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ABSTRACT

Limited information is available about the use of intelligent system such as Artificial Neural
Networks (ANN) to determine the most affecting factors on variability of soil organic carbon
fractions (SOC) in the landscape scale. Therefore, this study was conducted to estimate SOC
fractions by topographic attributes, selected soil properties and Normalized Vegetation Index
(NDVI) data using ANN models. A total of 108 samples from surface soils (0-10 em depth) were
collected and various physical soil organic fractions were determined. The developed ANN models
could explain 78-91% of the total variability in SOC fractions in the site studied. Sensitivity
analysis using ANN models developed showed that NDVTI as indication of vegetation cover was the
most important factor for explaining variability of SOC fractions at the site. Furthermore, soil
properties such as clay, silt and caleium carbonate and some topographic attributes which indirectly
affect the total SOC content, also significantly influence the variabihty of SOC fractions. In overall,
the results showed that the ANN models provide rehable prediction of SOC fractions by considering
the NDVI, soil properties and terrain attributes.

Key words: Soil organic carbon, physical fractionation, artificial neural network, soil C fractions,
topographic attributes

INTRODUCTION

Soil Organie Carbon (SOC) plays a vital role in crop growth in natural ecosystems and at the
same time is influenced by land use, soil type, climate and vegetation (Loveland and Webb, 2003;
Onweremadu, 2008). It is also one of the important factors affecting soil quality, sustainability of
agriculture, soil aggregate stability and plant production (Freixo ef «l., 2002; Loveland and
Webb, 2003). Moreover, the intensity of global warming in the future i1s directly influenced by S0OC
cycle (Lal, 2004),

The SOC pool is strongly affected by land use changes and management strategies. SOC is
derived from surface input of plants as well as roots and associated turnover of mycorrhizal hyphae
(Lal, 2004; Lorenz et al., 2008)., Change in land use such as clear or partial cutting of forest
influences both quantity and quality of soil organic matter (SOM). It has frequently reported that
the soils in natural ecosystems had higher SOM content, aggregate stability and saturated
hydraulic conductivity as compared to their agricultural counterparts (Saviozzi et al, 2001;

Puget and Lal, 2005).



Int. J. Soil Sci., 7 (1): 1-14, 2012

Organo-mmneral interactions protect SOC against biological degradation. The mineralogy and
size distribution of the mineral fraction also affect SOC protection (Baldock and Skjemstad, 2000,
Schmidt and Kogel-Knabner, 2002). Generally, clay and silt contents are positively correlated with
SOM concentration and their amounts in the soil directly contribute to the accumulation of silt- and
clay-protected SOC fractions (Six ef al., 2002; Zinn ef al., 2005; Bouajila and Gallali, 2008),

Knowledge about the formation and stabilization of soil aggregates in natural and disturbed
ecosystems 1s necessary to address a variety of environmental concerns. These affairs are ranging
from the fate and transport of hazardous wastes to the potential C sink strength of terrestrial
ecosystem. The BOC and aggregates mutually protect each other. SOC 1s efficiently influenced the
soil aggregation (Six et al., 1999). On the other hand, SOC is physically protected and stabilized
between and within micro-aggregates (5ix ef al., 1999, 2000, 2002),

Evaluation of the total SOC pool provides little information concerning biochemical stability and
duration of C stored in soils (Puget et al., 2005; Lorenz ef al., 2008). Hence, the quantification of
SOC in different fractions provides valuable information on functionality of the SOC peol
{Bouajila and Gallali, 2008). Direct measurement. of soil organic pool in different fractions 1s time
consuming and laberious and costly affair (Yerokun et al., 2007). Therefore, the use of indirect
techniques such as Digital Terrain Modeling (DTM) and Remote Sensing (RS) 1s highly desirable
at the landscape scale.

Several soil scientists 1dentified topography as one of the pedogenic factors (Florinsky et al.,
2002) which significantly influences the spatial distribution of scil meisture, temperature and
organic matter (Florinsky ef al., 2004). Thus, quantitative information on the topographic
characteristics has been employed in the form of Digital Terrain Models (DTMs). Since, the
prediction soil properties using DTM describes the relationships between scil and topographic
attributes at a point in the landscape (Moore ef al., 1993; Bell ef al., 1994; Thompson et al., 1987).
Fuantitative topographic data is often used in sail studies including for the modeling and prediction
of soil properties. Because of a high spatial variability in soil properties within the landscape
{Huggett, 2003), the use of indirect prediction approaches as the alternative methods have been
widely used, for example, in DTM modeling to predict scil properties at a point in the landscape in
a cost effective way. Moreover, RS has been widely used to evaluate surface SOM at landscape
scale (Chen ef al., 2000),

Artificial Neural Network (ANN) is a mathematical tool which has been inspired by biclogical
neural networks and is a popular tool in the classification, prediction and recognition-based
problems. It has widely been employed for prediction and modeling in environmental and biological
concerns (Abdalla and Deris, 2005; Chayjan and Moazez, 2008; Fallah-Ghalhary et al., 2009;
Dastorani ef al., 2010).

To our knowledge, little attempt has been made to determine important environmental factors
at. the landscape scale that control SOC pool variability in primary particles and aggregate sizes
using ANN. Therefore, this study was conducted: (i) to predict SOC pools in primary particles and
aggregate sizes using soil, topographic and Normalized Difference Vegetation Index (NDVI) at the
landscape scale and (ii) to determine soil, topographic and NDVTI attributes that most explain the
variability of the different fractions of SOC in a semiarid region in western Iran.

MATERIALS AND METHODS
Site description: This study was conducted in hilly region of upland Lordegan watershed located
in western Iran (Fig. 1). The study area is located within 50°12 to 50°37 E longitude and 31°58
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Fig. 1: Location of the study area in western Iran

to 32°03 N latitude. The mean elevation of the area is approximately 1880 m a.s.]. The mean
annual temperature and precipitation at the site are 15°C and 600 mm, respectively.

The hill slopes of the study area have been developed by extensive dissection of sedimentary
Fuaternary deposits. The soils of the study area were predominantly classified as Fine loamy,
mixed, thermie, Typic Haploxerolls and Fine mixed, thermic, Typic Calcixerepts (Scil Survey
Staff, 20086).

In total, 108 samples were collected from different land uses and slope position to capture all
environmental variability in the studied area. Soil samples were collected from 0-10 em depth using
an auger; three sub-samples per 1 m? area were made in to one composite sample to reduce
micro-variability.

Laboratory analysis: To determine Particulate Organic Matter (POM), sub-samples of whole soil
(2 mm) were dispersed in distilled water with Particulate Organic Matter (POM) removal at
high-energy sonication (12500 J) for 13 min to complete aggregate breakdown and dispersion
{(KEdwards and Bremner, 1967). The dispersed sample was passed through a 0.053 mm sieve. The
material left on the sieve (>0.053 mm) was dried at 50°C in a ventilated oven and gently ground
to pass a 0.053 mm sieve for determining POM. The silt- and clay-sized organo-mineral particles
in suspension were separated considering the Stocks' law and using sedimentation and siphoning
method (Bronick and Lal, 2005) and the mineral-associated organic C was measured in the clay and
silt fractions which are hereby termed as organo-clay and organo-silt in this paper.
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To determine the SOC pool in aggregate size fractions at first aggregates were separated using
wet sieving method. A 100 g soil sample having intact aggregates which passed through a 4.75 mm
sieve was capillary-wetted to matric suction of 30 kPa. The scil water content at 30 kPa was
determined on a separate batch of aggregates using a pressure plate apparatus (Klute, 1986). The
aggregates were separated into three sizes (1.e. 4.75-2, 2-0.25 and 0.25-0.0563 mm) for chemical
analysis (Cambardella and Elliott, 1993). The aggregates were wet-sieved in water for 30 min with
vertical stroke of 1.3 em and speed of 30 strokes min~'. The measured SOC in the three mentioned
sizes are described hereby as macroaggregate-S0OC, mesoaggregate -SCC and macroaggregate-
S0C, respectively.

The SOC content was measured by the wet-oxidation method (Nelson and Sommers, 1982) in
different fractions. Percentages of clay and silt were measured using a hydrometer method
(Gee and Bauder, 1986) and the sand fraction was measured by sieving. Calcium carbonate
equivalent {CCE) was measured by the Bernard’s caleimetric method (Black ef al., 1965). Sail bulk
density was measured using the core method (Blake and Hartge, 1986).

Digital terrain analysis and NDVI calculation: The elevation data were used to create
3x3 m Ihgital Elevation Models (DEM) using ILWIS (ITC, 1997). Then, primary and secondary
topographical indices were generated from the DEM using ILWIS software and DIGEM software
(http:/lwww.geogr.uni-goettingen.de/pgfsagaldigem). Topographic indices included primary and
secondary indices. Primary indices were calculated directly from the DEM included elevation, slope,
aspect, specific catchment area, profile, plan and mean curvatures. Plan curvature (PLANC) 1s
curvature of the corresponding normal section which is tangential to a contour.

Vertical or profile curvature (PROFC) 1s curvature of corresponding normal section which is
tangential to a flow line. Mean curvature (MEANC) is the average of normal section curvature
{Wilson and Gallant, 2000). Secondary indices calculated from the combinations of the primary
indices included Wetness Index (WI) which is the ratio of specific catchment area to slope gradient.
and indicates the spatial distribution of zones of surface saturation and soil water content in
landscape. Wetness index was calculated using Eq. 1:

Wi—]n{As } (D

tan 3

To reflect the erosive power of the terrain, Stream Power Index (SPI) was calculated using the

Eq. &

STI = [ A, jm[ sin 3 J (2)
22.13) 1 0.08%

The remote sensing data were used to build the model in this study included the Landsat KTM
bands with spatial resolution of 30x30 m. The acquisition date of the image was 22 June 2010. The
subset image covering the study area was corrected geometrically using the landform map of Iran
1:25000 scale as the reference. All image processing was performed by using ILWIS software.

The NDVI was calculated as the reflectance ratio from near-infrared (NIR) and red channel (R)
of satellite or airborne sensors of Land sat satellite (ETM+) of 2002 as follows (Eq. 3):
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_NIR-R (3)
NIR +R

NDVI

Artificial neural network modeling: The most popular network used in engineering problems
for nonlinear mapping was probably multilayer perceptron (MLP) with Back-Propagation (BP)
learning rule (Haykin, 1994). A feed-forward back-propagating ANN structure was used to develop
SOC fractions. Supervised learning uses known outputs to train the ANN and is more commonly
used than unsupervised learning. Back propagation is a form of supervised learning where the
error rate was sent back through the network to alter the weights to improve prediction and
decrease the error (Kaul ef al., 2005). The standard algorithm was based on the delta learning rule
{Rumelhart and McClelland, 1986). For designing the ANN, MATLAB, software package was used.
The topographical attributes, NDVI and selected soil properties were used as the input data for the
three categories with SOC fractions as the target data in six output node (Table 1).

For designing the artificial neural network, the measured field data were used. The number of
available data collected for this study was 108, The data set was shuffled; 64 of them were used for
the learning process, 22 sets were used for testing and the remaining 22 sets were used for
verification, respectively. The data sets for learning, testing and verification processes were selected
randomly at different points on the landscape to avoid bias in estimation. In the modeling process,

standardized variables were used and calculated as follows:

v - FEmXem) w5405 4)
H (X

wax mm)

where, X, 1s standard value, X, is actual value, X .., 1s the arithmetic mean of total value, X_,, 1s

mean

the maximum value and X is the minimum value.

Table 1: Inputs and outputs categories of variables to establish the ANN models

Input variables

Soil data RS data Topographic data Output variables
Sand NDVI (Normalized STI (sediment transport index) POM (particulate organic matter)
difference vegetation index

Silt Slope SOC-clay (SOC associated with clay)
Clay PLANC (plan curvature) SOC-=ilt (SOC associated with silt)
BD PROFC (profile curvature) SOC-macro (SOC in macroaggregates)
Gravel WI (wetness index) SOC-meso (SOC in mesoaggregates)
CCE SPI (stream power index) SOC (SOC in microaggregates)
TOC MEANC (mean curvature)

SCA (specific catchment. are)

Elevation

Aspect

RSP (relative stream power)
Shdrelief (shaded relief)
BD: Bulk density; CCE: Calcium carbonate equivalent; TOC: Total organic carbon
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The training process was performed using the BP in two steps, forward pass and backward pass
{Levenberg- Marquardt traiming rule). In the forward step, an output pattern was presented to the
network and its effect propagated through the network layer by layer. Then, the final computed
output of the network was compared with the target output. In this step, a performance function
{i.e. mean square error, MSE) was calculated and then second step of the BF algorithm was started
by back propagation of the netwark error to the previcus layer using the gradient-descent
technique, the weights were adjusted to reduce the network error. This process was continued until
the allowable network error was obtained. In many problems, a second hidden layer does not
produce a large improvement in performance and varying the number of hidden neurons in the
hidden layer is sufficient (El-Din and Smith, 2002). The number of hidden layers, the number of
neurons in hidden layer and the number of iteration (Epoch) were selected by calibration through
several test runs and trial and error. The best function for network was tansigmoid. Based on the
R? value of regression between the measured and predicted cutputs, the number of neuron in
hidden layer, iteration and finally, the best model was selected.

The Root Mean Square Error (RMSE), Mean Estimation Errer (MEE) and coefficient of
determination (R?) between the measured and the estimated values were used to evaluate the

performance of models. The RMSE and MEE (Degroot, 1988) are as denoted below:

2

RMSE = J%z; [S(xi) - M(xi)] (5)

MEE = %z%[s(m) - M(xi)] (6)

where, 5{(x1) denctes the predicted value, M(x1) is measured value and n is the total number of
observations. The R? alsc shows the degree to which two variables are linearly related to.

In order to i1dentify the most important factors explaining the variability of SOC fractions,
sensitivity analysis was done using the StatSoft method (StatSoft, 2004). A sensitivity ratio was
calculated by dividing the total network error when the variable was treated as non variable by the
total network error when the actual values of the variables were used. A ratio >1.0imphed that the
variable made an important contribution to the variability in the property; and the variable with
higher ratio was more important (StatSoft, 2004),

RESULTS AND DISCUSSION

Descriptive statistics: The descriptive statistics of the SOC fractions in surface soil samples
{0-10 em depth) for the studied area are given in Table 2. All selected variables followed normal
distribution according to the Kolmogrov-Smirnov test. This was also confirmed by the values of
skewness (Table 2) which varied from -1 to +1. The Ceefficient of Variation (CV), as an index of
variation of heterogeneity, was used. Among the SOC fractions, the highest CV was ascribed to
POM {117%) and the lowest to SOC-clay (38.88%) (Table 2). Overall, almost all SOC fractions
showed high variation in the studied region. It is likely that high variability in the SOC fractions,
attributed to diversity of land uses in the studied area with different organic matter input varying
in both quantity and quality, as well as to landscape position. It seems that the variability
associated with SOC fractions depends on landscape position, causing differential movement of
water at different positions in the landscape which leads to soil redistribution in different parts of
the landscape Afshar et al. (2010).
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Table 2: Descriptive statistics of selected soil physical, chemical and magnetic properties of surface (0-30 cm) soil samiples at the study

site in western Iran (N = 108)

Descriptive statistics

Variable Unit Min Max Mean SD Skewness Kurtosis CV%

POM % 0.27 17.39 2.67 3.15 0.48 3.94 117.00
SOC (clay) % 0.48 3.26 1.44 0.56 0.99 1.20 38.88
SOC (silt) % 0.27 3.38 1.29 0.72 0.19 0.68 55.18
SOC (macro) % 0.20 3.03 1.12 0.52 0.98 1.09 46.42
SOC (meso) % 0.68 2.65 1.37 0.567 0.76 -0.56 41.60
SOC (micro) % 0.46 2.66 1.38 0.58 0.68 -0.48 42.02
CCH % 10.20 90.05 50.12 40.71 0.17 -1.90 81.23
Sand % 2.02 48.90 25.46 19.40 0.05 0.99 76.23
Clay % 32.01 88.20 50.10 35.45 -0.04 0.23 58.99
BD gem™? 0.92 1.57 1.25 0.15 -0.29 0.24 12.00
Gravel Yovol 7.70 35.00 2298 2.74 -0.39 0.07 11.92
TOC % 0.80 65.02 3.40 2.08 0.34 1.20 61.45

Min: Minimum; Max: Maximum; SD: Standard deviation; C.V: Coefficient of Variation; SOC: Soil organic carbon; POM: Particulate organic
matter; BD): Bulk densgity; CCE: Caleium carbonate equivalent; TOC: Total organic carbon

Table 3: Summary of the best structure and optimum parameters for the ANN models used for predicting selected soil properties at the
site studied

Components ANN structire Transfer function Iteration No. of hidden layer No. of hidden nodes
POM 20-42-1 Tang-sigmaid 8000 1 56
SOC (clay) 20-42-1 Tang-sigmoid 9000 1 45
SOC (=ilt) 20-42-1 Tang-sigmaid 10000 1 46
SOC (macro) 20-42-1 Tang-sigmoid 11000 1 51
SOC (meso) 20-42-1 Tang-sigmaid 9000 1 58
SOC (micro) 20-42-1 Tang-sigmoid 8000 1 48

SOC: Soil organic carbon; POM: Particulate organic matter

ANN modeling: For predicting SQOC fractions in the selected hilly region, best structure of the
ANN for each parameter was ascertained (Table 3). Kach of the trained structures had 20 input
nodes in three categories of soil, RS and topographic properties and six output nodes including SOC
fractions (Table 3). The hidden-layer nodes were optimized 56, 45, 46, 51, 58 and 48 and the
optimum iteration learning rates based on trial and error at 8000, 9000, 10000, 11000, 9000 and
8000 for POM, SOC-clay, 5OC-silt, SOC-macro, SOC-meso, SOC- micro, respectively (Table 3).
The ANN model for POM resulted MEE,-0.012 and RMSE, 0.01, respectively. Also, the ANN
models for SOC-clay, SOC-silt resulted MEE, 0.005 and -0.07 and -0.11 and 0.09, respectively
{Table 4). The ANN models for SOC-macro, SOC-meso, SOC- micro resulted MEE, 0.05, -0.003 and
0.005 and EMSE, -0.12, 0.03 and 0.09, respectively. The ANN maodels developed for simulating SOC
fractions explained 88, 91, 84, 78, 79 and 81% of the variability in the POM, SOC-clay, SOC-silt,
S0C-macro, SOC-meso, S0OC- micro, respectively, at the site studied (Table 4). The normalized
predicted data versus normalized observed data for testing data set for different SOC fractions are
illustrated in Fig. 2. The positive significant (p<0.05) correlation coefficients (r) of 0.93, 0.95 and
0.92 between the cbserved and the predicted POM, SOC-clay and SOC-silt were established which

are presented in Fig. 2(a-c), receptively. Furthermore, the scatter plots of observed and predicted
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Table 4: Results of the sensitivity analysis (ratios) of the final ANN model used for predicting SOC fractions in the area studied

Soil organic carbon fractions

Inputs variables POM SOC (clay) SOC (silt) SOC (macro) SOC (meso) SOC (micro)
STI 211 2.04 2.23 2.89 2.09 2.45
Slope 3.09 3.44 3.71 3.21 2.99 2.98
PLANC 1.23 1.12 02.98 1.01 1.26 1.01
PROFC 212 1.99 2.56 2.09 2.28 2.98
SPI 2.09 2.80 2.22 211 3.23 2.34
WI 3.01 2.94 3.14 3.01 2.89 3.11
MEANC 1.44 1.99 1.78 1.55 1.77 1.80
SCA 0.90 0.89 0.78 0.18 0.13 1.01
Elevation 0.89 0.67 0.45 0.12 0.15 1.09
Aspect 0.98 0.33 0.98 1.02 0.78 0.88
RSP 0.78 0.93 0.88 1.09 0.90 1.08
Shdrelief 2.98 2.33 2.10 2.02 2.78 2.88
NDVI 4.02 3.99 4.10 4.45 4.20 4.01
Silt 1.90 1.80 2.50 1.56 1.56 1.45
Sand 0.80 0.57 0.54 0.60 0.74 0.80
Clay 2.89 2.94 1.97 3.10 2.84 1.94
CCE 1.11 1.15 1.78 298 2.81 1.05
BD 0.33 0.24 0.26 0.46 0.33 0.33
Gravel 0.88 0.98 0.87 0.78 0.57 0.89
TOC 3.20 3.33 3.00 3.43 3.01 3.11
R? 0.88 0.91 0.84 0.78 0.79 0.81
RMSE 0.01 0.11 0.09 -0.12 0.03 0.09
MEE -0.012 0.005 -0.07 0.05 -0.003 0.005

SCA: Specific catchment area; MEANC: Mean curvature; PLANC: Plan curvature; PROFC: profile curvature; SPI: Stream power index;
STI: Sediment transport index; WI: Wetness index; CCE: Calcium carbonate equivalent; SOM: Soil organic matter; RMSE: Root mean
square; RSP: Relative stream power; Shdrelif: Shaded relief; NDVI: Normalized difference vegetation index; BD: Bulk density; TOC: Total

organic carbon; MEE: Mean estimation errar; R?: Coefficient of determination

of SOC-macro, SOC-meso, SOC- micro are presented in Fig. 2d-f, respectively. As it is seen in
Fig. 2d the relationship between normalized observed data and testing data for SCC-macro was
significant as 0.01 probability level with a coefficient of determination 79%. Also, the significant
relationship resulted for SOC-meso and SOC-micro with coefficients of determrmnation 79 and 81%,
respectively (Fig. 2e-f).

Overall, the ANN models developed for predicting the SOC fractions in the present study by
incorporating of NDVI created by ETM-Landsat and terrain attributes, explained 78-91% of the
total variability in SOC fractions within the landscape. A part of the unexplained variability is
probably due to other factors that affect the variability of SOC and may also contributed to
unecertainty of remote sensing data especially due to accordance to unreal-time data. Moreover, as
reported by other researchers (Kaul et al., 2005; Salazar et al., 2010) it is important to compare
the results by the ANN models with those obtained by other statistical approaches. Hence the
learning rate, number of hidden layer Lal (2004), number of hidden nedes and the training
tolerance need to be determined accurately for developing meodels to predict SOC fractions.
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Fig. 2: Scatter plots displaying relationships between standardized measured and estimated value
of the SOC fractions from 0-10 em surface scil layer in the studied area using ANN
modeling. (a) POM, (b) SOC-clay; {¢) SOC=silt; {d) SOC-macro; (e) SOC-mese; (f) SOC-micro

However, the performance of the ANN models as compared with other approaches has greater
realistic chance in SOC fractions prediction, especially when complex non-linear relationships exist,
among various factors. In such cases, the correlation study may provide inaccurate and even
misleading results about the relationships (Liu et al., 2001),

The use of ANN meodeling with additional hill slopes with greater variability in terrain
attributes should help broaden the usefulness of the AININ-based SOC fractions prediction. In this
regards, combining of terrain attributes with remotely sensed data with higher spectral and ground
resolutions and real time remote sensing data could provide precise predictions.

ANN application has functional characteristics and provides many advantages over the other
modeling approaches such as linear regression models. The most important advantage of using the
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neural network approach 1s that the network trained to find the relationships and the lack of them
is assumed beforehand. Also, the other powerful attributes of ANN models include their flexibility
and adaptively which play important role in material modeling (Liau ef af., 2001; Kaul et af., 2005).
It appears that the ANN approach may be sufficiently valid in predicting the SOC fractions using
soil, RS and topographic attributes in the area studied. A reascon for these findings can be
attributed to the nonlinear relationship between soil and topographic attributes and the SOC
fractions and the ANN technique can estimate these relations using nonlinear funections.

Determination of important factors explaining variability in SOC fractions: The relative
importance of terrain attributes, remote sensing data and scil properties using sensitivity analysis
based upon coefficients of sensitivity of the selected ANN model for estimating the SOC fraction,
is presented in Table 4. The variables with high values made important contribution to the
variability in SOC fractions.

The NDVI was identified as the most and first factor among the 20 input variables for
explaining the variability in all SOC fractions in the study area. The NDVI, a remote sensing
index, indicates the green cover on the land surface and displays a well documented relationship
with crop and vegetation productivity and land use effect on SOC pools (Li et al., 2001;
Pettorelli et al., 2005). Podeh ef al. (2009) in a study in the Mazandaran forest computed the NDVI
as major index to explore the spatial and temporal dynamics of land use cover. Land use can affect,
the distribution of SOC in different fractions due to total soil organic carbon, microbial activity,
animal and root activities and presence of fungal hyphae (Kay, 1988; Lal, 2004; Lorenz et al.,
2008). The abovementioned variables were significantly different among natural Quercus forest,
disturbed forest and cultivated scils in the study area. In forest soils, probably the presence of
polysaccharides and monosaccharides led to the formation of macroaggregates with higher SOC
pool (Larre-Larrouy et al., 2004),

Among the soil properties, TOC was identified as the most important factor influencing 50C
pools in different fractions with relative coefficient of sensitivity varying from 3.00 to 3.33 for
different. fractions (Table 4). Obviously higher TOC leads to higher SOC in different fractions.
Furthermore, clay and silt contents were identified important variables for 50C-clay and SOC-silt
fractions (Table 4). Clay and silt contents are generally positively correlated with SOM
concentration and their amount in soil directly contributed to the accumulation of silt- and clay-
protected S5OC (Gix et al., 2002). Clay content and calcium carbonate as the binding agents were
also 1dentified as the controlling factors for the variability in S8OC concentration in macro- and
mesoaggregates with relatively high coefficient of sensitivity. Clay content has a vital role in
aggregation and subsequently affecting physical protection of SOC in macroaggregates. A study
of Franzluebbers and Arshad (1996) on soil organic carbon pools affected by tillage practices in
Canada reported strong relationships between clay content and macroaggregate size under
different land uses. They indicated that soils containing 20-69% clay had higher POM compared
to the soils with lower clay content. Bulk density and gravel content had lower contribution in
explaining the variability in SOC fractions. Moreover, clay fraction of scil protects soil organic
carbon by lower porosity with lower oxidation rate of SOC and alse by surface adsorption of SOC
on the super-active surfaces of clays (Christensen, 1992; Balabane and Plante, 2004),

Among the topographic attributes, WI, ProfC, Slope, SPI, STI and Shaded were identified as

the most important factors that can be used in modeling of SOC fractions at the site studied

10



Int. J. Soil Sci., 7 (1): 1-14, 2012

{Table 4). All these factors, indirectly affected the vegetation density, microbial activity, total sal
organic carbon, clay content and CCE also affected SOC fractions. For example, shaded relief
indirectly influences TOC and SOC fractions. Carter ef al. (1998) showed that shading of forest was
one of the main factor in the degradation of SOC because of lower temperature and therefore,
accumulation of SOC, Boil properties are significantly influenced by topography in hilly regions.
Reicosky et al (2005) and Afshar et al. (2010) showed that silt and clay were eroded from the
convex slopes and transported to concave positions.

The results of sensitivity analysis also showed that the hydreological properties of landseape such
as profile curvature, stream power index, wetness index and plan curvature that are related to
moisture distribution over the landscape, are the most important factors that influence SOC
fractions. Also, some of terrain attributes such as slope and sediment transport index which are

related to erosion processes, influence the SOC content in the study area.

CONCLUSIONS

The designed AINN models were able to estabhsh the relationship between the terrain attributes,
soil properties and remote sensing data with SOC fractions content. The developed models were able
to explain a great deal of total variability of different SOC fractions in the studied site. Sensitivity
analysis results showed that NDVTI as indicator of vegetation coverage, TOC, CCE and clay content
were the most important factors explaining the SOC fractions. Among the terrain attributes such

as slope, STI and SPI that related to erosion were the most important factors that influence SQC.,
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