

Journal of **Fisheries and Aquatic Science**

ISSN 1816-4927

Journal of Fisheries and Aquatic Science 8 (1): 1-8, 2013 ISSN 1816-4927 / DOI: 10.3923/jfas.2013.1.8 © 2013 Academic Journals Inc.

Management and Utilization of Weed: Water Hyacinth (Eichhornia crassipes) for Improved Aquatic Resources

A.O. Sotolu

Department of Forestry, Wildlife and Fisheries Shabu-Lafia Campus, Nasarawa State University Keffi, Lafia, Nigeria

ABSTRACT

Natural aquatic plants population can be healthy for any aquatic ecosystems as they serve as fish feed, play an important role in nutrient cycling, purify the water, control unwanted algal growth and support fauna including birds. Water hyacinths (*Eichhornia crassipes*) have proven to be a persistent and expensive aquatic weed problem. The review was carried out in the face of current global challenge (climate change) which threatens biodiversity conservation and sustainable use of natural resources so that water hyacinth could be viewed as an asset of multifarious benefits considering the revealed highlights rather than been labeled expensive nuisance. The simplest method of management of aquatic weeds is to harvest it and utilize it for cost effectiveness in production such preparation of fish and livestock feeds, bio-gas production, making of charcoal briquetting and waste water treatment for domestic and industrial use. The main problem of utilization and management of water hyacinth is its high cost of transportation to sites for utilization but once this can be overcome as revealed in the review appropriate utilization techniques is recommended.

Key words: Water hyacinth, ecosystems maintenance, aquatic weed, utilization, biodiversity preservation

INTRODUCTION

Water hyacinth (Eichhornia crassipes) is an aquatic plant which can live and reproduce floating freely on the surface of fresh waters or can be anchored in mud making it the most successful colonizer in the plant world (Wolverton and McDonald, 1978). The extremely rapid rate of proliferation (Hill et al., 1997) of the water usually result in reduction in height penetration and dissolved oxygen in water bodies, change water chemistry, affect flora and fauna, increase rate of water loss due to evapotranspiration and it is now presently being considered as a serious threat to biodiversity (Mathur, 2007). During an International Water Hyacinth Consortium at World Bank, Washington, Hill et al. (1997) reported that more action should be geared towards the control of the weed as its utilization is not an effective means of control. In recent times, considerable attention seems to be given to its harvesting for practical uses, namely, for partially defraying the cost of removing plants from water ways and for use as alternative plant protein source in livestock feed including fish (Sotolu, 2008; Aderolu and Akinremi, 2009) due to persistent problem of high cost of feeding in aquaculture. The reports of Boyd (1968 and 1969) on the chemical analyses of water hyacinth indicated that it contains very high fibrous or cell wall materials, mainly cellulose which was corroborated by Igbinosun et al. (1988) but very rich in amino acid profile (Wolverton and McDonald, 1978) and essential vitamins (Liang and Lovell, 1971). The high fibre content of the whole water hyacinth plant meal has put great limitations into its effective utilization by fish

J. Fish. Aquat. Sci., 8 (1): 1-8, 2013

as feed ingredient (Akinyanma, 1988; Igbinosun et al., 1988; Nwanna et al., 2008) despite its high nutritive value but its potential in waste water purification has been enumerated by several researchers (Timmer and Weldon, 1967; Oki et al., 1988; Sotolu, 2010). The main factor affecting the utilization level of Water Hyacinth Meal (WHM) has been its high crude fibre content. Table 1 shows proximate composition of water hyacinth while its mineral composition is presented in Table 2. The amino acid profile of water hyacinth in comparison with two other plant protein sources further demonstrates its richness in terms of nutrient composition (Table 3). This review presents results of several researches on water hyacinth utilization and control and offers suggestions on the potential role of the free existing plant for use in sustainable environmental management.

Table 1: Proximate composition of water hyacinth (Eichhornia crassipes) %

Parts	Dry matter	Ash	Crude protein	Crude fibre	Lipid
Leaves	14.70	12.40	22.75	15.00	4.82
Petioles	7.00	19.85	9.60	22.00	1.29

Igbinosun et al. (1988)

Table 2: Mineral composition of water hyacinth

	Conc. (%	Conc. (%)				Conc. (ppm)		
Parts	P	K	Na	 Ca	Mg	Mn	Zn	Fe
Leaves	0.44	4.28	0.02	2.63	190.50	77.30	77.30	161.10
Petioles	0.37	9.70	1.56	0.64	199.50	69.00	69.00	151.00

Igbinosun $et\ al.\ (1988)$

Table 3: Amino acid composition of cottonseed meal and soybean meal as compared to dried water hyacinth leaves

	Concentration (g/100 g crude protein)				
Amino acid analysis	Cottonseed meal	Soybean meal	Water hyacinth leaves		
Lysine	5.40	6.49	5.68		
Histidine	2.16	2.63	2.20		
Arginine	5.17	6.98	5.23		
Aspartic	19.22	12.18	12.03		
Threonine*	4.86	4.26	4.34		
Serine	4.94	5.51	4.08		
Glutamic	13.66	19.36	11.01		
Proline	5.02	5.29	6.00		
Glycine	5.56	4.48	5.14		
Alanine	6.33	4.58	6.19		
Valine	5.48	4.80	5.55		
Methionine*	1.31	1.37	1.40		
Isoleucine*	4.40	4.90	4.66		
Leucine*	7.80	7.98	8.26		
Tyrosine	3.55	3.94	3.38		
Phenylalanine*	5.10	5.37	5.42		
Tryptophan			0.99		
Crude protein (%)	39.10	44.50	31.30		

^{*}Essential amino acids, Wolverton and McDonald (1978)

Adaptation of water hyacinth and its emergence in Nigerian waters: Eichhornia crassipes originated in the Amazon Basin and was introduced into many parts of the world as an ornamental garden pond plant due to its beauty (Hill et al., 1997). It has proliferated in many areas and can now be found on all continents apart from Europe. It is particularly suited to tropical and subtropical climates and has become a problem plant in areas of the southern USA, South America, East, West and Southern Africa, South and South East Asia and Australia. Its spread throughout the world has taken place over the last 100 years or so, although the actual course of its spread is poorly documented. In the last 20 years the rapid spread of the plant in many parts of Africa has led to great concern. An early record of its presence in River Nile was in the later part of the 18th Century (Hill et al., 1997; Ekelernu, 1998). The biological dynamics of water hyacinths in terms of genetic uniformity has been investigated by Barret (1988) who reported that existing clonal diversity in the plant enhances its ubiquity as sexual recruitment occur in invasive sites where environmental conditions favour seedling establishment. The plant now circum-globed in tropical and subtropical regions, was first noticed in Nigerian waters, on the shore of Lagos lagoon in October 1984 through port-novo creek in Benin Republic in September 1984 according to Hill et al. (1997) but has since spread to other parts of the country, particularly in the Coastal states. This aquatic plant is problematic in Nigeria coastal waters. It is known to block navigation ways, greatly reduces fishing activities as well as recreational activities within the environment (Hill et al., 1997). The plant is a perennial aquatic herb (Eichhornia crassipes) which belongs to the family Pontederiaceae, closely related to the Liliaceae (lily family). The mature plant consists of long, pendant roots, rhizomes, stolons, leaves, inflorescences and fruit clusters. The plants are up to 1 meter high although 40 cm is the more usual height. The inflorescence bears 6-10 lily-like flowers, each 4-7 cm in diameter. The stems and leaves contain air-filled tissue which give the plant its considerable buoyancy and it has been observed travelling upstream against the current (Wolverton and McDonald, 1979). The vegetation reproduction is asexual and takes place at a rapid rate under preferential conditions. Thyagarajan (1983) reported that one hectare pond of water hyacinth will produce 0.9 to 1.8 t of dry matter per day. It grows rapidly in water with temperatures of between 28 and 30°C and with a pH of 4.0-8.0 and ceases to grow when the water temperature is above 30°C or below 10°C. The weed dies when the tip rhizome is frozen. The weights and proportions of water hyacinth differ considerably in different samples collected in various seasons. However, the typical green plant consists of 24.80% root, 41.90% stalk and 33.305% leaf (Thyagarajan, 1983). The physical structure of the plant made its transportation very cumbersome and expensive after harvesting towards its utilization. The efforts of Mathur (2007) have provided ways of overcoming it through design of a machine. The machine consisted of pair of rollers, set of blades, a shear plate, a hopper and conveyors. Performance of the machine was evaluated on the basis of biomass reduction of water hyacinth. The developed system reduced the specific volume of water hyacinth by 73% and thus reduced the cost of transportation up to 65.7% (Mathur, 2007). The chopped and crushed biomass can be used for alternative applications like preparation of paper, fiber board, furniture, biogas production, making of charcoal briquetting, as animal feed, fish feed etc. and completed his recommendations that crushing and effective utilization of water hyacinth will help in to solve the problem of management of water hyacinth. Barrett et al. (1990) have pointed out that there are number factors to be considered when deciding on the best management strategy. For example, there is a choice between total control or some form of selective control. This

depends on the particular management objective. The management techniques chosen must be appropriate both to the type of weed problem and to the uses and functions of the body of water. The risk of adverse side-effects for users of the water must always be given priority. In general, the more effective the weed clearance, the greater will be the risk of an adverse environmental impact (Barrett et al., 1990). Accordingly, aquatic weed management systems must be developed which are socially and environmentally acceptable. In addition, freshwater systems are now being viewed as a public amenity and recreational area which should be in agreement with the environment. It should be noted that no single method will guarantee the success of aquatic weed management. The combined use of several appropriate methods, including utilization of water hyacinth as a resource, is often the best way of protecting the quality of the environment.

Water hyacinth for sustainable aquaculture production: The role of data monitoring and utilization for sustainable development cannot be overemphasized (Sotolu, 2011). Several researches on the utilization of water hyacinth have been carried and results seem not to be readily available for its effective adoption and replication. The farming demands of a controlled aquatic plant system have repressed application in the aquaculture industry. Mathur (2007) provides considerable detail about various methods of water treatment that can be applied to aquaculture, including a number of filtration systems and bacterial-based technologies, such as Rotating Biological Contactors (RBC). However, the discussion of aquatic plants is limited, with only two species mentioned: water chestnuts (Eleocharis dulcis) and water hyacinths (Eichhornia crassipes-Mart Solms). Water hyacinths are stated as having some potential as a livestock feed (Konyeme et al., 2006) but it is suggested that drying of the plants makes the economics unattractive. It is implied that the perceived difficulties in the dynamic farming of aquatic plants tend to overpower the water quality benefits they provide and it is noted that most Aquaculturists are more concerned about eliminating aquatic plants than they are interested in producing them. However, in spite of this observation, Mathur (2007) is not reluctant to suggest that integration of plant and fish systems has merit as a means of improving water quality and increasing fish production, which was in line with earlier reports of Balasooriya et al. (1984). Boyd (1990) also stated that using water hyacinths or other aquatic macrophytes to remove nutrients and reduce the potential for phytoplankton growth in fed ponds might have practical application in tropical and subtropical areas.

Water hyacinth in eutrophicated waters: Using aquatic plants to improve water quality within an integrated fish culture system has also been reviewed seriously by researchers. In a recent study, Coetzee et al. (2009) provided some support for the use of created wetland systems for treating effluents from aquaculture operations, specifically, static catfish ponds. They do not, however, address the possibility of true integration of the wetland system into facility operations as a source of additional aquaculture products, or as a means of improving fish production but rather offer the use of wetlands solely as a means of treating effluents from drained ponds. Water hyacinth-based systems and the Algal Turf Scrubber (ATS) system are well suited for coordination with fish cultivation in a tropical and subtropical environment, as they are compatible with crop management routines and operational manipulation (Mathur, 2007). Further, they offer high productivity levels at the associated temperature and influx levels. Due to the oxygen-generating

and phosphorus-reduction capabilities and its ability to sustain rather high levels of production under a wide range of nutrient concentrations, the ATS system is a logical selection as a plant cultivation system for the integrated system of the present invention. The use of water hyacinths provides additional support in facilitating nitrification, reduction of BOD and suspended solids and as a pretreatment and hydraulic equalization system.

Water hyacinth technology for integrated aquaculture system: The use of water hyacinths for control of nutrients within wastewaters has been developed and commercially applied in subtropical areas such as Florida. The role of a water hyacinth system within the integrated aquaculture system is to provide initial control of nitrogen and oxidation of ammonia; oxidation of CBOD; storage of residual solids and removal of Total Suspended Solids (TSS); insulation to retain heat in winter and shade in the summer; hydraulic equalization during periods of flow diversions or fluctuations; production of high-fiber, high-protein material for livestock feed; reduction of residual toxins; attenuation of pathogens and pretreatment of makeup waters prior to dispensing into the ATS or fish cultivation systems. Although, water hyacinths are referred to herein, the plant subsystem may include monocultures or polycultures and may include plants of the genera Eichhornia, Spirodela, Salvinia, Azolla, Lemna and Pistia, although these are not intended to be limiting. Work on the effectiveness of water hyacinths in treating agricultural wastes (dairy) provided an indication that in addition to direct plant uptake, extensive nitrification and consequential denitrification occur within the water hyacinth root zone (Klumpp et al., 2002). A number of commercial applications in Florida (Klumpp et al., 2002) established the ability of managed water hyacinth systems to significantly reduce nutrient loadings from wastewaters. Considerable investigation has also been directed towards the removal of both suspended solids (TSS) and CBOD by water hyacinths. Early work by Wolverton and McDonald (1979) provided evidence that at high CBOD and TSS loadings water hyacinths could facilitate extensive reductions, approaching 400 kg ha⁻¹ day⁻¹. Similar results were documented by Klumpp et al. (2002) at the Disney facility near Orlando, Florida. In a commercial application at the Iron Bridge Treatment Facility in Orlando, Gangstad (1978) achieved reductions in CBOD and TSS to below 2.5 mg L⁻¹. Similarly, the rate of nitrification has been shown to be high within a functioning hyacinth system (Gangstad, 1978). The potential of water hyacinth has been utilized by the national space Technology Laboratories NSTL of the United State in the treatment of eutrophicated lagoon due to high cost of waste water treatment in order to meet Environmental Protection Agency (EPA) regulation (Rogers and Daveis, 1972) and this result was corroborated by observations of Addison (1997) in a recent study. The reports of the treatment indicated that mean influent BOD was reduced by 95% from 110 to 5 mg L^{-1} in the effluent while the mean influent TSS was reduced by 90% from 97 to 10 mg L⁻¹ in the effluent. The average monthly total Kieldahl nitrogen (ammonia and organic bond nitrogen) was reduced from 12.0 to 3.4 mg L⁻¹ and the total phosphorus was reduced from 3.7 to 1.6 mg L^{-1} . The water hyacinth was able to control nuisance algal blooms and no repulsive came from the lagoon due to the improved water quality that was achieved, which was corroborated by the recent reports of Willoughby et al. (1993). An analysis of the fish cultivation effluent, applied to the HYADEM model, allows projections of cultivation area, effluent quality and plant management needs for a water hyacinth system that would serve as a pre-ATS process. This system receives flows from the fish cultivation ponds and tanks; makeup

Table 4: Some studies involving use of water hyacinth

Studies/observations	Researcher(s)	Summary report
Nutritional value in feeds	Liang and Lovell (1971)	It is a source of essential vitamins in channel catfish diet
Probable use in fish feed	Igbinosun $et\ al.\ (1988)$ and	Water hyacinth meal can successfully replace wheat offalin
formulation	Sotolu and Sule (2011)	Tilapia diet at a level of 23% and soya bean meal up to 25% in catfish diet
Domestic waste water	Barsom (1973)	It is an inexpensive method of treating domestic waste water
treatment		treatment. BOD and TSS were effectively reduced
Chemical waste water	Wolverton $et\ al.\ (1976)$ and	Water hyacinths readily absorbed and concentrate heavy metals
treatment	Wolverton and McDonald (1978)	such as Pb, Cd, Hg, Ni, Cu and Ag
Nutrient potential of water	Nwanna <i>et al</i> . (2008)	Water hyacinth can replace soybean meal in catfish diet at a level
hyacinth meal		of 25%
Serve as ornamental plants	Soerjani (1985)	Add to the beauty and serenity of an aquatic landscape
Source of feed for fish	Barrett <i>et al.</i> (1990)	Grass carp grow rapidly, so that their food demand steadily increases
Investigate sporulation and	Oluwanisola and	The formulated water hyacinth agar medium appeared most
cost benefit of raw materials	Adebayo (2009)	economically feasible for the mycelial production of C. pallescens
for the production of		Boedijn
Curvularia pallescens		

water sources; any diverted ATS water; and various waste streams that might come from plant and fish processing, or from external sources. Table 4 presents different researches involving water hyacinth and the various forms of successes recorded, which further describe water hyacinth commercial importance.

CONCLUSION

Water hyacinth has been perceived as a nuisance to fisheries threatening biodiversity and as such greater attention has been given to it towards its total eradication via International and Regional workshops and conferences. However, in the face of current global challenge (climate change) which threatens biodiversity conservation and sustainable use of natural resources, it is high time water hyacinth is viewed as an asset of multipurpose character rather than been considered an environmental threat already labeled expensive nuisance.

Most of our riverine communities on the African continent of which Nigeria is one are poor. They are highly dependent on local natural resources for their livelihood and are disproportionately vulnerable to the effects of climate change. On another note aquaculture has remained the saving grace for the declining captured fisheries over decades and therefore requires all round support for the sustainability of the production systems. New approaches for its effective utilization and management techniques should be embarked upon vigorously beyond keeping research findings on the shelves.

Ways of purification of water for healthy use within the poor communities devoid of pipe borne water supply should be focused.

Intensification of aquaculture as well as its expansion being a necessary strategy for ensuring adequate supply of fish globally cannot be achieved without provision of sufficient quality water. It serves as source of feed to fish and protection of breeding ground and its utilization in aquaculture and waste water treatment for fish production (Integrated multitrophic aquaculture, aquaponics and recirculating aquaculture) cannot be over-emphasized.

Water hyacinth should be considered a blessing as it confers more benefits to man and natural resources conservation than its perceived nuisance.

REFERENCES

- Addison, K., 1997. An agricultural testament. Proceeding of the International Water Hyacinth Consortium, March 18-19, 1997, World Bank, Washington, DC., USA., -pp: 23-27.
- Aderolu, A.Z. and O.A. Akinremi, 2009. Dietary effects of coconut oil and peanut oil in improving biochemical characteristics of *Clarias gariepinus* juvenile. Turk. J. Fish. Aquatic Sci., 9: 105-110.
- Akinyanma, D.M., 1988. Soyabean meal utilization in fish feed. Proceedings of the Association Conference on Korean Feed, August 1988, Seoul, South Korea.
- Balasooriya I., P.J. Paulraj, S.L. Abeyguna-Wardena and C. Nanayakkara, 1984. Biology of Water Hyacinth: Phsico-Chemical Properties of Water-Supporting *E. crassipes*. In: Water Hyacinth, Thyagarajan, G. (Ed.). United Nations Environment Programme (UNEP), Nairobi Kenya, pp: 318-347.
- Barrett, P.R.F., K.J. Murphy and P.M. Wade, 1990. The Management of Aquatic Weeds. In: Weed Control Handbook, Hance, R.J. and K. Holly (Eds.). Blackwell Scientific Publications, Oxford, England, pp: 473-490.
- Barrett, S.C.H., 1988. Evolution of breeding systems in *Eichhornia*: A review. Ann. Missouri Botanical Garden, 75: 741-760.
- Barsom, G., 1973. Lagoon performance and the state and the state of Lagoon technology. Bioresour. Technol., 99: 4460-4466.
- Boyd, C.E., 1968. Fresh water plants: A potential source of protein. Econ. Botany, 22: 355-368.
- Boyd, C.E., 1969. The nutrient value of three species of water weeds. Econ. Bot., 23: 123-127.
- Boyd, C.E., 1990. Water Quality in Ponds for Aquaculture. 1st Edn., Auburn University Agricultural Experimentation Station, Auburn, AL., Pages: 482.
- Coetzee, J.A., M.P. Hill, M.H. Julien, T.D. Center and H.A. Cordo, 2009. *Eichhornia crassipes*. In: Weed Biological Control with Arthropods in the Tropics, Muniappan, R., G.V.P. Reddy, A. Raman and V.P. Gandhi (Eds.). Cambridge University Press, Cambridge, pp: 183-210.
- Ekelernu, J.K., 1998. Malacostracan species inhabiting water hyacinth (*Eichhornia crassipes*) in Benin River, Southern Nigeria. Nigerian Field, 63: 149-157.
- Gangstad, E.O., 1978. Weed Control Methods for River Basin Management. CRC Press, USA., ISBN-13: 9780849353284, pages: 229.
- Hill, G., J. Waage and G. Phiri, 1997. The water hyacinth problem in tropical Africa. Proceedings of the International Water Hyacinth Consortium, March 18-19, 1997, Washington, DC., USA.
- Igbinosun, J.E., O. Roberts and D. Amako, 1988. Investigation into the probable use of water hyacinth (*Eichhornia crassipes*) in Tilapia feed formulation. NIOMR Technical Paper No. 39.
- Klumpp, A., K. Bauer, C. Franz-Gerstein and M. de Menezes, 2002. Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil). Environ. Int., 28: 165-171.
- Konyeme, J.E., A.O. Sogbesan and A.A.A. Ugwumba, 2006. Nutritive value and utilization of water hyacinth *Eicohhornia crasspes* meal as protein supplement in diet of *Clarias gariepinus* fingerlings. Afr. Sci., 7: 127-133.
- Liang, J.K and R.T. Lovell, 1971. Nutritional value of water hyacinth in channel catfish feeds. Hyacinth Control J., 9: 40-44.
- Mathur, M.S., 2007. Water hyacinth and its management through alternative utilization. Proceedings of the International Symposium on Air Quality and Waste Management for Agriculture, September 16-19, 2007, Broomfield, Colorado.

J. Fish. Aquat. Sci., 8 (1): 1-8, 2013

- Nwanna, L.C., A.E. Falaye and A.O. Sotolu, 2008. Water Hyacinth (*Eichhornia crassipes*) Mart. Solms: A Sustainable Protein Source for Fish Feed in Nigeria. In: Food, Health and Environmental Issues in Developing Countries: The Nigerian Situation, Adebooye, O.C., K.A. Taiwo and A.A. Fatufe (Eds.). Alexander von Humboldt Foundation, Bonn, Germany, pp: 187-194.
- Oki, Y., K. Une and K. Nakagaea, 1988. Relationship between occurrence of aquatic weeds and water quality in the natural water body (2). Japanese, Weed Res. Japan, 33: 73-74.
- Oluwanisola, O.W. and O.L. Adebayo, 2009. Effects of sodium ion and water hyacinth extract in the production of *Curvularia pallescens* in culture media. Afr. J. Biochem. Res., 3: 238-244.
- Rogers, H.H. and D.E. Davis, 1972. Nutrient removal by waterhyacinths. Weed Sci., 20: 423-428.
- Soerjani, M., 1985. Environmental considerations in the novel approach of aquatic vegetation management. Proceedings of the 10th Conference on Asian-Pacific Weed Science Society, November 24-30, 1985, Thailand, Pp. 33-49.
- Sotolu, A.O. and S.O. Sule, 2011. Digestibility and performance of water hyacinth meal in the diet of African catfish (*Clarias gariepinus*; Burchell, 1822). Tropical Subtropical Agroecosyst., 14: 245-250.
- Sotolu, A.O., 2011. Sustainable fisheries management through efficient fisheries resources data statistics. J. Fish. Aquat. Sci., 6: 202-211.
- Sotolu, A.O., 2008. Nutrient potentials of water hyacinth as a feed supplement in sustainable aquaculture. Obeche, 26: 45-51.
- Sotolu, A.O., 2010. Digestibility value and nutrient utilization of water hyacinth (*Eichhornia crassipes*) meal as plant protein supplement in the diet of *Clarias gariepinus* (Burchell, 1822) juveniles. Am. Eurasian J. Agric. Environ. Sci., 9: 539-544.
- Thyagarajan, C., 1983. Water hyacinth: A new material for handmade papers. Ind. Environ., 60: 18-21.
- Timmer, C.E. and L.W. Weldon, 1967. Evapotranspiration and pollution of water by water hyacinth. Hyacinth Control J., 6: 34-38.
- Willoughby, N.G., I.G. Watson, S. Lauer and I.F. Grant, 1993. An investigation into the effect of water hyacinth on the biodiversity and abundance of fish and invertebrates in Lake Victoria, Uganda. NRI project Report 10066 A032g, Natural Resources Institute, Chatham, UK.
- Wolverton, B.C. and R.C. McDonald, 1978. Nutritional composition of water hyacinths growth on domestic sewage. NASA/ERL Report No. 173, Washington, DC., USA.
- Wolverton, B.C. and R.C. McDonald, 1979. The water hyacinth: From prolific pest to potential provider. Ambio, 8: 1-9.
- Wolverton, B.C., R.M. Barlow and R.C. McDonald, 1976. Biological Control of Water Pollution. University of Pennsylvania Press, Philadelphia, USA., pp. 141-149.