratory digital imaging analysis of fruits (FDI) and seeds (SDI) were tested on 10 tomato accessions within the
breeding population. Materials and methods: The FM phenotyping involved a randomized complete block  design  field  experiment
with  three  replications  to  get  data  on  shoot  length,  branch  number,  leaf number, node number, flower number and fruit number.
The FDI phenotyping was carried out on randomly selected fruits from each of the replicates with the aid of  Veho™  software to obtain
digital data on fruit length, fruit  width,  fruit  radius,  fruit  circumference  and  fruit  surface  area.  The SDI phenotyping was done on three
replicates of seeds of each tomato accession, scanned with the Winseedle™ equipment which estimates seed length, curve length, seed
width, curve width, curvature, volume circle, surface area and width-length  ratio.  Principal  Component   Analysis   (PCA)   was  done on
the data sets. Results: In PCA 2, cumulative eigen values were 68.02% for FM descriptors, 96.17%  for  FDI  descriptors   and   84.45%   for
SDI descriptors,  indicating  that  digital  imaging  data  of  fruit  descriptors  would  best distinguish this tomato breeding population.
Among the FDI descriptors, fruit width and associated traits like fruit surface area, radius and  circumference  had  the  highest  eigen
vector loading of the PCA (0.43) and so was adjudged the best distinguishing trait. Conclusion: It was concluded that digitalized
phenotyping offer more precision than manual phenotyping of the tomato breeding population. Laboratory digitalized fruit descriptors
constitute the most precise phenotyping dataset and thus recommended for rapid discrimination and parental selections within the
population.
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INTRODUCTION

Tomatoes are fruit vegetables being consumed globally,
so breeding  projects are undertaken globally to improve
them primarily against local productivity challenges and
secondarily for market quality. By FAO statistics, approximately
223     million    t    of   tomatoes   are   produced   annually   on
6 million h globally1. In Africa, wide variations exist in
germplasm  collections  including  cultivated  and  wild
genotypes constituting potential sources of genes for
developing new varieties2. Modern breeding methods make
it possible to precisely identify genes and gene functions
through Genomics Assisted Breeding (GAB) methods. For
tomatoes, GAB had been used to map and select for various
genes associated with agronomic traits and diseases
resistance3,4. Thus, the success of modern breeding
programmes depends on precision of measurements of
phenotyped traits and their correlation with expression of
genes or Quantitative Trait Loci (QTLs).

Complementary to crop improvements using genomic
selection techniques are precision phenotype data sets5,6.
Traditionally, tomato breeders characterize germplasm
materials by growing the lines in nurseries and fields in
randomized experimental trials and manually collect data on
crop   agronomic   characteristics.   This   method   of
characterization is labor and time intensive and largely lacks
precision in distinguishing genotypes because of human
errors and biases. Hence, it is important to explore new
methods of phenotyping that can distinguish genotypes with
considerably improved precision in a timely fashion. Digital
imaging analysis had been explored as high precision
phenotyping tools for this purpose in many crops7-17. Precision
phenotyping is a term coined from precision agriculture,
which is commonly used to describe the use of digitalized
technologies for crop management purposes6. It basically
involves the use of software to capture digital data with
scalable technologies ranging from simple laboratory digital
image capturing platforms7-11,13 to aerial15,16 and real-time
satellite imaging platforms17. Recent advances in precision
phenotyping covers the use of these technologies to acquire
specific crop data on agronomic traits, crop nutrition and
water regime, soil fertility and pests and diseases status6.

This study was set up to explore the use of digital images
as a tool for phenotyping a tomato population in a breeding
programme for resistance to fusarium and bacterial wilt at
Federal University of Agriculture, Abeokuta under a DelPHE,
UK supported project18. The germplasm assembled includes
local landraces and improved genotypes from Asian Vegetable
Research    and    Development    Center    (AVRDC).   Molecular

genotyping of  the population was done using various markers
in the lifetime of the funding support19. Several crosses had
also been done and the breeding population is expanding. In
this  study it  compared  the  precision  of  two  laboratory
digital phenotyping tools with manual field phenotyping  for
identification of genotypes within this population. The specific
objectives of this study were to: (i) To explore simple digital
precision alternatives to manual phenotyping and (ii) To
identify best descriptor traits for digital precision phenotyping
in the tomato breeding population.

MATERIALS AND METHODS

The field experiments were carried out on the farm of
DelPHE-5 project site at Federal University of Agriculture
Abeokuta  (FUNAAB), Nigeria between June-November, 2014.
The laboratory part of the research comprising of digital
imaging analyses were done at the Department of Plant
Breeding and Seed Technology, FUNAAB. Ten promising
parental lines with varying levels of tomato wilt resistance
from previous crossing evaluations were selected for this
study,  including:  Delila, Danjos,   Tomachiva,  Tyre  type,
AVT09803,  Santana,  GH41,  GH28,  Gempride  and  NG/019
(Table 1).

Field morphological evaluation (FM phenotyping): The FM
phenotyping involved the agronomic characterization on each
genotype in the field experiment laid out in a Randomized
Complete Block Design (RCBD) with 3 replications. Each
genotype was planted in 1 m×1 m plots replicated in 3
blocks. Data was collected on the following plant
morphological parameters till flowering stage:  Shoot length,
branch number, leaf number, node number, flower number
and fruit number.

Fruit digital imaging analysis (FDI phenotyping): Tomato
fruits were harvested from each plot separately into a
polythene    bag    and    tagged.   Thirty   fruits   were   selected

Table 1: List of genotypes in the tomato wilt breeding population
Genotype FUNAAB codes Sources Plant type
Danjos FUN/DJ/12/0057 Nigeria Creeping
Delila FUN/DL/12/0010 Nigeria Erect
Tyre type FUN/TT/12/0019 Nigeria Creeping
Santana FUN/ST/12/0017 Nigeria Creeping
NG/OE/MAR/09/019 FUN/LYC/12/0005 Nigeria Creeping
Tomachiva FUN/TC/12/0045 Nigeria Creeping
GH41 FUN/GH/12/0041 Ghana Erect
GH28 FUN/GH/12/0028 Ghana Erect
Gempride FUN/GP/12/0013 Nigeria Creeping
AVTO9803 FUN/AV/12/0084 AVRDC Erect
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Fig. 1(a-b): (a) Screenshot of Winseedle™ tomato seed images and (b) Screenshot of Veho™ digital measurements of scanned
fruits of Tomachiva

randomly from each replicate, the fruits were rinsed with
water and wiped to get rid of dirt (soil) on the fruits. The fruits
were place on plain sheets of paper in room condition to blot
off excess moisture. A digital microscope attached to a
computer device, running a digital imaging software-Veho™,
UK was used to acquire fruit images and digital fruit
morphological data (Fig. 1). The microscope was calibrated to
1 cm×1 cm. A single fruit was sampled at a time on a white
background  field  and focused until high resolution image
was visible on the computer screen. The image of each fruit
was captured and stored in a folder in the computer system.
Data was acquired by clicking on the captured image to
transfer them to the measurement window of the software
where measurement icon menus were utilized to analyze the
fruit images. Trigonometric measurements were taken on
captured images of the fruits by drawing the menu icons of
the software which automatically generated the dimensions.
The data obtained were fruit length, fruit width, fruit radius,
fruit circumference, fruit surface area.

Seed digital imaging analysis (SDI phenotyping): Seeds from
the  harvested tomato fruits were extracted and allowed to
dry. The number of seeds per fruit was then scored and
recorded. Ten seeds each of three replicates were selected at
random and arranged on a plate placed on the scanner bed.
Seed images were acquired and analyzed by the Winseedle
Pro™, Canada, digital imaging software. The system comprised
of an EPSON™ scanner, transparent plates to place seeds on
scanner bed and an attached desktop computer device
running the software. Figure 1a shows a screenshot of
WinSeedle™ software running an analysis on tomato seeds.
The acquired images of seed was analysed automatically by
Winseedle™  set  to  generate  data  based  on  seed  type  and

background settings. Data generated on the tomato seeds
were average projected Pixel area (AvgPA), average seed
length (AvgSL), average curved length (AvgCL), average seed
width (AvgSW), average curved width (AvgCW), average
curvature, average volume circle (AvgVC), average  surface
area circle (AvgSAC) and  width to length ratio (Avg W/L). This
experiment was repeated twice.

Data analysis: All the data generated from the three
phenotype evaluations were subjected to a multivariate
analysis, Principal Component Analysis (PCA) using SAS20

procedure. The PCA was used to evaluate explained variability
within the population by each of the three methods. The
precision of the three methods to distinguish the genotypes
in  the population was based on the eigen values estimated
for  first  2  PCA  axes  of  each  characterization  method.  The
PCA also provided estimates of eigen vectors to identify best
descriptor traits that most distinguishes the genotypes for
each data set.

RESULTS AND DISCUSSION

The results showed differences in the eigen values and
the percentage cumulative variations explained in the PCA by
each method, which represents a quantification of precision
of each phenotyping method.

Precision differed among the various phenotyping
methods of the tomato population based on the eigen values
and  percentage  cumulative variations explained from the
PCA analyses of each data set (Table 2). Eigen values at PCA 1
and 2 were highest for FM phenotyping data set followed by
the SDI phenotyping and lastly FDI technique (Table 2)
indicating that FDI data  set  most  precisely  distinguished  the
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Table 2: Precision of each methods based on the eigen values and percentage cumulative of variability explained by the PCA
Field morphological parameters Fruit digital parameters Seed imaging parameters
--------------------------------------------------- ---------------------------------------------------- --------------------------------------------------

Parameters Eigen value Cumulative (%) Eigen value Cumulative (%) Eigen value Cumulative (%)
PCA 1 15.23 50.78 5.21 86.77 7.64 69.46
PCA 2 5.17 68.02 0.56 96.17 1.65 84.45

Table 3: Eigen vectors of each parameter in principal components 1 and 2 of field
morphological data after 4 weeks of transplanting

Traits PRIN 1 PRIN 2
SL 0.11 -0.19
NoL 0.23 -0.09
NoB 0.24 0.08
NoNOD 0.21 -0.79
NoFLW 0.20 0.01
NoFRT 0.23  0.11
SL: Shoot length, NoL: No. of leaves, NoBr: No. of branches, NoNOD: No. of nodes,
NoFLW: No. of flowers, NoFRT: No. of fruits

tomato population and the manual field evaluation data sets
had minimal precision. All the FM descriptor traits accounted
for  50.8  and  68% of  the  variations  in  the  population  in
PCA 1 and PCA 2, respectively. The FDI descriptor traits
explained 86.8% cumulative variations in the population at
PCA 1 and 96% at PCA 2, while SDI descriptors explained
69.5%  of  variation  within  the  population  in  PCA  1  and
84.45% in the PCA 2, respectively. Thus digitalized descriptors
of  fruits explained the highest variation within the population.
Low precision of FM data suggests that selections based on
field morphological data alone will have little distinguishable
capacities resulting in reduced breeding efficiency. For
example, lower precision of datasets from traditional field
evaluation than digital image data sets means that in plant
breeding situations where genes have to be built up for
disease resistance, breeding cycles get extended necessitating
high precision breeding tools21. Moreover, lower precision of
field evaluation dataset underscores the need for greater
precision phenotype data for the tomato population in
agreement  with  the  assertions  of  Poland  and  Nelson12  and
Xie et al.15. Several researchers had reported the use of various
digital phenotyping as high precision tools for many crop
breeding applications including genotype clustering11,13,
variety identification14, big data phenotyping for genomic
prediction models6,16,17. All these studies demonstrated that
image analyses provided more precise phenotype data sets
than manually acquired measurements or assessor’s rating
data sets.

The PCA summarizes multivariate data into several
principal components and identifies which traits best
separates the genotypes22. From this study, estimates of eigen
vectors  from the PCA of the tomato population quantifies the
contributions of each  trait  to  the  variation  explained  by  the

Table 4: Eigen vectors of  each  parameter  in  principal  components 1 and  2  of
fruit digital images data

Traits PRIN 1 PRIN 2
FRTL 0.41 -0.31
FRTW 0.43 -0.16
FRTRAD 0.43 -0.13
FRTCIR 0.43 -0.01
FRTSA 0.43 -0.06
FRTL:  Fruit   length,   FRTW:   Fruit  width,  FRTRAD:  Fruit  radius,  FRTCIR:  Fruit
circumference, FRTSA: Fruit surface area

Table 5: Eigen  vectors of each parameter in principal components 1 and 2 of
seed digital images parameters

Traits PRIN 1 PRIN 2
PA 0.35 0.13
SL -0.34 0.23
CL 0.34 0.13
SW 0.36 -0.02
CW 0.33 -0.25
CUR -0.03 0.66
VC 0.36 -0.06
SAC 0.35 -0.04
W/L 0.13 -0.62
PA: Pixel area, SL: Seed length, CL: Curve length, SW: Seed width, CW: Curve
width, CUR: Curvature, VC: Volume circle, SAC: Surface area circle, W/L: Width to
length ratio

phenotyping methods (Table 3-5) and thus helped to identify
most suitable traits that precisely discriminates genotype
entries of the breeding population. In accordance with Raji23,
phenotype traits with lower eigen vector values below the
thresholds of  0.3 at  PCA  1  were  adjudged  poor  descriptors
of  variations  in  a  given breeding population, which was the
case with all the  FM  traits  at  PCA 1  from this study (Table 3).
However, all the FDI  traits  had  eigen  vectors  above  0.4  at
PCA 1  (Table  4)  and  in  Table  5,  most  of  the  SDI  traits had
eigen vector around 0.36. The results suggested that both
digital  data  of  fruit  and  seed  morphological  traits  better
distinguished   the  population than  field  evaluation23. Of   the
two  digital  image  data sets, the  digital  fruit  data  set  had
slightly  higher   precision   than digital  seed  data set  in
distinguishing this population.

The step of identification of efficient descriptors is
essential for application of digital imaging to discriminating
lines within breeding populations8. From this study, the most
efficient laboratory digital descriptors for distinguishing the
tomato population were those associated with fruit width
including  digital  fruit  width,  radius,  circumference  and
surface area (Table  4). Information on  efficient  descriptors  is
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important for phenotyping crops for breeding because of
differences in morphology of crops. In corn, digital seed length
had the highest eigen vectors for sorting and identifying
inbred lines as reported by Daniel et al.14, whereas digital fruit
descriptors showed better precision than digital seed
descriptors from the PCA of the tomato breeding population
experimented in this study. The results of this study suggested
that identification  of  efficient  descriptors  for phenotyping
breeding    populations    of    different    crops    should   be
determined    by    experimentation.  On   this   study,   It
recommended  digital  fruit  width  data  as  best  descriptors
for this tomato breeding population.

CONCLUSION

This study was to evaluate efficiency of various
techniques to discriminate genotypes for rapid identification
within the tomato breeding population. The results showed
that  digital  imaging  offered  phenotype  datasets that
distinguished the population more precisely than manual
evaluation and consequently have potentials to improve
breeding efficiency and genetic gains. The three methods
used to distinguish the germplasm assembled for breeding
fusarium wilt tolerant tomato lines were tested in three
experiments namely the field morphological evaluation,
digital  imaging  of  fruits  and  seeds.  This  study  has
demonstrated the potential benefits of digitalized
phenotyping  to  increase  precision  in  distinguishing
genotypes within breeding populations. Based on PCA
analysis, the digital fruit descriptor dataset showed the most
genotype distinguishing efficiency and thus adjudged the
recommended method for precision phenotyping of the
tomato breeding population.

SIGNIFICANCE STATEMENT

Manual field phenotyping of crops is characterized by
drudgery, largely lacks precision of measurement of
phenotypic traits and prone human errors and biases.
However, high precision and high throughput tools are
needed to scale up modern plant breeding for increased crop
productivity and global food security. While considerable
scientific advances had been made in genotyping precision
with molecular tools available to breeders nowadays, it
becomes  necessary  to  advance  the  precision  of  plant
phenotyping. This study presents a comparison of plant
phenotype data collected by manual measurements in the
field with measurements collected by digital imaging. The
precisions    of   the   datasets   were   then   evaluated   by   the

Principal Component Analysis. The analysis showed higher
precision of the digitalized phenotype data set than the
manual field measurements. The distinguishing digital traits
were identified from the analysis.
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