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Abstract: The omate rock lobster (Pamudirus ornatus) in Torres Strait supports locally
important artisanal and commercial fisheries in both Australia and Papua New Guinea.
In this paper we developed a new age-structured population model for the lobster
fishery, cast the model into the framework of dynamic state-space modelling of modern time
series methodology and used a Bayesian approach to produce posterior distributions of the
model parameters. A stock recruitment relationship was incorporated into the age-structured
model and its parameters were fitted together with other model parameters. The mean
estimates of natural mortality rate (M) range from 0.47 to 0.77 year™. Using the mode
values of natural mortality rate and the two parameters defiming the stock recruitment
relationship, the maximum sustainable yield was estimated to be around 265 t (tail weight)
with a corresponding fishing mortality rate (F) 0.4 year™. The estimated fishing mortality
rate exceeded this level in 1994, 1996, 1997 and 1999. To consider the natural variation in
these parameters and the uncertainty involved in their estimates, Monte Carlo simulation
was used to quantify the uncertainty in the relationship between sustainable yield and
fishing mortality. The results show that the 50% credible interval of the maximum
sustainable yield ranges from 110 to 390 t and its corresponding F ranges from 0.2 to
0.5 year!. State-space models can take into account both measurement and process errors
and the Markov chain Monte Carlo techniques produce posterior probability density
functions for all the parameters of interest. All these should provide more information about
the uncertainty involved in stock assessment and improve risk management in fisheries.

Key words: Rock lobster, age-structured model, state-space model, Bayesian approach,
Torres Strait

Introduction

The ornate rock lobster (Pamdiris ornatus) is distributed across the Torres Strait between
Australia and Paua New Guinesa. Lobster fishing has been an ancient tradition for local islanders
and has become the major source of income for them over the last two decades (Pitcher and Bishop,
1995). Along with the local islanders’ fishing, the rock lobster also supports anindustrialized
fleet consisting of 24 small freezer boats. In Australia, the freezer boat sector produced 59% of the
total lobster catch and the local islander sector 41% in 2003/2004 (Australian Fisheries Management
Authority, unpublished data). The annual total catches in Torres Strait over the last decade
averaged around 300 t of tail weight, about 75% landed in Australia and 25% caught in Paua New
Guinea (Ye et al., 2004a).
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The rock lobsters are caught by divers fishing from dinghies. Divers use hookah compressors to
fish in deep grounds (5-25 m) between reefs, whereas free divers fish on reefs in shallow waters
(Pitcher ef af., 1997). In 1987, a minimum legal size (100 mm tail length) was introduced to prevent
growth overfishing and the mumber of licenses of the freezer boat sector was frozen to stop the further
expansion of fishing effort in this sector (TPZJA, 1988). A two month (October and November) ban
on the use of hookah diving equipment was introduced in 1993. In 2002, the minimum legal size was
raised to 115 mm tail length, the hookah ban was extended to four months (October to January) and
a two month (October-November) closure to free diving was introduced.

The lobster stock consists of mainly three age groups, 0, 1 and 2 year olds, with very few large
3-year-old lobsters. Larvae hatch during the Austral summer and settle in Torres Strait at an age of
about 0.5 years. They recruit into the fishery around September the following year and are fished for
about a year before most lobsters migrate out of Torres Strait to breed just before they reach 3 years
old (Skewes ef al., 1994; Pitcher ef af., 1997). Lobsters from Torres Strait spawn once in their life only
and experience a severe mortality after breeding (Dennis ef af., 1992).

As age 2 lobsters constitute the major part of the fishable stock, the dynamics of the stock
biomass exhibits strong seasonal fluctuation caused by variation in fishing pressure within a year.
Production models that use only catch and effort data are usually not suitable for assessing stocks
with high seasonal variation in fishing pressure. Also, production models are not suitable for
assessing the consequences of introducing controls over muinimum fishable size and target age
groups, which are the principal regulatory measures adopted for the lobster fishery. Therefore, the
population dynamics of the lobster fishery has been studied through the use of age-structured models
(Pitcher ef al., 1997, Pitcher et al., 2002; Ye ef al., 2004a). The proportion and mean size of recruiting
1+ and fished 2 + year classes were estimated from tail size distribution using the Mix program
(MacDonald and Pitcher, 1979).

Age composition is an important source of information for understanding fish population
dynamics. With length, weight and age information, age-based models can follow year-classes through
time to monitor population changes over time {Quinn and Deriso, 1999). However, it is difficult to take
into account the two stochastic components, process error and measurement error, when fitting
population dynamic models using maximum likelihood methods (Meyer and Millar, 1999).We,
therefore, develop an age-structured model for the Torres Strait lobster fishery, cast the model into the
framework of dynamic state-space modelling of modern time series methodology and use a Bayesian
approach to produce posterior distributions of the model parameters.

Materials and Methods

The Age-structured State-space Model
Process Equation
The dynamics of a cohort of lobsters can be described by the following equation:

=N, e —,C (1)

F+a4l AR A

where, N, ,is the number of lobsters at age a in year y, M, is natural mortality in year y, v, , is the
ratio that gauges the extent to which the scasonal pattern in catch rate affects the population analvsis
{(Mertz and Myers, 1996) and C, ,is the number of age a lobsters caught in year y.
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Among the three age groups in Torres Strait, the fishery targets two age groups, 1-and 2-year-
olds. These two age groups are sub-adults and their natural mortality rates are not expected to be very
different. However, due to highly variable environmental conditions, annual natural mortality rates are
believed to be highly variable, ranging from 0.17 year— to 1.5 year! (Pitcher ez al., 1997). Therefore,
Eq. 1 assumes that the natural mortality rate varies between years, but remains constant over age. The
model can assume that natural mortality varies with both year and age, but the number of parameters
to be estimated will become too large to obtain reliable estimates.

¥, 18 determined by the seasonal fishing pattern and varies with year and age (See Mertz and
Myers, 1996). However, by assuming that fishing takes place in a pulse form in the middle of a fishing
season that starts at time t (0 < t < 1) and lasts for T (0 < T < 1) within a year, we can simplify the
calculation of vy, , to the following:

Ny = efmyu:r‘fzfm (2)

This model is known to be insensitive to the assumption of pulse fishing (Mertz and Myers,
1996). In fact, by specifying a pulse fishery at midyear, Eq. 2 immediately yields v, ,=v =e™*
after substitution into Eq. 1, one recovers Pope’s (1972) cohort equation.

The lobster fishery has had a minimum legal size limit in place since 1987. This regulation
generally prevents age 1 lobsters from being captured before August. So, the fishing season for age 1
group is from September to December each year, meaning T, =0.33 and t, = 0.67. Age 2 lobsters are
subject to fishing until they migrate out of the Torres Strait fishing grounds in September; therefore
T,=0.67 and t, = 0.

After estimating the stock numbers at age, solving the following equation vields fishing
mortality rate F, ,:

and

Ny =N, &5 @)
where, T, is the fraction of fishing season during the year as specified above.

Equation 1 is an extended version of the cohort equation (Pope, 1972), which is normally used
to describe the dynamics of a single cohort. There are two major groups of methods in applying the
cohort dynamic equation or its general catch equation to catch-at-age data. The first group of methods,
commonly called Virtual Population Analysis (VPA), (Gulland, 1965; Laurec and Shepherd, 1983) or
cohort analysis (Pope, 1972), are recursive algorithms that calculate stock size based on catches with
no underlying statistical assumptions. The second group comprise methods that rely on formal
statistical models and are normally called statistical catch-at-age methods (Doubleday, 1976,
Paloheimo, 1980; Fournier and Archibald, 1982; Megrey, 1989). The recursive methods used in VPA
or cohort analysis work well when there are many age groups. Their use would be doubtful for a
fishery of only two major age groups. Also, VPA or cohort analyses require the assumption that the
natural mortality is known. In contrast, the statistical catch-at-age methods are able to estimate
natural mortality. For these reasons, statistical catch-at-age methods are used in this study. The lobster
fishery has no fishing effort data available and therefore, the cohort equation (Eq. 1) was used to
describe the dynamics.

Paloheimo (1980) and Doubleday (1976) allow the recruitment for cach cohort to be a totally free
parameter to be estimated. We, however, force the estimated recruitments fit some stock-recruitment
relationship (Fournier and Archibald, 1982). This has a big advantage in reducing the parameters to be
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estimated for the lobster fishery. The lobster fishery stock has only two major age groups. For
a 12-year catch-at-age matrix, a normal catch-at-age analysis needs to estimate 12 recruitments plus
the number of age 2 lobsters in the first vear. To reduce the number of parameters to be estimated,
recruitment is modelled stochastically and the recruitment deviations are parameters of the model.

Spawning capacity of a stock is better measured by spawning biomass than by number of
individuals because egg production of most fishes and marine invertebrates is more closely related to
biomass (Beverton and Holt, 1956). With population numbers at age, spawning biomass is calculated
as the average of age 2 lobsters that survived to October, November and December (the breeding
months),

S, =N, W, + N7 W+ N W)')/3 )

where, N, is the number of age 2 lobsters at ith month in year y, calculated by interpolation between
consecutive years as:

logN! =((12—i)logN_ +ilogN_, /12 {5

The W. are weights of age 2 lobsters in ith month, respectively and are calculated from the
length-growth equation and the relationship between weight and length,

W =1.244%1073 TW2* (6)
where, TW is tail width (mm) and
TW = (L — 1.089)/1.433

where, 1. is carapace length calculated from the wvon Bertalanffy growth equation
(Trendall et al., 1988)

La= 177(1 _8—0386(3—0411)) (7)
The stock-recruitment relationship is defined by Ricker’s model

RY = &SY?ze—ﬁSy,gﬂy (8)
where, ¢ is the recruits-per-spawner at low stock sizes, 3 is a parameter describing how quickly the
recruits-per-spawner drop as S increases and T, is an error term assuming independent normal random

variates with a zero mean and unknown variance o .

Observation Equation

The lobster survey was carried out in May/June each year. Abundance indices for each lobster
age group were constructed using generalized linear models (Ye et @f., 2005). There are a variety of
choices for modelling the distribution of the observed relative abundance index I, .. The lognormal
distribution is generally considered a sensible choice for a relative abundance index,

log(1, )=log(qN} )+= . )]
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where, N are the numbers-at-age at the time of the survey and calculated by Eq. 5, £, is an error term
deseribing observation errors, which are assumed to be independently and normally distributed with
a mean of zero and variance of o2, for each age group and ¢ is a scale parameter that makes the survey
index and stock abundance comparable and should not be confused with the catchability coefficient
used to define the relationship between fishing mortality rate and effort. No explicit catchability
coefficients are used in this study because we do not use fishing effort at all.

The catch data are assumed to have measurement errors, £, that are normally distributed with a

mean of zero and unknown variance o’,

C,.=C,.+E, 10

2

where, C, ,is the estimated catch and éya the observed catch in year v and age a.

The Bayesian Approach

In the Bayesian approach, one proceeds by defining the probability distribution (or likelihood
function) for the observation v, that is, the observations in Equations 9 and 10. Here catches, referred
to as control variables in state-space models, are assumed to be known with random errors. The
probability model can be constructed as follows

PElO= 60,19 £, 9 (an

where, the parameter set 0 refers to all of the unknown parameters given above, except for the variance
terms. These unknown parameters are finther assumed to be random quantities with prior distributions
1(8n), where 1 is a vector of the variance terms, generally referred to as hyperparameters in our
model. The prior distributions reflect our knowledge of the state of nature prior to collecting the data.
Having collected the data, we update our view of the state of nature and express this update as
posterior distributions.

Py |g)n(q| h)

. (12)
Py [Wyw(p | h)dp xp(y|qn(q| )

plqly. b=

Based on the posterior distributions, we can summarize our updated knowledge about the
clements of € in terms of means, medians, ete. The integral in the denominator of Eq. 12 15 a
normalization factor and involves high-dimensional integration (equal to the dimension of the state u).
In the past, this was the main difficulty that hindered the application of Bayesian inference (Dowd and
Meyer, 2003). For modern posterior computation using simulation techniques, this normalization
constant is not required. Equation 12 shows how the prior joint probability density function (pdf) of
the parameters is updated using the likelihood function p(v|0)to yield the posterior pdf of the
parameters. The posterior pdfis thus regarded as a synthesis of different sources of information.

The general solution for p(Bly, n) relies on Markov Chain Monte Carlo (MCMC) methods. There
are two major techniques devised to create Markov chains with the desired stationary distribution.
They are Gibbs sampling (Gelfand and Smith, 1990; Carlin et af., 1992; Carlin and Louis, 1996; Meyer
and Millar, 1999) and the Metropolis-Hasting algorithm (Metropolis et af., 1953; Hastings, 1970). The
former was used here and Bayesian modelling was carried out here using the windows version of the
public domain package WinBugs (Speigelhalter ef af., 1995).
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Prior Disiributions

Prior distributions are required for all unobserved quantities in the Bayesian implementation of
this model. These priors encompass what we know about the population from previous studies or
from related or similar species. In the absence of prior knowledge, it has been common practice to seck
an appropriate non-informative prior distribution, that is, letting the likelihood function for the
observation dominate estimation of the posterior distribution (Carlin and Louis, 1996). Intuitively, this
would suggest using a uniform prior distribution thus giving each possible value of any parameter an
equal chance of being chosen. Unfortunately, uniform distributions are not invariant under
reparameterization and what might be non-informative on one scale may not be on another
(Smith and Lundy, 2002).

Alternatively, Box and Tao (1973) suggest choosing a prior that is diffuse enough that the data
will dominate whatever information there 1s in the prior. The search for priors 1s far from clear cut.
Kass and Wasserman (1996) review more than a dozen formal methods for deriving priors and find that
none of them are guaranteed to produce good priors. Millar (2002) gives details on specifying
default priors for several common fisheries models. This is the general approach that was
followed here.

Variance parameters are often excluded from the parameter vector 8 and are presumed a priorn
independent from other parameters under the state of prior ignorance (Box and Tao, 1973; Kass and
Wasserman, 1996). Fisheries data often have lognormal errors and logo has a flat prior (Millar, 2002).
We assume therefore that the error term for the relative abundance index has the following prior,
logo ~Gamma(0.001,0.001). For the variance of catch in Equation 10, the priors are set at values based
on the real catch data for each age group, oy, ~ Gamma (0.5,0.08) for the age | group and oy, ~ Gamma
(0.5,0.007) for the age 2 group, respectively.

Catchability q is a scale parameter and Jeffreys’ prior applies to it (Millar, 2002). We model its
variance using the inverse gamma distribution-the recommended form of prior for scale variables
(Carlin and Louis, 1996; Meyer and Millar, 1999): 1/g~Gamma (0.001, 0.001). This form of prior
approximates a Jeffreys” prior which is both noninformative and invariant to changes in scale
(Congdon, 2001).

The Jeffreys” prior for ¢ in Equation 7 is uniform on the log scale and that for {3 is uniform on
[0,e2] (Millar, 2002). We then set 1/1oge~Gamma(0.01, 0.01) and p~uniform(0, 1) for ¢ and p. The
prior for B was limited based on the previous study on stock and recruitment relationship
(Pitcher et al., 2002).

The Jeffreys” prior of instantancous natural mortality rate is uniform on [0,e] (Millar, 2002) and
we use M ~ lognormal (-0.32, 5) to limit its value between 0.17 and 1.15 based on the results from
Pitcher ez al., (1997).

The estimates of recruitment in previous vears give some information about the order
of magnitude and wvariability in recruits. We, therefore, use the abundance estimates derived from
the fill-scale survey in 1989 and the following year’s monitoring survey to set priors for the
recruitments of the first two vears and the initial numbers-at-age for the first year; the priors are,
N, ;~lognermal(6.7, 10), N, ,~lognormal(s.5, 10) and N, ~lognormal(7, 10).

Monitoring Convergence of MCMC

Convergence in the context of MCMC methods means that the sampled values adequately
characterize the posterior distribution for any particular node or variable. It is very difficult to say
conclusively that a chain has converged, but it is much easier to diagnose when it definitely has not.
Tierny (1996) presents the theoretical conditions for convergence but there is no one omnibus test for
convergence and authors generally recommend using a variety of tools (Carlin and Louis, 1996).

73



J. Fish. Aquat. Sci., 1 (1); 68-86, 2006

Table 1: Summary of posterior distributions for model parameters. The columns labelled 0.025 and 0.975 refer to the
lower and upper limits of the 95% density regions for the posterior distribution of the parameter

Parameter Mean SD MC error 2.500% Median 97.50%
M 1989 0.49 0.1712 0.0025 0.2236 0.4661 0.8928
M 1990 0.59 0.2001 0.0031 0.2687 0.5644 1.0400
M 1991 0.55 0.1895 0.0026 0.2530 0.5272 0.9870
M 1992 0.72 0.2156 0.0032 0.3433 0.7021 1.1870
M 1993 0.77 0.2228 0.0040 0.3754 0.7553 1.2460
M 1994 0.63 0.1918 0.0028 0.3095 0.6142 1.0510
M 1995 0.71 0.2122 0.0038 0.3448 0.6939 1.1700
M 1996 0.64 0.2072 0.0038 0.3034 0.6212 1.1120
M 1997 0.47 0.1598 0.0023 0.2203 0.4491 0.8393
M 1998 0.71 0.2290 0.0034 0.3319 0.6950 1.2210
M 1999 0.58 0.1944 0.0025 0.2672 0.5511 1.0180
M 2000 0.77 0.2731 0.0023 0.3269 0.7327 1.3650
Logq -5.25 0.2199 0.0196 -5.6720 -5.2470 -4.7960
o 15.45 5.2870 0.1414 8.7600 14.3600 28.8600
5 0.0043 0.0024 0.0001 0.0007 0.0040 0.0101
LogNi; 6.70 0.2247 0.0100 6.2750 6.6930 7.1450
LogN,, 6.89 0.2252 0.0098 6.4700 6.8900 7.3450
LogNy; 6.93 0.2450 0.0085 6.4360 6.9300 7.4010
o, 0.32 0.0710 0.0011 0.2109 0.3106 0.4868
o 0.12 0.0908 0.0012 0.0247 0.0913 0.3583
On 1.78 4.3110 0.2029 0.1789 0.5989 13.021

jori) 0.55 1.4451 0.0709 0.0528 0.1781 3.920

There are four aspects of an MCMC run that need to be considered (Gelman, 1996; Smith and
Lundy, 2002). The first is to determine how many iterations it takes before the Markov chain is
stationary, i.e., how long the burn-in period should be. The second is to decide on the frequency of the
thinning process (sub-sampling every kth iteration) to break the autocorrelation of the samples from
MCMC methods in order to obtain independent and identically distributed observations for variance
estimation. The third concerns how long the sampling should be conducted, that is, how many
iterations are needed once the chain has converged. Finally, to ensure robustness and consistency in
the results of the Monte Carlo integration, multiple realizations of the chain are generated using
different starting values for the random variables as well as different random seeds.

We used a burn-in period of 1000 interactions and sampled every 20th iteration to break the
autocorrelation. Approximately 2x10* quasi-independent samples of p(By,n) were drawn from the
simulated Markov Chain and used to construct estimates of the posterior pdfs of the parameters and
states. After the trace and history plots of two different chains with WinBUGS suggested no evidence
against convergence, we employed Gelman-Rubin statistics, as modified by Brooks and Gelman (1998)
and the Raftery and Lewis (1992) convergence diagnostic to firther check convergence. BOA
(Smith, 2004) was used for these checks. The resulting Monte Carlo error for each parameter
reached less than 5% of the sample standard deviation (Table 1), a rule of thumb criterion of
convergence {Spiegelhalter ef af., 2003).

Results

Model Parameter Estimaies

A summary of the model parameters for the age-structured state-space model is given in
Table 1. Medians are also listed and they are quite similar to the means. However, it is worth noting
that some parameters are transformed.

The posterior pdfs of the model parameters and initial state variables, recruitments in 1989 and
1990 and the number of age 2 lobsters in 1989, have been plotted along with their associated prior
distributions for easy comparison (Fig.1). All these estimates show significant difference between
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Fig. 1: Posterior distributions of the estimates of the model parameters and initial state variables
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posterior and prior distributions, except the natural morality rate in 2000, which closely resembles the
prior pdf, with only a slight shift in the mode of the distribution. The additional information associated
with the data has allowed the refinement of the posterior pdfs of most of the parameters. The
mean estimates of natural mortality rate M ranged from 0.47 year—" in 1998 to 0.77 year—' in 1990
(Table 1 and Fig.1). The maximum value was almost double the lowest estimate, suggesting a large
inter-year variation in natural mortality. The 95% credible intervals are also fairly wide.

The likelihood was informative for the process variance term o | the variance for recruitment o
and the catches for age 1 and 2 groups o’, and o7, . Although Jeffreys’ priors were used for the standard
deviations, the posterior pdfs have quite narrow distributions (Fig. 2), justifying the use of
non-informative priors.
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Fig. 4: Comparison of age 1 lobster population size between the model estimated medians and survey
relative abundance indices

Most parameters listed in Table 1 are not highly correlated with each other, except ¢ and 3 in
Eq. 8. The bivariate plot of the joint posterior distribution highlights this correlation (Fig. 3). For
dependent parameters, the distribution of the one variable changes as a result of drawing a value
for the other variable. This modified distribution is the conditional distribution used in Monte
Carlo simulations.

The estimates of age 1 lobsters in June, when the annual fishery independent surveys were
conducted, were contrasted with those estimated from the relative abundance indices and scale
parameter through Eq. 9. The estimated population size captures the variation seen in relative
abundance indices quite well (Fig. 4). A large discrepancy between the survey and model estimates can
be seen only in 1989.

Age 2 lobsters exhibited a declining trend consistent with the estimates from relative abundance
indices (Fig. 5). In contrast with the age 1 group, the model-based estimate in 1989 is much lower than
the survey index. Estimates for age 1 and age 2 groups are confounded. This is caused by the integrated
approach to model fit for all age groups. In general 1989 is likely to be an outlier (Ye ef al., 2004c).

The estimates of fishing mortality for age 2 lobsters show a generally increasing trend from 1989
to 1996, but decreasing thereafier (Fig. 6). The age 1 group had an overall annual variation pattern
similar to that of age 2 lobsters. However, the relative fishing mortality rate of age 1 lobsters was only
20% that of age 2 lobsters in 1989. It increased steadily over time and reached 60% in 1999.
Unfortunately, the 2000 fishing mortality for age 1 lobsters could not be estimated because
Equation 3 requires knowing the number of age 2 lobsters in 2001. The fishing mortality on the
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Fig. 5: Comparison of age 2 lobster population size between the model estimated medians and survey
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Fig. 7: Model-estimated stock recruitment curve. The squares and bars indicate medians and 95%
creditable intervals of the recruitment estimates

age 1 group has risen steadily, which may indicate the industry has increased the targeting of
age 1 lobsters over recent years.

The estimated stock-recruitment curve is shown in Fig. 7. The 95% creditable intervals for
recruitment seem quite wide. The high variation reflects the fact that recruitment of lobsters is highly
variable, like many other fisheries. The median estimates for recruitment cannot be considered as point
estimates because the parameters in Fig. 7 were estimated based on the distributions of recruitment
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Fig. 8. Relationship between fishing mortality (F) and sustainable yield (C in tonnes of tail weight),
assuming M, ¢ and p take their median values

rather than just the mean. In this sense, estimation of the stock-recruitment model should be more
representative and reliable.

The spawning stock biomass was the highest, 230 tonnes, in 1989, but dropped down to almost
one fourth of that level, 60 tonnes, in 1996 (Fig. 7). Recruitment correspondingly decreased from a high
of 11 million in 1989 to 6.5 million in 1996. The stock recruitment curve indicates that spawning stock
biomass should be kept at around 150 t to obtain the maximum recruitment.

Productivity of the Lobster Fishery

For management purposes, it is always interesting to know the productivity of a fishery. Under
average conditions, the population produces surplus production each year, which can be taken as
equilibrium yield without changing the population’s size (Quinn and Deriso, 1999). The corresponding
strategy for managing fish populations is then a surplus production policy (Chapman et al., 1962,
Ricker, 1975). One calculates the surplus production in a given year and then sets a harvest below,
equal to, or above this level depending on whether one wishes to rebuild, keep stable, or reduce the
current population size (Quinn and Deriso, 1999). As fish population size is not directly measurable,
surplus production is often expressed as a function of fishing mortality or effort for convenience. This
can be easily done with production models. However, with age-structured models, it is rather complex
to derive analytical results. Numeric methods were used to calculate the sustainable yields under
different fishing mortalities in this study.

If the natural mortality rate, ¢ and P assume their posterior mode values, the sustainable yield
of the fishery is simply a function of fishing mortality (Fig. 8). Sustainable yicld increases as fishing
mortality increases up to some point, at which point vield begins to decline with fiwther increase in
fishing mortality. Unlike the curve derived from Schaefer’s production model (Schaefer, 1957), this
curve is not parabolic, but has a long concave tail on the right, which differs from the convex tail of the
Pella-Tomlinson model (Pella and Tomlinson, 1969). This may indicate that the spawning migration
out of the fishing grounds provides some kind of protection from over-fishing and that even under very
high fishing pressure the stock can still maintain a certain level of production, rather than collapsing
quickly, as observed in many other fish populations.

The Bayesian approach adopted in this study enables us to go beyond point-estimates and
consider the uncertainties involved in the estimates of natural mortality and the two parameters
defining the stock recruitment relationship. We carried out multivariate Monte Carlo simulation based
on a univariate distribution of M and a bivariate distribution for ¢ and p to estimate the sustainable
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Fig. 9: The sustainable yields (C) under various fishing mortality rates (F) taking into account the
uncertainties in the estimates of natural mortality (M) and the stock recruitment parameters
(ec and P in Eq. 8). The marks, *, o and x, indicate 25, 50 and 75% quantiles, respectively

vields under various fishing mortalities (Fig. 9). The middle line indicates the median estimates of the
sustainable yields. It should be noted that the maximum vield of the middle line in Fig. 9 is slightly
lower than that of Fig. 8 that was deterministically estimated.

The other two lines in Fig. 9 are the 25% and 75% quantile estimates, respectively. Most
noticeable is that the fishing mortality that produces a maximum sustainable yield differs
between the quantiles. The 25% quantile line peaks at F = 0.2 year™!, the mode line has a maximum
at F = 0.4 year~ and the 75% quantile line at F = 0.5 year—'. The stochastic relationship shows that
there is a large uncertainty in the sustainable yield evenif the control variable, fishing mortality rate,
is fixed at a specific level because of the potential uncertainties in natural mortality and stock
recruitment relationship.

Discussion

The Fishery

Natural mortality is a key parameter in most stock assessment models and also one of the most
difficult parameters to determine, due to the confounding effects of recruitment, fishing mortality and
natural mortality (Quinn and Deriso, 1999). Pitcher ef @/., {1997) estimated annual natural mortality
rates of the lobsters in Torres Strait from 0.17 year™ to 1.15 year—'. As their estimates were based
on two points of abundance data (e.g. number of age 2 group in year t and number of age 1 group in
year t71), the higher variation is quite likely due to data noise or measurement errors. Our estimates
were derived from fitting the population dynamic model to the catch and survey data and the
estimation was done in an integrated way, which prevents the loss of information contained in the
year-to-year variation. This estimation should be relatively robust to measurement errors. However,
Pitcher et al.,’s (1997) estimates are still within owr posterior distributions (Fig. 1).

The highest natural mortality estimate of 0.77 year™ was seen in 1993 and 2000 (Table 1). This
coincides with periods of seagrass dieback recorded in 1992/93 and 1999/2000 (Ye ef ai., 2004Db).
However, it must be noted that the difference in natural mortality between 1993 and neighbouring
years and between 2000 and 1999 is not very large (Table 1). A potential reason for this is suggested
by two observations. First, the seagrass dicback was recorded mainly in the northwest area of Torres
Strait, close to the freshwater discharge along the PNG coast that is implicated as the cause of the
seagrass mortality. Second, the lobsters in the northwest area are normally found at a relatively low
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density. So, the impact of seagrass dieback on lobster mortality may be local and limited only to the
northwest area. The natural mortality estimated in this study is for the entire population and
therefore, the imited increase in natural mortality may reflect the restricted arca of impact.

The recruitment estimates exhibit wide credible regions (Fig. 7)., suggesting high uncertainties in
recruitment, i.e., a relatively weak stock-recruitment relationship. However, the estimated
stock-recruitment relationship is similar to that based on the estimates of age 1 and 2 lobsters directly
denived from the May/June surveys from 1989 to 2002 (Ye¢ et /., 2004c). The new age-structured
model used the mean biomass of the age 2 lobsters in September, October and November as a measure
of the stock’s spawning capability (Eq. 4) and the recruitment was defined as the number of age 1
lobsters at the beginning of each year. The survey-based estimates of age 2 lobsters in May/June do
not directly contribute to estimates of spawning as the breeding season is from November to February
(MacFarlane and Moore, 1986). The four-month period between the survey and spawning could
contribute a great uncertainty to spawning- stock biomass depending on fishing intensity. Equation
4 should provide a better measure for spawning stock biomass. However, the similarity of Fig. 7 to
the previously derived stock recruitment relationship of Ye er @f. (2004¢) suggests that the
improvement in measurement of spawning stock may offer little reduction in the uncertainty of the
stock recruitment relationship in this case.

The estimated fishing mortality rate of the lobster fishery exceeded 0.4 year™ in 1994, 1996-97
and 1999 and was very close to thatlevel in 1998 (Fig. 5). This certainly suggests that the fishery was
under high fishing pressure during these years and might well have been overfished. This conclusion
is supported by the estimates of low spawning stock biomass (Fig. 7) for that period. Although the
abundance estimates for age 1 and 2 lobsters were relatively low in 1999 and 2000 (Fig. 4 and 5), the
difference from estimates for other years is not clear cut. However, the relative abundance indices
estimated from the anmual surveys show very alarming signs in 2001 and 2002 (Ye ez af., 2004c).

The stochastic relationship between sustainable yield and fishing mortality (Fig. 9) quantifies
uncertainty in the response of three major variables (M, « and [3) after a complex transfer function of
sustainable yields. Recruitment models are widely used because strategic fishery management demands
an assessment of the likely future response of fish populations to exploitation (Needle, 2002).
Assessment of uncertainty in recruitment models can lead to probabilistic prediction of management
consequences and the scientific formation of realistic regulations. It is undeniable that both natural
mortality and stock-recruitment relationship vary from year to year, likely due to variation in factors
related to larvae settlement and the survival of juveniles and lobsters recruited to the fishery. The
natural variation in these parameters and the uncertainties in their estimates make the estimation of
sustainable yield under a specific fishing mortality rate very uncertain. For example, the 50% credible
interval of the maximum sustainable yield ranges from 110 t to 390 t and its corresponding fishing
mortality rate from F = 0.2 year—' to F = 0.5 year—' (Fig. 9). The uncertainty in sustainable yield can
be decomposed into the contribution of each single factor by drawing only one factor from its posterior
distribution. This can help to pinpoint the factor of the greatest contribution to uncertainty. Although
sustainable yield is a highly hypothetical concept, it has been used extensively in fishery management.
The stochastic sustainable vield provides more information about the uncertainty involved and should
improve risk management in fisheries.

Fishery management is about choosing harvest strategies to achieve the goals and objectives
pre-set for a specific fishery. However, both the population dynamic model and the decision process
involve stochasticity. To improve management, fishery managers need to assess the risks associated
with alternative management actions. The posterior distributions of the model parameters and states
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produced by the Bayesian approaches can easily be used for quantitative risk analyses (Francis 1992;
Francis and Shotton 1997). The results of this study should facilitate the harvest strategy evaluation
of the Torres Strait lobster fishery in the near future.

State-space Models and Bayesian Approaches

In state-space models, the current state of the process summarizes all of the information from the
past that is necessary for predictions of future states (Abraham and Ledolter, 1983). The measurement
equations (Eq. 9 and 10) describe the genecration of observations from the cumrent state with
measurement error. The system equations (Eq. 1 and 7) describe how the states are supposed to evolve
through time with random shocks captured by the process error. Models without process error imply
deterministic state trajectories and time-invariant parameters (Millar and Meyer, 2000). Deterministic
models predict stock size into the infinite future as a deterministic function of the current stock and
harvesting policy. In general, the measurement error characterizes our uncertainty with respect to the
current state while process error captures the uncertainty moving from the current state to the next one
in time (Smith and Lundy, 2002). State-space models are more realistic and do have superior
performance compared with deterministic models. However, classical likelihood-based statistics
restricts the applicability of state-space methodology. The MCMC techniques have provided
solutions to problems that were hitherto considered computationally intractable and will almost surely
have an impact on fisheries stock assessment (Meyer and Millar, 1999,

The ability to account for both measurement and process error has made state-space models more
and more popular in fisheries stock assessment over the last few years (Meyer and Millar, 1999,
Millar and Meyer, 2000). This study provides an extension to the existing application by considering
the simultaneous joint estimation of both the stock-recruitment relationship and other model
parameters, which can also reduce the number of parameters to be estimated in the age-structured
model of a stock having a low number of age groups.

Deriso et af. (1985) found it was very helpful to include a stock-recruitment curve. However,
most age-structured models serve to produce estimates for recruitment and spawning stock that are
then used to build a stock-recruitment model. The integrated single step method used in this study may
have some advantage in preventing loss of information and allowing the stock-recruitment relationship
to influence the estimation of model parameters. The traditional two-step sequential methods may help
break the confounding between years or parameters. Which method performs better is likely to depend
on the case. Nevertheless, we should try the two-step method and compare the resulting parameter
estimates with those estimated from one-step approaches in the furture.

Bayesian models require the specification of prior distributions for all the parameters to be
estimated. The specification of prior information is, however, a contentious issue. The formal methods
denive the prior as the square root of the determinant of the information matrix obtained from the
likelihood finction of the data (Jeffreys, 1961). There are limitations of using the formal methods. The
prior may need to be chosen by consensus when formal methods fail. The inverse prior on scale
parameters is widely accepted by Bayesian modellers as the appropriate default prior (Millar, 2002).
Other priors may be derived based on real data or information of existing studies. For example, the
priors for the natural mortality rates used in this study were based on previous study from
Pitcher et al. (1997). However, it must be noted that there is no one way for the choices of prior
assumption. Sensitivity to prior assumptions should be assessed thoroughly. We have repeated the
analysis under different prior assumptions, but with the same situation in order to aid direct
comparison of results.
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