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Abstract: This study aimed at quantifying the spatial variability of SOC and
estimating SOC concentration in oil palm. This study was carried out in a
commercial o1l palm plantation bearing 27 year old palms. A systematic design was
employed for soil sampling at the 0-20 cm depth based on a cluster of 4 palms that
mcluded three operational areas Weeded Circle (WC), Frond Heap (FH) and
Harvesting Path (HP). A total of 60 sampling clusters were established. SOC was
analyzed using dry combustion method. All measurement points were geo-
referenced by a differential Global Positioning System (dGPS). The SOC data were
first explored using descriptive statistics, normality check and outlier detection.
Thus followed by variography and interpolation techmques to quantify the spatial
variability of SOC. Results showed that all three operational areas exhibited a
definable spatial structure and were described by either spherical or exponential
models. SOC from WC and HP showed moderate spatial dependence while that from
FH showed a strong spatial dependence. The FH had a shorter effective range than
other operational areas. Contour maps for WC, FH and HP clearly showed spatial
clustering of SOC values. All three operational areas fulfilled the interpolation
accuracy criteria. This study suggests that site-specific management could be
considered as a strategy to increase SOC sequestration in oil palm.

Key words: Soil organic carbon, spatial variability, oil palm, operational areas,
site-specific management, carbon sequestration

INTRODUCTION

The release and sequestration of carbon (C) has received much attention due to its
potential impact on global warming. In terrestrial ecosystem, soil plays an essential role in
global carbon balance because the C stored in soil is estimated to be four times greater than
the total available in living vegetation and its ability to offset greenhouse gas emissions
through C sequestration (Lal, 2004). Soil C sequestration 1s one of the mitigative strategies
for mmimizing the effects of global warming. Therefore, sequestration of atmospheric
carbon in soil is the best long term option for C storage in terrestrial ecosystem
(Hutchinson et al., 2006; Follett, 2001; Follett et al., 2001).
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Soil Organic Carbon (3OC) is the main form of sequestered C in the soil and it is related
to the proportion of Net Primary Productivity (NPP) returned to the soil (Follett et al., 2001).
Processes leading to SOC sequestration include humification, aggregation and translocation
of C into the sub-soil. Hence, C sequestration in forest and cultivated soil are potentially
offsetting a large portion of CO, emitted to the atmosphere (Lal, 2005, Conant et al., 2003;
Lal, 2001). Like other soil properties, SOC levels exhibit variability and are known to be
mfluenced by many factors, mcluding clinate, vegetation, precipitation, soil physical
characteristics, land use changes, topography. These factors typically exhibited spatial
variability (Conant et al., 2003; Conant and Paustian, 2002).

In the past, many studies have been focused on the estimation and mapping of soil
carbon pools (Wilding ef af., 2001). Indeed, measuring spatial variability of SOC 1s crucial for
quantifying the distribution of SOC 1n order to refine agricultural management strategies that
promote sustainable land use. Additionally, spatial variability assessment provides a
valuable base against which subsequent and future measurements can be evaluated
(Liu et al., 2006). Moreover, it has a potential for faster and more efficient detection of
SOC differences, particularly in large areas of cultivated soil (Kravchenko ef al., 2006). To
study the spatial distribution patterns of SOC, classical and geo-spatial statistical
techniques have been widely employed (Jian-Bing et al., 2006; Zhang and McGrath, 2004,
MeGrath and Zhang, 2003; Chevallier et al., 2000). Geo-spatial statistics are based on the
theory of regionalized variable (Webster and Oliver, 2007). It provides advanced tools to
quantify the spatial features of soil parameters and to perform spatial interpolation
(Liu et al., 2006).

O1l palm, a primary perenmal plantation crop in Malaysia has a high potential for soil C
sequestration due to its large-scale planting and large biomass production. The total o1l palm
acreage in 2008 was 4.48 million hectares, an increase of 4.3% as compared to the previous
yvear (Mohd-Basri, 2009). Oil palm biomass consists of Empty Fruit Bunches (EFB), fiber,
shell, felled palm trurk, fronds and palm kemel. Shuit et al. (2009) stated that total o1l palm
biomass collected m 2005 was 55.73 million tonnes, where EFB, fiber, shell, trunk and frond
and palm kernel contributed to 17, 9.6, 5.9, 21.1 and 2.1 million tonnes, respectively. Below
ground oil palm biomass, mainly oil palm root biomass, contributed 20 to 40% of above
ground biomass (Henson and Chai, 1997). Thus, large-scale planting and large biomass
production of o1l palm plantation could contribute to soil C sequestration. However, the
amount of soil C sequestration in oil palm plantation is inadequately understood and
quantified. As such, the potential of soil C sequestration in oil palm has generated a keen
interest for SOC detection. Detection of SOC in oil palim requires precise measurement due
to changes in SOC caused by land management practices. Spatial variability assessment of
SOC in oil palm should be considered in order to quantify the spatial distribution of SOC as
influenced by management practices. Thus, in this study, we investigated the spatial
variability of SOC and estimated the total SOC m o1l palm cultivation.

MATERIALS AND METHODS

This study was conducted in a commercial o1l palm plantation located at Port Dickson,
Negeri Sembilan, Peninsular Malaysia. This trial was conducted between November 2007 and
Tanuary 2008. A site bearing palms that were 27 Years After Planting (YAP) was selected for
sampling. The study site is geographically located at 02°37” North and 101°49” East and
has a total planted area of 48 ha. The total sampling area was about 4.2 ha. The site
comprised highly-weathered Renggam Series soils (Typic Kandiudults), with a gently
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sloping to undulating topography (0-4% slope). The oil palm stand had a planting density
of 145 palm ha™, with palms spaced in a triangular pattern at a distance of 9.1x9.1x9.1 m. The
annual ranfall ranges between 1700 and 2100 mm.

A systematic design was employed for soil sampling at the 0-20 cm depth based on a
cluster of 4 palms (a, b, ¢ and d) that included three operational areas as shown n Fig. 1,
Weeded Circle (WC), Frond Heap (FH) and Harvesting Path (HP). A total of 60 sampling
clusters were established. Within each cluster, soil samples were obtained from three
operational areas using a core auger. Sampling points at the WC were 0.6 m apart from the
palm base (a), while sampling points at the FH and HP were both 4.0 m apart from palm base
(b and d).

Soil samples were air-dried, ground and sieved to pass through a 1 mm sieve. Soil
samples were analyzed for pH in 1:2 scil: water suspension, total Nitrogen (N) using the
Kjeldahl method (Bremmer and Mulvaney, 1982), available Phosphorus (P) using the Bray
1T method (Olsen and Sommers, 1982), exchangeable Potassium (K), Calcium (Ca) and
Magnesium (Mg) using 1N NH,0Ac followed by atomic absorption spectrometry and Cation
Exchange Capacity (CEC) using the leaching method (Thomas, 1982). A core sampler was
used for soil bulk density determination. Soil texture was determined by the pipet method
(Gee and Bauder, 1986). Soil samples were analyzed for total C by dry combustion method
(Nelson and Sommers, 1982) wing a LECO CR-412 carbon analyzer. Since, CaCQO,
contribution was minimal, the results were interpreted as SOC. All measurement points were
geo-referenced using a differential Global Positioning System (dGPS). The chemical and
physical characteristics of the soil used in this study are given in Table 1.

Frond heap Weeded circle

>/ \/ Harvesting path
Palm tree %
+4.0 m

+4.0 m

\/ +0.6 m
Fig. 1: Sampling distance within a cluster
Table 1: Soil characteristics
Parameters wcC FH HP
N (96) 0.15 0.14 0.00
P(ugg™® 12.37 2.17 traces
K (cmol(®) kg™) 0.21 0.17 0.08
Ca (crnol(t) kg™) 0.47 0.29 0.44
Mg (cmol() kg ) 0.14 0.09 0.08
CEC (emol(+) kg') 10.40 10.57 7.61
pH (water, 1:2) 3.82-4.38 3.994.47 4.03-4.37
Bulk density (g cm™3) 1.03 1.09 1.44
Texture Sandy clay Sandy clay Sandy clay
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The SOC data were first analyzed using Exploratory Data Analysis (EDA), which
included descriptive statistics, normality check and outlier detection (Balasundram et al.,
2008). Descriptive statistics and normality check were computed using statistic version 8.1
(Analytical Software). Normality check was performed using the Shapiro-Wilk Test while
outlier testing was performed using the Extreme Studentized Deviate (ESD) method, also
known as Grubb’® Test. Following the EDA, SOC data were spatially analyzed using
variography and terpolation techniques. Variography characterizes and models the
spatial variance of data using semivariogram. The semivariogram determines the increase
in variance between samples collected at increasing separation distances from one
another. The semivariogram was estimated using the following formulae (Tsaaks and
Srivastava, 1989):

(k)

v(hy = 0.50(0) Y[z -, T

where, h 1s the separation distance between location x; or X, % or z,, are the measured values
for the regionalized variable at location x, or %, and n(h) is the number of pairs at any
separation distance h.

The semivariogram is generally fitted with an authorized model, such as spherical,
exponential or Gaussian model (Webster and Oliver, 2007). These models provide mformation
about the spatial structure as well as the spatial attributes which are the input parameters for
interpolation. These models are typically described by three parameters, namely nugget, sill
and range. Nugget 1s defined as a measure of the amount of variance due to errors in
sampling, measurement and other unexplained sources of variance. Sill 13 the total vertical
scale of the variogram whereby the semivariance becomes constant when the distance
between sample locations increases. Range refers to the distance at which the samples
become spatially independent and uncorrelated with one another. This indicates that at
separation distances greater then the range, sampled pomts are no longer spatially
correlated. Tnterpolation is used to predict values in areas that have not been sampled and
is often carried out using kriging. Kriging uses the modeled variance to estimate the values
between samples (Balasundram ef af., 2008). Semivariogram and kriging operations were
computed using GS+version 7.0 (Gamma Design Software, Plainwell, MI). Pomt kriging
method was used to estimate SOC at unsampled location. Measured and kriged values were
mapped using Surfer Version 8.06 (Golden Software, Inc., Golden, Co). Spatial dependence
was defined using nugget to sill ratio (Cambardella et al., 1994), where:

Ratio Inference

Nugget:Sill<0.25 Strong spatial dependence
0.25<Nugget:8ill<0.75 Moderate spatial dependence
Nugget:Sill »0.75 Weak spatial dependence

Kriged values were cross-validated (Balasundram et al, 2006, 2008, Webster and
Oliver, 2007, Isaaks and Srivastava, 1989) using the following procedure:

+  Firstly, the interpolated Mean Error (ME) should be close to zero. The ME is calculated
as follows:

n

X[z (x)-2(x)]

1\f[E:l
nisg
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where, n is the number of sample points, z is the predicted value of the variable at point x;
and z(x;) is the measured value of the variable at point x;.

*  Secondly, the Mean Squared Error (MSE) should be less than the sample variance. The
MSE is given by:

MSE = %i[;(xi)f Z(X‘)T

i=l

¢ Thirdly, the ratio of the theoretical and calculated variance, called the Standardized
Mean Squared Error (SMSE), should be approximately close to one. The SMSE 1s given
by:

n

1 - 2
ﬁg[z(x‘) —z(x‘)J

02

SMSE =

where, 0 is the theoretical variance.

Cross-validation enables comparison between estimated and actual (measured) values
using information available in the sample data set. This would allow the selection of the best
model. This comparison can be used to compare methods of estimation and to justify the use
of kriging as an estimation method (Webster and Oliver, 2007). The ME should be close to
zero because kriging is unbiased. Tt also indicates that overestimation and underestimation
within the data set are in balance. MSE, which included the mean or bias and the spread of
the error distribution, should be less than the sample variances. MSE gives a better
indication when comparing different estimation methods. SMSE enables comparison between
the magnitudes of actual and predicted error and gives an idea about adequacy of the model
and its parameters (Webster and Oliver, 2007; Wackernagel, 2003; Goovaerts, 2001). Cross
validation facilitates reexamimation and reformulation of the models to better conform to the

data at hand.
RESULTS AND DISCUSSION

Variation Among Operational Areas

SOC data from three operational areas were examined using Analysis of Variance
(ANOVA). Mean and standard error values are shown in Fig. 2. The results demonstrated
heterogeneity of SOC among operational areas. This indicates that land management
practices had a sigmificant effect on SOC distribution. Higher SOC content (%) was found
in the WC as compared to other operational areas, indicating the essential role of oil palm
roots in soil C sequestration. Tt has been reported that root growth and turnover results in
mcreasing SOC (Rasse ef al, 2005). Kumar ef al (2006) stated that large amounts of C
contributed by root lysis and root exudates were deposited in sub-surface soil. In
comparison to surface soil, these deposits have potential for a greater contribution to long-
term soil C sequestration as a result of slow oxidation. Meanwhile, the FH registered a
moderate amount of SOC while the HP had the lowest SOC. For the FH area, SOC levels are
affected by frond heap accumulation. The lower SOC, in comparison to WC, might be due
to lesser stacking of fronds. Tn addition, the palms at this area were almost at the end of their
life cycle and fiuit production was relatively low. The lowest SOC levels in the HP area could
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HH
o

Hi

SOC (%)

Weeded circle (WC)  Frond heap (FH) Harvesting path (HP)

Operational arcas

Fig. 2: Soil orgamc C content (%0) at the three operational areas (WC, FH and HP) at 0-20 cm

depth
Table 2: Descriptive statistics of 8OC (%) at three operational areas
Operational areas” n! Mean Median CV (%) Skewness?  Kurtosis?  Normality?
WC 59 2.90 2.79 20,57 0.491 -0.188 0.974=
FH 60 2.30 2.25 21.83 0.470 -0.316 0.976%
HP 59 1.18 1.09 27.40 0.446 -0.077 0.972=

*WC: Weeded circle, FH: Frond heap, HP: Harvesting path. 'No. less than 60 indicate that non-spatial outliers were
removed from the data set. Non-spatial outliers were detected using the Extreme Studentized Deviate (ESD) method.
28ignificant if the absolute value of skewness or kurtosis is =2 times its standard error. The standard error of skewness
= (6/n)>® while the standard error of kurtosis = (24/n)**. *Estimated using the Shapiro-Wilk test. If the test stastistic W
is significant (p<0.05) thus the distribution is not normal. ns: Not significant (p=>0.05)

be attributed to lugh bulk density, as compared to the other operational areas (Lal and
Kimble, 2001). SOC data from these operational areas should be analyzed separately due to
different SOC levels.

Classical Statistics

Based on the Shapiro-Wilk statistic, data from all three operational areas were normally
distributed (Table 2). The coefficients of skewness and kurtosis describe the shape of the
sample distribution. The coefficient of skewness from all three operational areas was positive,
mndicating that the sample distribution had a long tail of high values to the night
(median<mean). The coefficient of kurtosis from all three operational areas was negative,
indicating that the sample distribution was relatively flat. The Coefficient of Variation (CV),
defined as the ratio of standard deviation to the mean, from all three operational areas ranged
from 22 to 30%, mdicating low variability in the data set.

Spatial Structure and Attributes

Semivariograms of SOC from the three operational areas are given in Fig. 3. The
semivariograms of SOC from WC, FH and HP were constructed based on an active lag of
188 m and lag class mterval of 18, 16.5 and 19 m, respectively.

All operational areas extibited a definable spatial structure for SOC. The SOC data from
WC and HP were described by a spherical model, while that of FH was described by an
exponential model (Fig. 3a-c). The spatial dependence of SOC from WC and HP were
moderate with the nugget to sill ratio of 0.5 and 0.4, respectively. However, SOC from FH
exhibited strong spatial dependence with a nugget to sill ratio of 0.11. This mfers that the
explainable proportion of the total vaniation of WC, FH and HP were 50, 89 and 60%,
respectively, while the remaining variations can be attributed to random sources.
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Model Spherical; Spatial Dependence: Moderate
Nugget = 0.06; Sill = 0.15; Effective Range = 410.9 m

0.000 T T T T
0.00 47.00 94.00 141.00 188.00

Separation distance (m)

Fig. 3: Spatial structure and attributes of SOC for (a) WC, (b) FH and (c) HP

The SOC data from both the WC and HP had an Effective Range (ER) of 410.9 m whle
that from FH had a shorter ER of 157.2 m. Soil C content has been found to have stronger
spatial dependence with relatively large spatial correlation range as compared to other soil
properties (Kravchenko et al., 2006, Wang et al, 2002; Cambardella et al., 1994). At
separation distance greater than the ER, sampling pomts will not be subjected to spatial
correlation. This has great implication on sampling design. Sampling design should use
separation distances that are shorter than ER in order to understand the spatial pattern of a
given property. In addition, spacing between sampling points are recommended to be from
0.25 to 0.5 of the ER (Mulla and McBratney, 1999). Based on the ER value, sample spacing
in FH should be closer than WC and HP.

Spatial Variability

The distribution and pattern of both measured and kriged values of SOC from WC, FH
and HP are represented as contour maps (Fig. 4a-c). SOC level (%) for each operational area
was classified based on mean and Standard Deviation (SD) values. The classes generated
were as follows:

Class Interpretation
High Mean+25D
Somewhat high Mean+SD
Medium Mean
Somewhat low Mean-SD
Low Mean-28D
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Fig. 4: Spatial distribution of SOC for (a) WC, (b) FH and (¢) HP (based on measured and
kriged values)

The SOC from the WC was spatially clustered with 53% of the study area showing the
average value of 3.33 and 47% with values below the average. For FH, 46% of the study area
was clustered within the average value of 2.55, 47% with values below the average and 7%
with values above the average. For HP, 55% of the study area was clustered close to the
average value of 1.34%, while the remaimng area had values below the average. Contour
maps for WC, FH and HP demonstrated a sinilar trend, whereby higher SOC
concentrations were located at the north-east portion of the study area. This could be due
to topography of the study area, which was gently sloping to undulating with 0-4% slope.
Topography 1s one of the main factors driving spatial distribution and variability of soil C
(Kravchenko ef al., 2006). Lower SOC concentration might be located at gently sloping areas
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Table 3: Cross-validation statistics of kriged values for SOC (%%) at the operational areas

Operational areas® Sample variance ME! MSE? SMSE®
WC 0.7363 0.0214 0.5823 0.8045
FH 0.2511 0.0012 0.1837 0.7438
HP 0.1045 0.0003 0.0855 0.8315

#*WC: Weeded circle, FH: Frond heap, HP: Harvesting path. ‘Mean Error, 2Mean Squared Error, *Standardized Mean
Squared Error

while higher SOC concentration is typically located at almost flat areas. However, the spatial
distribution pattern of SOC was distinctly different among the three operational areas,
mferring high SOC variability. It appears that the oil palm frond influence the SOC
concentration and variability in o1l palm plantation. O1l palm frond accumulation over time will
increase SOC levels, as well as potentially decrease the spatial variability of SOC. The
amount of oil palm fronds accumulated in this area could have also affected the variability
of S0OC, as evidenced m the contour map. Higher SOC concentration might result from
accumulation of large amounts of oil palm frond as compared to other areas and vice versa.
Therefore, application of proper management practices in FH area is required in order to
increase SOC concentration and reduce its variability.

Cross-validation statistics showed that all operational areas fulfilled the mterpolation
accuracy criteria (Table 3). This mdicates that interpolation using kriging technique 1s an
appropriate method to estimate SOC in oil palm without having to perform field sampling and
laboratory analyses. Kriging is practical technique for SOC because SOC does not change
significantly over time (Conant and Paustian, 2002; Cambardella et al., 1994).

CONCLUSION

Spatial variability of SOC at the Weeded Circle (W), Frond Heap (FH) and Harvesting
Path (HP) in a 27 year old o1l palm stand was manifested mn this study. SOC variation was
observed among and within the operational areas. All three operational areas exhibited a
normal distribution with CV ranging from 22 to 30%. All operational areas also exhibited a
defmable spatial structure for SOC. SOC data from WC and HP were described by a spherical
model, while that of FH was described by an exponential model. The spatial dependence of
SOC from WC and HP were moderate while that from FH was strong. Additionally, FH had
a shorter ER in comparison to the other operational areas, indicating that sample spacing in
FH should be closer than those of WC and HP. Contour maps for WC, FH and HP, based on
the measured and kriged values, clearly showed spatial clustering of SOC values. The spatial
distribution pattern of SOC was distinctly different among the three operational areas,
inferring high SOC variability. All three operational areas fulfilled the interpolation accuracy
criteria. Results suggest that it 1s practical to detect SOC using spatial analysis. SOC does
not change significant overtime. Nevertheless, land management practices can change
significantly over time. Site-specific management should be considered as a strategy to
increase SOC sequestration in oil palm. Tt may be necessary to quantify the spatial variability
of SOC across different palm ages.
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