

International Journal of **Soil Science**

ISSN 1816-4978

ISSN 1816-4978 DOI: 10.3923/ijss.2017.113.119

Research Article

Phosphate Sorption Characteristics and External Phosphorus Requirements of Nitisols in Central Kenya Highlands

¹Esther Mwende Muindi, ²Jerome Mrema, ²Ernest Semu, ²Peter Mtakwa and ³Charles Gachene

Abstract

Background and Objective: Availability of adequate phosphorus (P) for plant uptake is a major problem in acid soils worldwide. Characterization of soils in terms of phosphorus (P) sorption capacity is, therefore, fundamental for effective soil phosphorus fertility management and for efficient utilization of phosphorus fertilizers. A study was conducted to investigate the phosphorus sorption characteristics of selected acid soils from Meru, Embu, Kirinyanga, Nyeri, Kiambu and Kinangop and evaluate the external phosphorus requirements (EPR) for soil phosphorus fertility management. Materials and Methods: Sorption data was obtained by equilibrating the nine soil samples with 30 mL of KH_2PO_4 in 0.01 M CaCl₂, containing 0, 80, 100, 150, 180, 200, 250 and 300 μ g mL⁻¹ for 48 h with shaking for 30 min at intervals of 8 h. Langmuir adsorption model was fitted to the test results and relationship between P Langmuir adsorption model was fitted to the test results and relationship between P adsorption Langmuir constants and soil properties determined by simple regression and correlations using Genstat statistical software. Results: The result of this study showed that the Nitisols were extremely acidic (pH 3.7-4.5), had low extractable P (<15 mg kg⁻¹ Bray 1) and the maximal phosphorous adsorption varied from 2986.73-2992.58 mg kg⁻¹ soil. The external phosphorus requirement (EPR) varied from 434.78-208.33 mg kg⁻¹ soil in the order: Nyeri = Embu > Kirinyanga > Meru = Kiambu > Kinangop. Correlation analysis revealed that Langmuir adsorption maxima (bL) and binding the support of the contraction of the contractionenergy constant (kL) positively correlated with clay content and EPR and negatively correlation with organic carbon and soil pH. Conclusion: Due to differences in phosphorus fixation rates EPR within the study sites, different phosphate fertilization rates are required for optimum plant growth in such soils. Also management practices involving the use of organic matter and liming as basis for P adsorption reduction would be useful for improved crop production in the soils. There is, therefore, need for further research to determine optimal phosphorus requirements for soils in each research site under field conditions.

Key words: Phosphorus sorption, adsorption maxima, gibbsite, adsorption isotherms, nitisols

Citation: Esther Mwende Muindi, Jerome Mrema, Ernest Semu, Peter Mtakwa and Charles Gachene, 2017. Phosphate sorption characteristics and external phosphorus requirements of nitisols in Central Kenya highlands. Int. J. Soil Sci., 12: 113-119.

Corresponding Author: Esther Mwende Muindi, Department of Crop Science, Pwani University, Kilifi, Kenya Tel: +254734617020 Fax: +254 41 7522 128

Copyright: © 2017 Esther Mwende Muindi et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Crop Science, Pwani University, Kilifi, Kenya

²Department of Soil Science, Sokoine University of Agriculture, Morogoro, Tanzania

³Department of Land Resource Management, University of Nairobi, Nairobi, Kenya

INTRODUCTION

Phosphorus (P), after nitrogen, is the second most important macronutrient as an essential plant nutrient¹. It is a key nutrient for higher and sustained agricultural productivity which is involved in an array of processes in plants such as photosynthesis, respiration, nitrogen fixation, flowering, fruiting and maturation²-⁴. However, phosphorus deficiency in soil is a common nutritional stress in many regions of the world, affecting 42% of the cultivated land in the world⁵. The P deficiency is caused either by low P content in the soils parent materials or by transformations of added P to forms not available or crop uptake. This deficiency results in poor root formation, slow development, poor seed set and fruit formation hence, poor crop yields²-⁶.

The predominant soils in most humid parts of Central Kenya highlands are "humic nitisols" that have moderate to high acidity with inherently high P fixing ability⁷. The soils are also dominated by gibbsite minerals which have larger surface area for P sorption⁸. The acidity prevalence in the soils is associated with phosphorus (P) deficiency in the soils, aluminium (Al) toxicity, high percent Al saturation, low extractable bases (Ca, Mg, K and Na) and reduced microbial activity resulting in low crop yield⁹. The aluminium saturation of the soils has been reported to be above 20% and P levels often as low as <5.0 mg kg⁻¹ P¹⁰.

Adsorption isotherm is an important criterion used to estimate: Phosphorous concentration in aqueous phase of soil, energy of phosphorous adsorption, maximal value of its adsorption by soil, buffer strength of soil against phosphorous concentration variations in solution and equilibrium state between phosphorous in aqueous and solid phases and their^{11,12}. The most widely used model to predict relationships between fixed and solution P is the Langmuir equation^{13,14} which implies that P sorption takes place in a soil monolayer such that any increase in soil P above P sorption maximum does not increase its sorption. However, Freundlich equation has been documented by many authors to generate the best fit in many areas¹⁵⁻¹⁹.

Phosphorus sorption relationships are commonly used in the determination of the external phosphorus requirement (EPR) of crops. According to Fox²⁰, EPR is the concentration of P in solution that is non-limiting to plant growth. This amount of P sorbed at the critical solution P concentrations of 0.2 ppm is an important statistic for comparing the phosphorus adsorption capacity of soils with varying buffering capacities²¹ and forms the threshold over which no response to P is observed in most crops²²⁻²⁴. The determination of EPR aims at building up the status of soil phosphorus by a single application to a level which, thereafter, only requires maintenance application to replenish losses owing to plant uptake, removal by erosion or continuing slow reactions between phosphate and soil²⁵. Limited information is available about EPR of soils in the Central highlands of Kenya. Such information is, however, necessary to guide P fertilizer recommendations to ensure that crop yields are not compromised due to under-fertilization and that ground water is not polluted with P transported from over-fertilized soils. The objectives of this study were, therefore: (i) To quantify the P sorption characteristics of Nitisols in Central Kenya Highlands and (ii) To determine the EPR of Nitisols in Central Kenya highlands.

MATERIALS AND METHODS

Location of the study sites: The exploratory soil map of Kenya²⁶ was used to identify acid soils in Kenya highlands⁷. The study was carried out in October-November, 2013 and the study sites had been under continuous crop cultivation for years with minimal attention to the state of the art crop production practices. Descriptions of the selected sites are shown in Table 1.

Soil sampling, preparation and characterization: Soil samples were randomly taken from cultivated farmers' fields from the study sites. Nine point samples were taken with a soil auger at the 0-50 cm soil depth in a zigzag manner at each experimental site. The point soil samples were

Table 1: Description of the study areas

Table 1. Description of the study areas						
County	Site	GPS of sites	GPS of sites		Soil type	
Meru	Kaguru	00 05 S	037 39 E	1460	Humic nitisols	
Embu	Kavutiri	00 25 S	037 30 E	1700	Ando-humic nitisols	
Kerugoya	Inoi	01 04 S	036 47 E	1539	Ando-humic nitisols	
Nyeri	Chehe	00 25 S	037 10 E	1920	Nitisols	
Kiambu	Githunguri	01 03 S	036 45 E	1720	Nitisols	
Kinangop	Magumu	00 46 S	036 35 E	2691	Eutric nitisols	

Soil type information sourced from FURP²⁷

thoroughly mixed and about 1.0 kg composite sample from each site was packed in polythene bags. The samples were air-dried, ground and passed through a 2 mm sieve and subsequently analyzed for various soil properties. Soil pH was measured in 1:2.5 soil 0.01 M CaCl₂ suspensions²⁸ and extractable P determined by the Bray 1 method²⁹. Organic carbon (% C), total nitrogen (% N), CEC, particle size were analyzed according to the procedures described by Okalebo *et al.*³⁰.

Phosphate sorption isotherms: Three grams air-dried 2 mm sieved composite soil sample portions were equilibrated in 3 replicates with 30 mL of KH₂PO₄ in 0.01 M CaCl₂ containing $0, 80, 100, 150, 180, 200, 250 \text{ and } 300 \,\mu\text{g mL}^{-1} \,\text{P}$ for $48 \,\text{h}$ with shaking for 30 min at intervals of 8 h. Three drops of toluene were added to each of the soil-phosphate suspensions to inhibit microbial activity. Following equilibration, the soil suspensions were centrifuged at 3000 rpm for 10 min and filtered through Whatman No. 5 filter papers to obtain clear filtrates. Phosphorus in the filtrates was then determined colorimetrically based on the Murphy and Riley³¹ method. The amounts of P sorbed were calculated as the differences between the amounts of P added and those remaining in the equilibrium solution³² and the P-adsorption isotherms plotted as adsorbed against equilibrium concentration. The P adsorbed data for the soils used in this study were fitted into the linearized form of the Langmuir Eg:

$$\frac{\mathbf{C}}{\mathbf{X}} = \frac{1}{\mathbf{K}_{\mathbf{I}} \mathbf{b}_{\mathbf{I}}} + \frac{\mathbf{C}}{\mathbf{b}_{\mathbf{I}}^{33}}$$

Where:

C = Equilibrium concentration of phosphorus in solution (mg L^{-1}) P

 $X = mg \text{ of } P \text{ adsorbed } (mg kg^{-1})$

 b_L = Adsorption maximum for the Langmuir model (mg kg $^{-1}$) P (inverse of the slope)

 K_L = Bonding energy constant of the Langmuir model (L mg⁻¹ P) (slope/intercept)

The Langmuir adsorption isotherms was plotted by taking C/X against C while the external P requirements (EPR) of each soil were determined by substituting the desired P content ration into the fitted Langmuir equations³⁴. Linearized Langmuir equation X= CkLbL/1+CkL was used in the EPR calculations.

Statistical analysis: Relationships between P sorption parameters and P sorbed at equilibrium with 0.2 mg L⁻¹ P ($P_{0.2}$), with selected soil chemical properties were determined or calculated based on simple regression and correlation and tested for significance at p<0.05 using the Genstat statistical software³⁵.

RESULTS

Chemical and physical properties of the soils from the study

sites: Chemical and physical properties of the composite soil samples from the six counties are as presented in Table 2. The pH, hence the soil reaction of the six composite soil samples ranged from 3.7-4.5 rated as extremely acidic (pH<4.5). The soil CEC was only low (<15 cmol kg $^{-1}$ soil) in Nyeri soils. All the soils had low amounts of Bray 1 P (<15mg kg $^{-1}$).

Phosphate adsorption isotherms: Comparing the highest amount of P adsorbed, in the P adsorption isotherms, it is evident that soils in each site had different capacities to adsorb P (Fig. 1). The graphic representation of the adsorption isotherms of the soils were in the order Nyeri>Embu>Meru> Kirinyanga>Kiambu>Kinangop.

Maximal P adsorbed varied among the sites with Nyeri soils having the highest maximal P adsorbed while Kinangop soils had the lowest (Table 3). The regression coefficient (R^2) was significant ($p \le 0.05$) in soils of all sites.

Table 2: Chemical and physical properties of the soils from the six study sites

Site/property	Kerugoya	Meru	Embu	Kinangop	Kiambu	Nyeri
pH CaCl ₂	4.5	4.1	3.9	4.0	3.8	3.7
Total nitrogen (%)	0.8	0.6	1.0	0.3	0.2	0.3
Carbon (%)	8.9	7.9	8.7	5.1	2.6	2.7
P (mg kg ⁻¹)	10.2	8.9	9.3	9.7	5.7	9.8
CEC (cmol kg ⁻¹)	15.3	16.0	17.9	15.5	15.0	13.1
PSD*						
Clay (%)	14.3	51.7	49.0	22.3	50.3	28.3
Silt (%)	27.3	21.3	26.7	39.3	16.7	16.0
Sand (%)	58.3	27.0	24.3	38.3	33.0	55.7
Textural class	SL	Clay	CL	Loam	SL	SL

^{*}Particle size distribution, SL: Sandy loam, CL: Clay loam

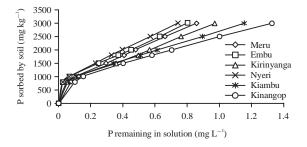


Fig. 1: Phosphate adsorption isotherm of soils from six sites

Table 3: Maximal adsorbed P of soils from the six sites

Site	*Maximal P adsorbed (mg kg ⁻¹ P soil)	R ²
Meru	2991.42	0.957
Embu	2991.97	0.935
Kirinyanga	2990.30	0.949
Nyeri	2992.58	0.934
Kiambu	2988.46	0.934
Kinangop	2986.73	0.941

All R^2 values were significant at p \leq 0.05 level, *Highest amount of P adsorbed at the highest level of P incubated

Table 4: Parameters of the fitted Langmuir adsorption equations

		bL		EPR
Site	R^2	(mg kg ⁻¹)	kL	(mg kg ⁻¹ P)
Meru	0.795	3333.333	0.429	263.158
Embu	0.841	3333.333	0.750	434.783
Kirinyanga	0.790	3333.333	0.500	303.030
Nyeri	0.888	3333.333	0.750	434.783
Kiambu	0.762	3333.333	0.429	263.158
Kinangop	0.687	3333.333	0.333	208.333

R²: Regression coefficient, bL: Adsorption maxima, kL: Constant related to binding energy, EPR: External phosphate requirement

Table 5: Correlation between soil properties and the Langmuir and adsorption

Pairs	Correlation coefficient (R2)	p-value
bL vs OC (%)	0.895	0.001
bL vs maximal adsorbed P	0.974	0.000
bL vs EPR	0.873	0.002
OC (%) vs maximal adsorbed P	-0.822	0.007
OC (%) vs EPR	0.670	0.048
Phosphorus vs CEC	0.689	0.040
Maximal adsorbed P vs soil pH	-0.840	0.002
Maximal adsorbed P vs Clay	0.900	0.000

bL: Adsorption maxima (mg kg $^{-1}$), kL: Constant related to binding energy, EPR: External phosphate requirement (mg kg $^{-1}$ P). Correlation is significant at p = 0.05 level (two tailed)

Fitting the adsorption data to the Langmuir models:

Regression coefficients (R²) for the fitted Langmuir P adsorption isotherms were significant for soils from all sites (Table 4). The R² values were highest in Nyeri and lowest in Kinangop. The slopes of the plots (1/ bL) were found to be <0.01 for all the soils. The binding energy was highest in Nyeri and Embu soils and lowest in Eldoret soils. The external P requirement (EPR) of the soils varied from

site to site with Nyeri and Embu soils having the highest EPR while Kinangop soils had the lowest EPR.

Relationship between adsorption and soil properties: A significant (p = 0.05) positive correlation was observed between maximal adsorbed P, Langmuir constants (bL, kL), EPR and clay content (Table 5). Organic carbon and soil pH negatively correlated with maximal P adsorbed.

DISCUSSION

The soils sorption capacities varied widely as reflected by the ranges in maximal P sorption and Langmuir adsorption maxima (bL) (Table 2, 3). Soils collected from Nyeri and Embu had the highest P sorption and EPR values and thus could be categorized as high P sorbers whereas soils from Meru, Kirinyanga, Kiambu and Kinangop are moderate sorbers based on the scale of phosphate sorption of Buresh et al.36. Earlier studies have also reported similar magnitudes of P sorption capacities 10. The differences observed in P sorption capacities between soils from the various sites could be attributed to differences in amorphous hydrous oxides of Al and clay minerals^{8,10}. Acid soils from Embu, Meru, Kerugoya, Kiambu and Kinangop are highly weathered and consist predominantly of gibbsite minerals, with large surface area for P sorption^{8,10,37,38}. This might have greatly influenced the P sorption reactions, hence the quantities of P adsorbed.

The significant positive correlation between maximal P adsorption, clay content and the total amount of phosphorous adsorbed by the soil, can be attributed to presence of sorptive sites on the active soil constituents. According to Jaetzold and Schmid⁸, these soils are dominated by low-activity clays (clay fractions with a low CEC) often containing gibbsite [Al (OH₃)] besides kaolinite, generally as discrete clay size particles. Applied Phosphorus ions are, therefore, strongly attracted and fixed^{2,39}. Similar correlations have also been reported by Tamungang *et al.*⁴⁰ in selected volcanic affected soils of Foumbout in the Western Region of Cameroon, Hadgu *et al.*¹⁸ in fluvisols, cambisols, vertisols and nitisols of Ethiopia and Muindi *et al.*⁴¹ in acid soils of Western Kenya.

Negative correlation observed between adsorbed P with organic matter content can be attributed to the following: (i) Adherence of, large, humic molecules to sorbing surfaces that mask fixation sites and prevent them from interacting with phosphorus ions in solution, (ii) Organic acids produced by plant roots and microbial decay can also serve as organic anions, which compete with phosphorus ions or positively charged sites on the surface of clays and hydrous oxides or (iii) Certain organic compounds can entrap reactive Al and Fe

in stable organic complexes called chelates and once chelated, the metals are unavailable for reaction with phosphorus ions in the soil solution. Additionally, microbial mineralization of many P-rich organic materials can also contribute to reduced P fixation^{2,42}. Similar correlations have been reported in acid soils found in various countries by Hoseini and Taleshmikaiel¹⁶, Mnthambala *et al.*⁴³ and Wolde *et al.*⁴⁴, who reported that presence of organic matter reduced P sorption capacities of soils due to occupation of adsorption spaces by organic anions.

Negative correlation between soil pH and maximal adsorbed P in the current study supports the hypothesis that P sorption decreases with increasing pH. This is consistent with reports by Mnthambala et al.43 in acid soils of Malawi and Wolde et al.44 in acid soils of Bulle and Wonago Woreda, Southern Ethiopia. According to Haynes⁴⁵, the sorption decrease can be ascribed to increased electrostatic repulsion caused by increased negative surface charge as pH increases. The decreased adsorbed P with increase in pH can also be attributed to either, competition of hydroxyl (OH-) concentrations 1,000 times higher with phosphate ions for specific sorption sites on mineral surfaces as pH increases⁴⁶ or neutralization of sites where more reactive Al surfaces were once present by aluminium hydroxide polymers as pH increases⁴⁷. According to Sims and Pierzynski⁴⁸, pH of both solid and liquid matrices of the soil can impact sorption of P by affecting protonation and deprotonation of functional groups and surface binding sites. These effects alter the electro negativity of the surfaces of soil particles; a relationship commonly referred to as the adsorption envelope⁴⁸. Soils dominated by goethite and gibbsite, as are the soils used in this study, are particularly susceptible to each of the above-named phosphate adsorption mechanisms and relationships8,38.

CONCLUSION

The six soils varied widely in their capacity to fix P with Embu and Nyeri soils classified as high P fixers and Meru, Kerugoya, Kiambu and Kinangop soils classified as low fixers. The differences in the P adsorption maxima and EPR of the soils in the study sites indicate that application of blanket P fertilizer rates for all study sites is not viable. The recommended P fertilizer of 26 kg ha⁻¹ P for maize production by the Kenya Agricultural Research Institute, is, therefore, inadequate for optimal crop production at all the sites. This is because it can supply at most only 11.6 mg kg⁻¹ P, which is much below the soils EPR of between 208.33-

434.78 mg $\,\mathrm{kg^{-1}}$ P. Additionally, the study identified soil pH, clay and organic matter as some of the factors that influence P availability in the soils.

SIGNIFICANCE STATEMENTS

This study discovered that external phosphorus requirement (EPR) of the nitisols varied from site to site in the study area. This means site specific fertilizer recommendations are important for optimal crop production. A positive correlation was found to exist between Langmuir adsorption maxima, clay content and EPR, this shows that clay content plays a positive role in phosphorus adsorption and increasing phosphorus requirements in such soils. The negative correlation between adsorbed phosphorus, organic carbon and soil pH, shows that management practices such as regulation of soil pH levels and addition of organic carbon can help in reducing phosphorus sorption hence increasing available P in the soils. The findings of the study will form a basis of soil fertility management trials and site specific fertilizer recommendation trails in the region.

ACKNOWLEDGMENTS

The authors are grateful to the Alliance for a Green Revolution Africa (AGRA) for supporting the study. Authors also acknowledge with gratitude, the technical staff at soils science laboratory, Sokoine University of Agriculture, Tanzania for technical advice during soil characterization and Dr. Esther Gikonyo, KARLO-NARL, Kenya for guidance on interpretation of P sorption data.

REFERENCES

- Srinivasan, R., A.R. Alagawadi, M.S. Yandigeri, K.K. Meena and A.K. Saxena, 2012. Characterization of phosphate-solubilizing microorganisms from salt-affected soils of India and their effect on growth of sorghum plants [Sorghum bicolor (L.) Moench]. Ann. Microbiol., 62: 93-105.
- Brady, N.C. and R.R. Weil, 2008. The Nature and Properties of Soils. 14th Edn., Prentice Hall, New Jersey, USA., ISBN-13: 9780132279383, Pages: 965.
- Xiang, D.B., T.W. Yong, W.Y. Yang, W.Z. Gong, L. Cui and T. Lei, 2012. Effect of phosphorus and potassium nutrition on growth and yield of soybean in relay strip intercropping system. Sci. Res. Essays, 7: 342-351.
- Plaxton, W. and H. Lambers, 2015. Annual Plant Reviews Volume 48: Phosphorus Metabolism in Plants. John Wiley and Sons, Hoboken, New Jersey, USA., ISBN: 978-1-118-95885-8, Pages: 480.

- 5. Liu, J.Z., Z.S. Li and J.Y. Li, 1994. Utilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil. Chin. J. Eco-Agric., 2: 16-23.
- Khan, M.S., A. Zaidi, M. Ahemad, M. Oves and P.A. Wani, 2010.
 Plant growth promotion by phosphate solubilizing fungicurrent perspective. Arch. Agron. Soil Sci., 56: 73-98.
- Kanyanjua, S.M., L. Ireri, S. Wambua and S.M. Nandwa, 2002.
 Acid soils in Kenya: Constraints and remedial options. KARI Technical Note No. 11 June 2002, pp: 1-24.
- Jaetzold, R. and H. Schmidt, 1983. Farm Management Handbook of Kenya: Natural Conditions and Farm Management Information, East Kenya. Vol. 2, Ministry of Agriculture, Nairobi, pp: 1-18.
- Crawford, Jr. T.W., U. Singh and H. Breman, 2008. Solving agricultural problems related to soil acidity in central Africa's great lakes region. CATALIST Project Report, International Center for Soil Fertility and Agricultural Development (IFDC), Kigali, Rwanda, pp: 1-133.
- 10. Obura, P.A., 2008. Effects of soil properties on bioavailability of aluminium and phosphorus in selected Kenyan and Brazilian soils. Ph.D. Thesis, Purdue University, Indiana.
- 11. Olsen, S.R. and F.S. Watanabe, 1957. A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Sci. Soc. Am. J., 21: 144-149.
- 12. Onweremadu, E.U., 2007. Predicting phosphorus sorption characteristics in highly weathered soils of South-Eastern Nigeria. Res. J. Environ. Sci., 1: 47-55.
- 13. Cabrera, F., L. Madrid and P. de Arambarri, 1977. Adsorption of phosphate by various oxides: Theoretical treatment of the adsorption envelope. Eur. J. Soil Sci., 28: 306-313.
- 14. Ryden, J.C. and J.K. Syers, 1975. Rationalization of ionic strength and cation effects on phosphate sorption by soils. Eur. J. Soil Sci., 26: 395-406.
- 15. Niang, A.I., B.A. Amadalo, J. de Wolf and S.M. Gathumbi, 2002. Species screening for short-term planted fallows in the highlands of western Kenya. Agroforest. Syst., 56: 145-154.
- 16. Yaser, H. and D.T. Rahim, 2013. Comparison of phosphorus adsorption isotherms in soil and its relation to soil properties. Int. J. Agric.: Res. Rev., 3: 163-171.
- 17. Espejo, R. and F.R. Cox, 1992. Factors affecting phosphorus sorption in Palexerults of western Spain. Commun. Soil Sci. Plant Anal., 23: 389-398.
- 18. Hadgu, F., H. Gebrekidan, K. Kibret and B. Yitaferu, 2014. Study of phosphorus adsorption and its relationship with soil properties, analyzed with Langmuir and Freundlich models. Agric. For. Fish., 3: 40-51.
- 19. Sanyal, S.K., P.Y. Chan and S.K. De Datta, 1993. Phosphate sorption-desorption behavior of some acidic soils of South and Southeast Asia. Soil Sci. Soc. Am. J., 57: 937-945.
- 20. Fox, R.L., 1981. External Phosphorus Requirement of Crops. In: Chemistry in the Soil Environment, Shelly, M. *et al.* (Eds.). Am. Soc. Agron., Madison, WI, USA., pp: 223-239.

- 21. Nnadi, L.A. and I. Haque, 1985. Estimating Phosphorus Requirement of Native Ethiopian Clover using Phosphorus Sorption Isotherms. In: Soil Fertility, Soil Tilth and Post Clearing Land Degradation in Humid Tropics, Sobulo, R.A. and E.J. Udo (Eds.). Soil Science Society of Nigeria, Ibadan, pp: 82-90.
- 22. Beckwith, R.S., 1965. Sorbed phosphate at standard supernatant concentration as an estimate of the phosphate needs of soils. Aust. J. Exp. Agric. Anim. Husbandry, 5: 52-58.
- 23. Iyamuremye, F., R.P. Dick and J. Baham, 1996. Organic amendments and phosphorus dynamics: I. Phosphorus chemistry and sorption. Soil Sci., 161: 426-435.
- 24. Nziguheba, G., C.A. Palm, R.J. Buresh and P.C. Smithson, 1998. Soil phosphorus fractions and adsorption as affected by organic and inorganic sources. Plant Soil, 198: 159-168.
- 25. Henry, P.C. and M.F. Smith, 2003. A single point sorption test for the routine determination of the phosphorus requirement of low to moderate P-fixing soils. S. Afr. J. Plant Soil, 20: 132-140.
- Sombroek, W.G., H.M. Braun and H. van de Pouw, 1982. Exploratory soil map and agro-climatic zone map of Kenya. Scale 1:1000000, Exploratory Soil Survey Report No. E1, Kenya Soil Survey, Nairobi, pp: 1-78.
- 27. FURP., 1988. Methodology and inventory of existing information. Main Report, Fertilizer Use Recommendation Project (FURP), pp: 1-35.
- 28. Herdershot, W.H., H. Lalande and M. Duquette, 1993. Soil Reaction and Exchangeable Acidity. In: Soil Sampling and Methods of Analysis, Carter, M.R. (Ed.). Lewis Publishers, Boca Raton, FL., pp: 141-145.
- 29. Kuo, S., 1996. Phosphorus. In: Method of Soil Analysis. Part 3-Chemical Methods, Sparks, D.L., A.L. Page, P.A. Helmke, R.H. Loeppert and P.N. Soltanpour *et al.* (Eds.). SSSA-ASA Inc., Madison, WI., ISBN: 0-89118-825-8, pp: 869-919.
- Okalebo, J.R., K.W. Gathua and P.L. Woomer, 2002. Laboratory Methods of Soil Analysis: A Working Manual. 2nd Edn., TSBR-CIAT and SACRED Africa, Nairobi, Kenya, pp: 88.
- 31. Murphy, J. and J.P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27: 31-36.
- 32. Fox, R.L. and E.J. Kamprath, 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Am. Proc., 34: 902-907.
- 33. Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40: 1361-1403.
- 34. Dodor, D.E. and K. Oya, 2000. Phosphate sorption characteristics of major soils in Okinawa, Japan. Commun. Soil. Sci. Plant Anal., 31: 277-288.
- 35. GENSTAT., 2010. The GenStat teaching edition. GenStat Release 7.22 TE, VSN International Limited.

- Buresh, R.J., P.C. Smithson and D.T. Hellums, 1997. Building Soil Phosphorus Capital in Africa. In: Replenishing Soil Fertility in Africa, Buresh, R.J., P.A. Sanchez and F. Calhoun (Eds.). Soils Science Society of America, Madison, WI., USA., pp: 111-150.
- Sanchez, P.A. and G. Uehara, 1980. Management Considerations for Acid Soils with High Phosphorus Fixation Capacity. In: The Role of Phosphorus in Agriculture, Khasawneh, F.E., E.C. Sample and E.J. Kamprath (Eds.). 2nd Edn., American Society of Agronomy, Madison, WI., ISBN-13: 9780891180623, pp: 471-514.
- 38. Tisdale, S.L., W.L. Nelson and J.D. Beaton, 1990. Soil Fertility and Fertilizers. Macmillan, New York, Pages: 298.
- 39. Muindi, E.M., J.P. Mrema, E. Semu, P.W. Mtakwa, C.K. Gachene and M.K. Njogu, 2015. Lime-aluminium-phosphorus interactions in acid soils of the Kenya Highlands. Am. J. Exp. Agric., 9: 1-10.
- Tamungang, N.E.B., M.Z.A. David, M.N. Alakeh and O.A. Adalbert, 2016. Phosphorus adsorption isotherms in relation to soil characteristics of some selected volcanic affected soils of Foumbot in the west region of Cameroon. Int. J. Soil Sci., 11: 19-28.
- 41. Muindi, E.M., J.P. Mrema, E. Semu, P.W. Mtakwa, C.K. Gachene and M.K. Njogu, 2015. Phosphorus adsorption and its relation with soil properties in acid soils of Western Kenya. Int. J. Plant Soil Sci., 4: 203-211.

- 42. Burt, R., M.D. Mays, E.C. Benham and M.A. Wilson, 2002. Phosphorus characterization and correlation with properties of selected benchmark soils of the United States. Commun. Soil Sci. Plant Anal., 33: 117-141.
- 43. Mnthambala, F., J.H. Maida, M.W. Lowole and V.H. Kabambe, 2015. Phosphorus sorption and external phosphorus requirements of ultisols and oxisols in Malawi. J. Soil Sci. Environ. Manage., 6: 35-41.
- 44. Wolde, Z., W. Haile and D. Singh, 2015. Phosphorus sorption characteristics and external phosphorus requirement of Bulle and Wonago Woreda, Southern Ethiopia. Adv. Crop Sci. Technol., Vol. 3. 10.4172/2329-8863.1000169.
- 45. Haynes, R.J., 1982. Effects of liming on phosphate availability in acid soils: A critical review. Plant Soil, 68: 289-308.
- 46. Smyth, T.J. and P.A. Sanchez, 1980. Effects of lime, silicate and phosphorus applications to an Oxisol on phosphorus sorption and ion retention. Soil Sci. Soc. Am. J., 44: 500-505.
- 47. Sanchez, P.A., 1976. Properties and Management of Soils in the Tropics. Wiley, New York, ISBN: 9780471752004, Pages: 618.
- 48. Sims, J.T. and G.M. Pierzynski, 2005. Chemistry of Phosphorus in Soils. In: Chemical Processes in Soils, Dick, W.A., M.A. Tabatabai and D.L. Sparks (Eds.). Soil Science Society of America, Wisconsin, pp: 17.