


   OPEN ACCESS International Journal of Soil Science

ISSN 1816-4978
DOI: 10.3923/ijss.2016.36.48

Research Article
Relationship Between Soil Characteristics and Fertility
Implications in Two Typical Dystrandept Soils of the Cameroon
Western Highland
1D. Tsozué, 2P. Tematio and 3,4P. Azinwi Tamfuh

1Department of Earth Sciences, Faculty of Sciences, University of Maroua, P.O. Box 814, Maroua, Cameroon
2Department of Earth Sciences, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang, Cameroon
3Department of Earth Sciences, Faculty of Sciences, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
4Department of Geology, Higher Teacher Training College, University of Bamenda, P.O. Box 39, Bambili, Cameroon

Abstract
The study was undertaken to evaluate the relationships and fertility implications between Organic Carbon (OC), total nitrogen (N),
exchangeable potassium (K) and available phosphorus (P) concentrations and sand, silt and clay contents in two dystrandept profiles in
the Western Highland of Cameroon. The study was done in the field and completed by a battery of laboratory analyses. The results showed
that the two weathering profiles developed on basalt and trachyte were 4 m thick. Among the different soil fractions, sand contents were
the lowest, while silt and clay contents were high. There was no significant correlation between sand and the others soil fractions. A
negative significant correlation between silt and clay fractions on contrary was noted. Total OC amounts were very high in the humiferous
horizon. There was no significant relationship between OC and clay fractions, indicating that these two soil colloids responsible for the
studied soil fertility acted independently. The presence of kaolinite as the unique clay mineral characterized by low surface area and Cation
Exchange Capacity (CEC) compared to organic matter, implies that OC was the main source of soil fertility. There was a significant positive
correlation between N and OC (r = 0.99, p<0.0001), N and sand fraction (r = 0.93, p<0.02) and between N and K (r = 0.98, p<0.04). Also,
there was a significant negative correlation between C:N and K+. Globally, amounts of K were below the critical levels. Available P exhibited
a significant positive correlation with OC (r = 0.87, p<0.05) and total N (r = 0.89, p<0.05). Relationships existed among soil physicochemical
properties, which positively or negatively interfered with nutrient availability.
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INTRODUCTION

Crop production on a large scale is necessary in order to
secure constant food supply for the sub-Saharan Africa
population (Smaling et al.,  1997; Greenland  and  Nabhan,
2001; Nweke and Nnabude, 2014; Tsozue et al.,  2015). Most of
this agricultural production, however is done in the rural areas
by the rural population, presently growing rapidly, resulting to
pressure on the available agricultural land (Verdoodt and van
Ranst, 2003; Blay et al., 2004; Nweke and Nnabude, 2014;
Tsozue et al., 2015). This has lead to a decrease in soil fertility
status as the lands are not allowed to recover their fertility
through natural fallows (Tematio et al., 2011; Nweke and
Nnabude, 2014; Tsozue et al.,  2015). The nutrient elements
classified as chemical properties required for good growth and
healthy conditions for the crops are mostly sourced from the
soil (Hodges, 2010; Nweke and Nnabude, 2014; Tsozue et al.,
2015). From the twenty elements regarded as plant nutrients,
carbon  (C),  nitrogen  (N), phosphorus (P) and potassium (K)
are  the  most  important  quantitatively  (Lavelle,  2007)  and
are  critical  to  the   establishment,   development,   growth
and  productivity  of  crops  (Nweke  and  Nnabude,  2014;
Tsozue et al., 2015). Malfunctioning of their cycles related to
human activities also poses the most serious problems
(Lavelle, 2007). Soil Organic Carbon (SOC) and N are the main
nutrients used for vegetation growth and are also used as
indexes of soil quality assessment and sustainable land use
management (Sui et al.,  2005; Jiang et al.,  2007; Liu et al.,
2011). The SOC and N do not only reflect the soil fertility level,
but  can  also  explain  the  regional  ecological  systemic
evolution (Ge et al.,  2013). The relationship between them can
be  represented  as  soil  C:N  ratio,  a  sensitive  indicator  of
soil  quality  and  for  assessing  C  and  N  nutrient cycling of
soils  (Zhang et al.,   2011).  The  C  cycle  is  strongly  modified
by   the   annual   leakage   to   the   atmosphere   from   6-8 Pg
(1 petagram = 1015 g) of C per year from burning fossil
hydrocarbons and the release of the C which are in plant
biomass and soil (Lavelle, 2007). The N cycle is affected by the
addition of 200 Tg (1 teragram = 1012 g) per year of available
N providing in the form of N fixed in agrosystems and
chemical  fertilizers;  this  contribution,   which   represents
twice  the  contributions  of  the  preindustrial  era  (estimated
at 90-130  Tg  yearG1)  is   only  partly  denitrified  and  available
N  accumulated  in  the  terrestrial  and  aquatic  ecosystems
(Lal, 2004;  Lavelle, 2007). Soil  is  one  of  the  most  important
C and N pools and including approximately 75% Organic
Carbon (OC) and 95% N (Schlesinger, 1997; Doetterl et al.,
2015). The maintenance of the SOC pool thus plays an

important role not only in advancing food security in
developing countries but also in relation to future net C
budgets, where even small changes in the size of the SOC pool
may alter the atmospheric CO2 concentration (Schlesinger and
Andrews, 2000; Bruun et al., 2015). Plants that are present,
which affects the ecosystem yield and the terrestrial C cycle,
affect interaction between SOC and N (Sakin, 2012). Numerical
models of C and N cycles include terms for the climate, the
atmosphere and land use alternation (Pepper et al., 2005;
Sakin, 2012). Available P brought mainly as fertilizers in
farmland  also  accumulates  in  the  biosphere  at  a  rate  of
10.5-15.5 Tg yearG1 compared to a 1-6 Tg of the preindustrial
era (Lavelle, 2007). Accumulated in soils, this P is gradually
transferred to the freshwaters and seas by erosion and
deposition  of  atmospheric  dust  (Lavelle,  2007).  According
to  Haby et al.  (1990)   from  all  alkali  metals  found  in  soils
(K, Ca, Mg and Na), the  most  important  in  plant nutrition is
K and it is occasionally found in plants in higher percentages
than N. Most of agricultural plants, under optimal yield
conditions, would  take  up  between 100  and 300 kg of K per
hectare from soils  (Jakovljevic et al.,  2003).  Soil  texture 
protected Soil Organic Matter (SOM) from being decomposed
by physical, chemical and biological mechanisms (Six et al., 
2002; Krull et al.,  2003; Sakin, 2012). It was suggested that
chemical stabilization of organic molecules were well
protected via mineral-organic matter bond from the
beginning (Sakin, 2012). The clay content affects SOC
accumulation in different ratios (Sakin, 2012). It was reported
that maximum and medium SOC increased with increasing
clay content in soil (Nichols, 1984; Bruke et al.,  1989; Sakin,
2012). However, it was expressed that this relationships was
not global and SOC was sometimes much more strongly
related to other factors in comparison to clay (Percival et al., 
2000; Krull et al.,  2003; Sakin, 2012). It was documented that,
if other factors were fixed, as clay content increased, SOC
accumulated faster (Jenkinson et al.,  1990).  Many  studies 
showed  that  soil texture affect soil aggregation (Chaney and
Swift, 1984; Schlecht-Pietsch et al.,  1994; Sakin, 2012). As the
clay content increases,  they  combine  with  SOC  aggregate 
stability (Sakin, 2012). It affects the increase in soil aggregation
and clay content and indirectly affects SOC stores by
absorbing organic materials in soil (Sakin, 2012; Udom et al., 
2015). Soil texture also plays direct and indirect roles in
chemical and physical protection mechanisms (Plante et al.,
2006; Sakin, 2012). The SOC is an index of sustainable land
management (Woomer et al.,  1994; Nandwa, 2001)  and  is 
critical in determining response to N and P fertilization. There
is however, no clear agreement on  the  level  of  SOC  below

37



Int. J. Soil Sci., 11 (2): 36-48, 2016

Fig. 1: Location of the studied site, modified after Tsozue et al.  (2011)

which response to N and P fertilization does not occur
(Bationo et al., 2007). Hence, this study was undertaken to
evaluate OC, N, K and P concentrations, sand, silt and clay
contents and the relationships between these soil parameters
in two dystrandept profiles of the Western Highland of
Cameroon in other to contribute to the restoration of soil
fertility and improvement in crop productivity.

MATERIALS AND METHODS

Study site and sampling: The study site is located in the
upper eastern part of Bambouto Mountains in the Western
Highlands of Cameroon, above 2000 m a.s.l (5E40'-5E43' N and
10E05'-10E07' E) (Fig. 1). The climate is fresh and humid, with
temperature  range  of  10-12EC  and   mean   annual   rainfall
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Fig. 2: Macroscopic    organization    of    weathering   profile
on basalt, 1: Vegetation, 2: Humiferous  black  horizon,
3: Dark  reddish  brown  horizon,  4:  Dark  red  horizon,
5: Reddish brown horizon, 6: Dark red horizon, 7: Bluish
gray  horizon,  8: Sample locations, 9: Rock fragments,
10: Lithorelictuels  nodules,  11:  Blocks  of  basalt  and
12: Depth (cm)

of  2507 mm.  Natural  vegetation  consists  of  Sporobolus
prairies typical of temperate  environments.  Most  interfluves

are rounded and have convex summits. The slopes are
convexo-concave. The valleys are narrow and deep. Steep
slopes (>20%) occupy more than 60%  of  the  area. The
bedrock consists  mainly  of  basalt  and trachyte of miocene
age (Tchoua, 1974). The studied soils were typical dystrandept
(Tematio et al., 2004), composed in addition to al-humus
complexes of allophane, ferrihydrite, gibbsite, kaolinite,
goethite,   halloysite   and   opale  (Tematio  et  al.,  2009;
Tsozue et al., 2009). Two soil profiles were dug in middle
sequence position on two main rocks basalt and trachyte in
March, 2014, described in detail and sampled for laboratory
analyses.

Laboratory analyses: Soils were air dried and passed through
a 2 mm sieve before laboratory analysis. For soil texture
analysis, SOM and mineral cements were removed with
hydrogen peroxide (30%) and diluted hydrochloric acid (10%),
respectively. Then, soil samples were dispersed with sodium
hexametaphosphate and particle size distribution was
analysed  by  the  Robinson’s  pipette  method.  Exchangeable
K  was  determined  using  atomic  absorption
spectrophotometry  in  a  solution  of  ammonium  acetate at
pH 7. Total N was obtained after heat treatment of each
sample in a mixture of concentrated sulfuric acid and salicylic
acid. The mineralization was accelerated by a catalyst
consisting of iron sulfate, selenium and K sulfate. The
mineralization was followed by distillation via conversion of N
into steam in the form of ammonia (NH3), after alkalinization
of mineralized extract with NaOH. The distillate was fixed in
boric acid (H3BO3) and then titrated with sulfuric acid or
diluted hydrochloric acid (0.01 N). The OC was determined by
the Walkley-Black method (Walkley  and  Black,  1934). 
Available  P  was  determined by Bray-2 method (Bray and
Kurtz, 1945).

Statistical analysis: The data collected were analyzed using
descriptive statistics with the help of XLSTAT version
2008.6.03. Pearson correlation analysis was used to determine
the relationship between soil parameters.

RESULTS

Morphological organization of the studied soils: Two
weathering profiles developed on the two main rock types
were described in detail. On basalt, the profile was 4 m thick
and the following six horizons were noted from top to bottom
(Fig. 2):
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C A  humiferous   black   (7.5YR2.5/1)   horizon   (35  cm),
wet, highly porous, characterized by a loamy texture, fine
lumpy structure and the presence of  many  rootlets,  the
bulk density was 0.55 g cmG3, the pH was 4.7 and the
boundary was gradual and regular

C A dark reddish brown (5YR3/3) horizon (100 cm),
unctuous, characterized by very light and inconsistent
aggregates, which gave a sponge-like appearance to the
material and the presence of numerous cavities, rock
fragments, lithorelictual millimetre-sized nodules (<1%)
and rootlets, the bulk density was 0.61 g cmG3, the pH was
4.9 and the boundary was gradual and regular

C A dark red (2.5YR3/6) horizon (75 cm). It was wet and
dense, characterized by a clayey texture, a fine blunt
blocky structure, a high cohesion and the presence of
rock fragments, lithorelictual millimetre-sized nodules
(1%), numerous cavities and little rootlets, the bulk
density was 1.03 g cmG3, the pH was 5.1 and the boundary
was gradual and regular

C A reddish brown (5YR4/4) horizon (70 cm). It was very
wet, unctuous, with very poorly developed structure.
There were very light and inconsistent aggregates which
gave a sponge-like appearance to the material, numerous
cavities, rock fragments, lithorelitual millimetre-sized
nodules (1 %) and very few fine rootlets, the bulk density
was 0.89 g cmG3, the pH was 5.6 and the boundary was
gradual and regular

C A dark red (2.5YR3.5/6) horizon (85 cm), whose
characteristics were similar to those of the upper dark red
horizon. This horizon was limited at its base by a thin layer
(5 cm thick) of lithorelictuels nodules with various forms,
within which the basalt structure was recognizable,
presence   of  rock  fragments,  the   bulk   density   was
1.06 g cmG3, the pH was 5.2 and the boundary was
gradual and irregular

C A bluish gray horizon (more than 365 cm). It was massive,
characterized by a loamy clay texture, the presence of
rock fragments and blocks of basalt and the pH was 5.3.

On trachytic rocks, the profile was also 4 m thick. From top
to  bottom,  the following five horizons were distinguished
(Fig. 3):

C A humiferous black (7.5YR2.5/1) horizon (20 cm). Features
were similar to those observed in humiferous horizon on
basalt, the bulk density was 0.79 g cmG3, the pH was 5.1
and the boundary was gradual and regular

C A dark brown (7.5YR3.5/4) horizon (70 cm). It was wet,
unctuous,   characterized  by  very  fine  blocky  structure,

light and inconsistent aggregates, little rootlets and
numerous cavities, the bulk density was 0.74 g cmG3, the
pH was 5.2 and the boundary was gradual and regular

Fig. 3: Macroscopic organization of weathering profile on
trachyte:  1:  Vegetation,  2:  Humiferous  black  horizon,
3: Dark brown horizon, 4: Dark red horizon, 5: Yellowish
red    horizon,    6:    Weathered    polychrome    horizon,
7: Sample locations and 8: Depth (cm)
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C A dark red (2.5YR3/6) horizon (110 cm). It was wet and
dense, characterized by a clayey texture, a fine blocky
structure, a high cohesion, little rootlets and numerous
cavities with infillings, whose colour was similar to that of
the two upper horizon, the bulk density was 1.09 g cmG3,
the pH was 5.6 and the boundary was gradual and regular

C A yellowish red (5YR5/8) horizon (150 cm), wet and less
dense than the upper horizon. It was characterized by a
clayey texture, a very poorly developed fine blocky
structure, weak consistent and the presence of rare
rootlets,  the  bulk  density  was 0.94 g cmG3,  the  pH  was
5.3 and the boundary was gradual and regular

C A weathered polychrome (white, gray and pink colours)
(more than 350 cm) horizon with loamy texture and
massive  structure,  the  bulk  density  was 1.10 g cmG3,
the pH was 4.9

Particle size distribution: Among the different soil fractions,
sand content were  lowest  in  the  two  profiles.  They  ranged

globally from 1-13% and were  highly  variable  (CV>35%)
(Table 1 and 2, Fig. 4 and 5). Their contents varied little along
the profiles (Fig. 6 and 7). Silt and clay contents were the
highest,    ranging,   respectively   from   23-76%   and   from
12-74% on basalt, from  20-64%  and from 30-77% on trachyte
(Table 1 and 2, Fig. 4 and 5). They were moderately
(15%<CV<35%) to highly variable (CV>35%) (Table 1 and 2).
These two soil fractions evolved in opposite trends along the
profile,  with  a  zigzag highly pronounced for soil on basalt
(Fig. 6 and 7). There was no significant correlation between
sand and the other soil fractions. However, there was a
negative significant correlation between silt and clay fractions
in the soil profile (r = -0.99, p<0.0001) (Table 3 and 4).

Soil organic carbon, total nitrogen stocks and
carbon/nitrogen ratio: Total OC amounts were high in the
humiferous horizon (10% on trachyte and 15% on basalt)
(Table 1 and 2, Fig. 4 and 5). These amounts decreased
gradually    with   depth,   reaching   0.30   and   0.23%   in   the 

Table 1: Physicochemical characteristics of the soil developed on basalt
Depth (cm) Sand (%) Silt (%) Clay (%) K+ (cmol kgG1) OC (%) N (%) C:N Available P (ppm)
10-20 8.0 73.0 19.0 0.23 15.80 0.778 20.31 12.60
75-85 5.0 65.0 30.0 0.16 5.40 0.190 28.42 5.60
170-180 6.0 35.0 59.0 0.23 1.40 0.057 24.56 4.20
240-250 13.0 76.0 12.0 0.09 0.20 0.007 30.00 3.50
315-325 3.0 23.0 74.0 0.32 0.40 0.019 20.00 5.60
370-380 4.0 49.0 47.0 0.00 0.30 0.009 34.40 17.50
Minimum 3.0 23.0 12.0 0.00 0.20 0.007 20.00 3.50
Maximum 13.0 76.0 74.0 0.32 15.80 0.778 34.40 17.50
Mean 6.50 53.50 40.17 0.17 3.92 0.180 26.28 8.17
Coefficient of variation (%) 50.80 36.70 54.60 60.70 143.30 156.40 19.80 62.70
OC: Organic carbon, N: Nitrogen and P: Phosphorus

Table 2: Physicochemical characteristics of the soil developed on trachyte
Depth (cm) Sand (%) Silt (%) Clay (%) K+ (cmol kgG1) OC (%) N (%) C:N Available P (ppm)
5-15 7.0 64.0 30.0 0.81 10.00 0.80 21.50 16.80
50-60 3.0 47.0 49.0 0.32 2.69 0.21 21.90 1.40
150-160 3.0 20.0 77.0 0.00 0.31 0.07 7.01 4.20
270-280 3.0 38.0 59.0 0.00 0.23 0.04 6.40 5.50
370-380 1.0 61.0 37.0 0.00 0.23 0.03 6.60 4.20
Minimum 1.0 20.0 30.0 0.00 0.23 0.03 6.40 1.40
Maximum 7.0 64.0 77.0 0.81 10.00 0.80 21.90 16.80
Mean 3.4 46.0 50.4 0.23 2.69 0.23 12.68 6.42
Coefficient of variation (%) 57.60 34.90 33.00 140.40 140.20 127.10 58.10 83.50
OC: Organic carbon, N: Nitrogen and P: Phosphorus

Table 3: Pearson correlation matrix for linear relationships between parameters for the soil on basalt
Variables Sand Silt Clay K+ OC N C:N Available P
Sand 1
Silt 0.734 1
Clay -0.792 -0.996* 1
K+ -0.264 -0.462 0.447 1
OC 0.126 0.507 -0.478 0.266 1
N 0.148 0.487 -0.462 0.273 0.995* 1
C:N 0.141 0.292 -0.277 -0.954* -0.483 -0.505 1
Available P -0.317 0.102 -0.050 -0.483 0.298 0.322 0.309 1
*Significant at p<0.05, OC: Organic carbon, N: Nitrogen, K: Potassium and P: Phosphorus
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Fig. 4(a-h): Box plots showing a summary of laboratory measured parameters of soil on basalt,(a): Sand, (b): Silt, (c): Clay, (d): K+,
(e): OC, (f): N, (g): C:N and (h): Available P

weathering horizons, respectively, on basalt and trachyte
(Table 1 and 2, Fig. 6 and 7). They were very highly variable
along the soil profiles. There was a significant positive

correlation  between  OC  and  sand fraction, only on trachyte
(r = 0.92, p<0.03) (Table 4). This significant correlation was
confirmed by their similar evolution  with  depth  observed  in
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Fig. 7. Total N stocks were also high in the humiferous horizon
(0.80%). They decreased gradually with depth and were also
very highly variable along the profiles (Table 1 and 2). There

was a significant positive correlation between N and OC on
basalt (r = 0.99, p<0.0001) (Table 3). On trachyte, there was a
significant  positive correlation between N and sand fraction
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Table 4: Pearson correlation matrix for linear relationships between parameters for the soil on trachyte
Variables Sand Silt Clay K+ OC N C:N Available P
Sand 1
Silt 0.267 1
Clay -0.337 -0.997* 1
K+ 0.897* 0.585 -0.644 1
OC 0.924* 0.582 -0.640 0.989* 1
N 0.936* 0.550 -0.610 0.982* 0.999* 1
C:N 0.657 0.464 -0.517 0.864 0.780 0.758 1
Available P 0.875 0.496 -0.544 0.800 0.879* 0.893* 0.391 1
*Significant at p<0.05, OC: Organic carbon, N: Nitrogen, K: Potassium and P: Phosphorus

Fig. 6: Distribution of particle size distribution fractions and
organic carbon with depth for soil on basalt

(r = 0.93, p<0.02), N and OC (r = 0.99, p<0.0001) and between
N and K (r = 0.98, p<0.04) (Table 4). The C:N ratios were
globally high along the soil profile developed on basalt,
ranging between 20 and 34.4, with a mean value of 26.28
(Table 1 and Fig. 4). These ratios were moderately variable
(15%<CV<35%) (Table 1). On trachyte, similar ratios were
observed  only  in  the  two  upper  horizons.  They  varied
between  6.40  and 7.01 in the horizons below (Table 2 and
Fig. 5). Globally, C:N ratios along the soil profile on trachyte
were highly variable (CV>35%). There was a significant
negative correlation between this soil parameter and K on
basalt (r = 0.95, p<0.003) (Table 3).

Fig. 7: Distribution of particle size distribution fractions and
organic carbon with depth for soil on trachyte

Phosphorus and potassium stocks: Except in the humiferous
horizon  on  trachyte,  the  amounts  of  K  were  below  the
critical levels in the studied soils (Table 1 and 2, Fig. 4 and 5).
They were highly variable. The  only  significant  correlation
was  noted  with  C:N ratio. Available P contents were low to
very low. Medium values were noted in the weathering
horizon on basalt and the humiferous horizon on trachyte
(Table 1 and 2, Fig. 4 and 5). These contents were highly
variable (CV>35%) (Table 1 and 2). Available P exhibited a
significant positive correlation with OC (r = 0.87, p<0.05) and
total N (r = 0.89, p<0.05) but only in soil profile develop on
trachyte (Table 4).
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DISCUSSION

Except for the significant positive correlation between OC
and sand fraction on trachyte, there was no significant
correlation between SOC and texture. This implied that SOC
would be mostly retained in sand fractions on trachyte. Similar
findings were reported by Udom et al. (2015). In addition,
McLauchlan (2006) observed a very slight relationship
between SOC and texture. Six et al.  (2000) documented that
clay concentrations had a very slight effect on SOC
accumulation rate and soil aggregate dynamics. Texture thus
has  a  lesser  effect  on SOC storage in comparison to other
soil parameters (Sakin, 2012). Mineral and organic colloids
account for essentially all of the charge and chemical reactivity
of soils greatly affect the availability of nutrients (Hodges,
2010). Because of the highly variable and often intermingled
nature of sources in soils, the charges are sometimes referred
to as the colloidal complex (Hodges, 2010). The absence of
significant correlation between SOC and clay could imply that
these two soil colloids responsible for the studied soil fertility
acted  independently.  This  was  confirmed  by  the  presence
of kaolinite as the only clay mineral in the studied soil,
characterized  by  low  surface area and CEC (10-20 g mG2 and
1-10 cmol kgG1, respectively) compared to Organic Matter
(OM) (800-900 g mG2 and 100-300 cmol kgG1, respectively),
which means that OC was the main source of soil fertility in
this tropical mountainous ecosystem. It was well recognized
that SOM increased structural stability, resistance to rainfall
impact, rate of infiltration and faunal activities (Roose and
Barthes, 2001; Tematio et al.,  2011) and its amount in a system
is a good measure of sustainability (Bationo et al.,  2007). There
was a significant correlation between N and OC. Generally,
concentrations  of  N  are  high  in  areas,  where  the  SOC  is
high  (Sakin, 2012).  This  indicates  that  the  N  nutrition  of
crops largely depends on the maintenance of SOC levels
(Manu et al.,  1991). Nitrogen is an essential nutrient used in
relatively large amounts by all living things (Hodges, 2010). It
is critically important to plants because it forms a fundamental
part of the chlorophyll molecule and formation of amino acids
and proteins (Hodges, 2010). On trachyte, the C:N ratio in the
surface soil was higher than that in lower portions of the
subsurface soil horizons. This indicates high resolution and
separation rates (Sakin, 2012). Contrary on basalt, the C:N ratio
was  globally  high,  but  exhibited  a  zigzag  evolution  along
the  soil  profile.  This  might be related to the variation of
rainfall over the time in agreement with Miller et al.  (2004)
who  reported  that  C:N  ratio  increased  with  precipitation
and decreased with higher temperatures. According to
Callesen et al.  (2007) there is a positive relationship between

C:N ratios, precipitation and temperature. High soil C:N ratio
could slow down the decomposition rate of OM and organic
N by limiting the soil microbial activity’s ability with lower
mobilization of N (Wu et al.,  2001; Prusty et al.,  2009). Low soil
C:N ratio on contrary, could accelerate the process of microbial
decomposition of OM and N, which was not conducive for C
sequestration (Wu et al.,  2001; Prusty et al.,  2009). The C:N
ratios exhibited significant negative correlation with K on
basalt. On trachyte, there was a significant positive correlation
between OC and K as well as between N and K. Plant use K in
photosynthesis, in carbohydrate transport, in water regulation
and in protein synthesis (Krauss and Johnston, 2002; Hodges,
2010). The benefits of proper K nutrition are improved disease
resistance, vigorous plant growth, increased drought
tolerance, improved winter hardiness of forages and
decreased lodging (Hodges, 2010). As a result, K fertilization is
frequently associated with improved crop quality as well as
better handling and storage properties (Krauss and Johnston,
2002; Hodges, 2010). Phosphorus exhibited a significant
positive correlation with N and OC, but only on trachyte. It was
one of the nutrients that limit tree growth, especially in
tropical areas (Zas and Serrada, 2003). It is essential in several
biochemical that control photosynthesis, respiration, cell
division and many other plant growth and development
processes (Hodges, 2010). The dependence of P fertility on OM
led to feedback mechanisms that further confound the
assessment of P availability in tropical soils by chemical tests
(Oberson et al., 2006). The significant correlation between OC,
N, P and K means that the depletion of SOM would lead to a
corresponding depletion of N, P and K. Soil fertility determines
plant  growth  and  depends  on  the  concentration  of  N,  P,
K organic and inorganic materials, micronutrients and water
(Tale and Ingole, 2015). Generally, soil chemical fertility and in
particular lack of nutrient inputs is a major factor in soil
degradation (Hartemink, 2010). Nutrients deficiency has
become major constraint to productivity, stability and
sustainability of soils (Bell and Dell, 2008). The increasing
trends of biomass C, N and P in the soils are attributed to OM
inputs  as  compliment  fertilizer  materials  and would
improve the quality of soils for sustainable crop production
(Odunze et al., 2012). Relationship existed among soil
physicochemical properties which positively or negatively,
interfered with nutrient availability (Onwudike, 2015).

CONCLUSION

In the studied soil, sand contents were low,  while silt and
clay contents were high. There was no significant correlation
between sand  and  the  others  soil  fractions,  but  a  negative
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significant correlation exists between silt and clay. Total OC
contents were high in the humiferous horizon. There was a
significant positive correlation between OC and sand fraction
only on trachyte, confirmed by their similar evolution with
depth. Total N stocks were also high in the humiferous
horizon. There was a significant positive correlation between
N and OC, indicating that N nutrition of crops largely depends
on  the  maintenance  of  SOC  levels.  The  C:N  ratios  were
high  along  the  soil  profile developed on basalt and in the
two upper horizons on trachyte. There was a significant
negative correlation between C:N and K on basalt. Except the
humiferous horizon on trachyte, the amounts of exchangeable
K were below the critical levels. It was only significantly
correlated with C:N ratio. Phosphorus contents were low to
very  low,  exhibiting  a  significant  positive  correlation  with
OC and total N, but only in soil profile developed on trachyte.
Relationship existed among soil physicochemical properties,
which positively or negatively, interfered with nutrient
availability.
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