

Journal of **Fisheries and Aquatic Science**

ISSN 1816-4927

Journal of Fisheries and Aquatic Science 8 (2): 388-396, 2013 ISSN 1816-4927 / DOI: 10.3923/jfas.2013.388.396 © 2013 Academic Journals Inc.

Purple Coloration in Leaves of Seagrass, *Halophila* (Hydrocharitaceae)

¹B. Japar Sidik and ²Z. Muta Harah

¹Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia

²Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Corresponding Author: B. Japar Sidik, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia Tel: +6086-855202

ABSTRACT

Purple coloration in leaves of *Halophila* from Merambong shoal of Sungai Pulai estuary, Johore and Merchang, Terengganu, Malaysia were investigated using a simple detection method based on chemical properties of anthocyanin that changes from red in acids to blue in bases. In addition the presence of anthocyanin was examined for the absorption maxima at wavelengths between 505 to 535 nm and phycoerythrin absorption maxima at wavelengths 496, 540 and 656 nm. Based on responses of color change in acid and base, Halophila from Merambong shoal (green big-leaved Halophila ovalis, green small-leaved Halophila ovalis, green-leaved Halophila sp.) lacked anthocyanins. Purple-tinged-leaved Halophila sp. from Merambong, purpleblotched-leaved Halophila sp. from Merchang and purple-tinged-leaved Halophila sp. (explant from Merambong shoal) from culture tank showed dramatic changes from purple-tinged or-blotched to blue-green tinged or -blotched respectively in 2 M NaOH or reddish coloration appeared exactly on blotches and tinges of leaves after dipping in 2 M HCL. The results for the latter three seagrasses agreed with the response of anthocyanins in base (NaOH) or acid (HCL) and the presence of anthocyanin was further confirmed with the results of absorption spectra maxima obtained at 535 nm. The detection of phycoerythrin with absorption maxima at 496, 540 and 656 nm in the purple leaves *Halophila* indicated that they lack this pigment. Seaweed e.g., Jania sp. showed positive detection for phycoerythrin with absorption maxima at 495 and 565 nm.

Key words: Anthocyanin, Halophila, phycoerythrin, purple coloration, seagrass

INTRODUCTION

Blue, red and purple pigmentation always occurred in terrestrial plants such as bromeliads, carnivorous plants and berries. Similarly, several seagrasses also possessed pigments: reddishbrown bands on *Cymodocea serrulata* (Lam et al., 2004) and purplish tinges on *Halophila* (Den Hartog, 1970; Hillman et al., 1995). Abal et al. (1994) also reported the presence of anthocyanin-like pigmentation on the intertidal leaves of *Zostera capricorni* and *Halophila ovalis* in Moreton Bay.

Plant species possess pigments adaptations that differ considerably in their ability to tolerate UV radiation (Tevini and Teramura, 1989). The majority of research involving the effect of UV radiation on plants has been focused on terrestrial plants. In general, plant sensitive to UV-B

radiation exhibit various adaptive mechanisms which include epidermal blistering and deformation, increased leaf thickness, reduced leaf area (Cline and Salisbury, 1966; Jackson, 1987; Barnes et al., 1990) as well as the production of UV-absorbing compounds such a UV-blocking pigments and anthocyanins (Tevini et al., 1981; Lovelock et al., 1992). Additionally, the work of Robberecht and Caldwell (1978) on terrestrial angiosperms has shown epidermal transmission of UV-B to be less than 10% while flavonoids and related pigments were reported to account for a large percentage of attenuation, providing a UV screen for the underlying tissue. Besides, the observations of Trocine et al. (1981) suggested anthocyanin or other flavonoids synthesis as an adaptation of seagrasses to long term UV-B radiation. In a recent survey of the world's six seagrass bioregions (Novak and Short, 2010) documented leaf reddening in 12 seagrass species from intertidal and shallow subtidal waters at 25 locations in the tropical Atlantic and tropical Indo-Pacific Oceans including additional observations of seagrasses with reddened leaves from Australia. The phenomenon is now documented in 15 seagrass species at 29 locations worldwide. Similar to terrestrial angiosperms, leaf reddening in seagrasses may relate to enhanced production and accumulation of anthocyanins, water soluble flavonoid pigments (Lee and Gould, 2002) after exposure to one or more stressors (Novak and Short, 2010). In this present study, the purple coloration in leaves of Halophila in two areas; Merambong shoal, Johore and Merchang, Terengganu, Malaysia were examined and compared with the normal green leaves of the same species and two other seaweeds.

MATERIALS AND METHODS

Plant material: Seagrasses and seaweeds were collected randomly during low spring tides in May and August 2008 at Merambong shoal (1°19′ 00″ N, 103°36′ 45″ E) of Sungai Pulai estuary, Johore, Malaysia. Four Halophila based on leaf coloration were collected: purple-leaved Halophila sp., green-leaved Halophila sp., green small-leaved Halophila ovalis and green big-leaved Halophila ovalis (determined based on number of paired cross veins and leaves sizes-characteristics of Halophila as reported by Den Hartog (1970). Purple-tinged leaved Halophila sp., green-leaved Halophila sp. and green small-leaved Halophila ovalis were collected from pure patches while green big-leaved Halophila ovalis was under the shade of Enhalus acoroides. Two other samples namely purple-blotched Halophila sp. from Merchang lagoon (5°02′ 15.0″ N, 103°17′ 53.0″ E) and purple-tinged Halophila sp. plucked directly from our Halophila (explant from Merambong shoal) culture tank were also included for pigmentation analyses. For comparison purposes seaweeds, Gracilaria sp. and Jania sp. were also collected from Merambong shoal. Samples collected were washed in a sieve, rinsed in seawater, placed in plastic bags and kept in ice chest before transporting to laboratory.

Pigment identification: Based on the blue, red and purple color in plants similar to the coloration in seagrasses, anthocyanins are suggested to play role on the coloration, thus experiments were performed following the chemical properties of anthocyanin that changes from red in acids to blue in bases (Harbone, 1984). Hence seagrass leaves for all *Halophila* collected were dipped in 2 M NaOH and 2 M HCl to detect any color changes. As a comparison, similar procedure was conducted for two red seaweeds from the division of Rhodophyta.

In order to reconfirm the presence of anthocyanin, 1 g of leaves of Halophila sp. (from Merambong shoal, Merchang lagoon, culture tank-explant from Merambong shoal) was ground in

1% HCl in absolute methanol. The total extract was centrifuged and the absorbance of the supernatant was analysed by spectrophotometer (Shimadzu model UV-160A) to obtain absorption spectrum to detect any absorption maxima at specific wavelengths (Harbone, 1984).

Phycoerythrin detection: Beside anthocyanins, phycoerythrin also changes from red in acids to blue in bases. Therefore, phycoerythrin detection was also included in this study. The method for pigment detection was modified from Dawes (1981) whereby 1 g of leaves of *Halophila* sp. (from Merambong shoal, Merchang lagoon, culture tank-explant from Merambong shoal) was ground in 0.1 M cold phosphate buffer (pH 6.5) using mortar and pestle. The homogenate was centrifuged at 6000 rpm 10 min at 4°C. The absorbance of the supernatant was measured by spectrophotometer (Shimadzu model UV-160A) to detect absorption maxima peaks at specific wavelengths (Dawes, 1981). As a comparison, similar procedure and measurement were performed on a red algae, *Jania* sp. from the division of Rhodophyta.

Data analysis: The presence of anthocyanins in seagrass and seaweed were confirmed with detection of absorption maxima at wavelengths between 505 to 535 nm (Harbone, 1984) obtained from the absorption spectrum produced after analysis through the spectrophotometer (Shimadzu model UV-160A).

The presence of phycoerythrin in seagrass and seaweed were confirmed with detection of absorption maxima at wavelengths 496, 540 and 565 nm (Dawes, 1981) obtained from the absorption spectrum produced after analysis through the spectrophotometer (Shimadzu model UV-160A).

RESULTS AND DISCUSSION

Pigment identification: Seagrasses (green big-leaved *Halophila* sp., green small-leaved *H. ovalis*, green-leaved *Halophila* sp.) leaves dipped in base (Table 1, Fig. 1) showed slight change

m 11 4 D					
Table 1: Response of	seagrasses an	id seaweeds	to acid a	ınd base med	ла

	Observation on color change after dipping in:		
	2 M NaOH	2 M HCl	
Seagrass			
Merambong shoal, Sungai Pulai, Johore			
$Halophila~{ m sp.}$	Purple tinges (Fig. 1a) to blue-green tinges	Purple tinges (Fig. 1c) to purple-red (purple-	
(purple-tinged-leaved)	(Fig. 1b)	tinges (Fig. 1d)	
Halophila sp. (green-leaved)	Green to bright green	Color remained green (Color unchanged)	
Halophila ovalis (green big-leaved)	Green to bright green	Color remained green (Color unchanged)	
Halophila ovalis (green small-leaved)	Green to bright green	Color remained green (Color unchanged)	
Merchang lagoon, Merchang, Terengganu			
$Halophila~{ m sp.}$	Purple blotches (Fig. 1e) to purple-blue	Purple blotches (Fig. 1g) to purple-red	
(purple blotched-leaved)	blotches (Fig. 1f)	blotches (Fig. 1h)	
Culture tank (explant from Merambong shoa	l		
$Halophila~{ m sp.}$	Purple tinges (Fig. 1i) to blue-green	Purple-tinges (Fig. 1k) to purple-red	
(purple-tinged-leaved)	tinges (Fig. 1j)	tinges (Fig. 11)	
Seaweed			
Merambong shoal, Sungai Pulai, Johore			
Gracilaria sp.	Purple (Fig. 1m) to greenish (Fig. 1n)	Purple to purple color (Fig. 1o, p)	
$Jania ext{ sp.}$	Red (Fig. 1q) to green (Fig. 1r) Red (Fig. 1s) to purple-red (Fig. 1s)		

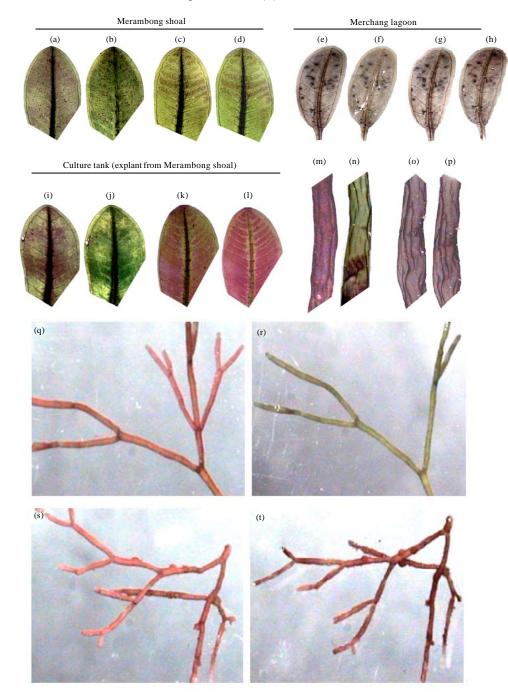


Fig. 1(a-t): Color changes in leaves of Halophila; Purple-tinged-leaved (a) Before and (b) After 2 M NaOH and (c) Before and (d) After 2 M HCl, Purple-blotched-leaved (e) Before and (f) After 2 M NaOH and (g) Before and (h) After 2 M HCl, Purple-tinged-leaved (i) Before and (j) After 2 M NaOH and (k) Before and (l) After 2 M HCl, Gracilaria sp.; (m) Before and (n) After 2 M NaOH and (o) Before and (p) After 2 M HCl and Gracilaria sp. (q) Before and (r) After 2 M NaOH and (s) Before and (t) After 2 M HCl

of color from green to bright green. Purple-tinged-leaved *Halophila* sp. from Merambong, purple-blotched-leaved *Halophila* sp. from Merchang and purple-tinged-leaved *Halophila* sp. from culture tank showed dramatic changes from purple-tinged or -blotched to blue green-tinged or-blotched respectively in base (2 M NaOH, Fig. 1a, b, e, f, i, j). The results for the latter three seagrasses agreed with the Harbone (1984) response of anthocyanin in base (NaOH).

Seagrasses (green big-leaved Halophila sp., green small-leaved H. ovalis, green-leaved Halophila sp.) leaves dipped in acid (2 M HCl), showed the leaf color remained the same or unchanged. For purple-tinged-leaved *Halophila* sp. from Merambong, purple-blotched-leaved Halophila sp. from Merchang and purple-tinged-leaved Halophila sp. from culture tank, reddish coloration appeared exactly on blotches and tinges of leaves after dipping in 2 M HCl (Fig. 1c, d, g, h, k, l). The color changes response partially agreed with Harbone (1984) where anthocyanin is stable in acid (2 M HCl). Based on observations in acid and base, the pattern of the purple coloration can be present in two forms: tinges (evenly distributed in leaves) or blotches (clumped or clustered together in leaves). The clustering of purple coloration may be a response to high intensities of visible radiation in Merchang (intertidal lagoon). Similar clumping of coloration (pigmentation) was observed in *Halophila stipulacea* (Drew, 1979; Trocine et al., 1981). However, leaf tissues with such clumping appeared pale but are not photosynthetically inhibited according to Drew (1979). This implied that seagrasses inhabiting marine environment are affected by physiological conditions which are considerably different from those experienced by freshwater plants and land plants. Halophila leaves possessing purple coloration, red blotches or spots is a form of response for protection of *Halophila* to direct exposure to strong sun-light during the low tides. It is believed that blotches are anthocyanin pigments (Low et al., 2005) and serves as UV-blocking pigments. Novak and Short (2010) documented leaf reddening in 12 seagrass species from intertidal and shallow subtidal waters at 25 locations in the tropical Atlantic and tropical Indo-Pacific Oceans including additional observations of seagrasses with reddened leaves from Australia. Leaf reddening in seagrasses may relate to enhanced production and accumulation of anthocyanins, water soluble flavonoid pigments (Lee and Gould, 2002) after exposure to one or more stressors (Novak and Short, 2010).

As for the seaweed samples, the color changes were detected for both *Gracilaria* sp. (Fig. 1m-p) and *Jania* sp. (Fig. 1q-t) for the presence of phycoerythrins which give the reddish coloration. The results obtained suggest phycoerythrins are unstable in base (NaOH, Fig. 1m, n, q, r) and stable in acid (HCl, Fig. 1o, p, s, t), thus responsible for the changes of colors. There is limited information concerning the flavonoids on seaweeds and most studies on seaweeds focused on the chlorophylls, carotenoids and phycobilins, therefore, further research into the effects of UV radiation on marine plants could be directed towards investigating their responses and their pigments compositions and distribution.

The absorption spectrum, e.g., given here for purple-tinged-leaved *Halophila* sp. from Merambong shoal (Fig. 2) showed the presence of a peak at 535 nm. Based on the reference of Harbone (1984), anthocyanins in Methanol-HCl extract have absorption maxima between the wavelengths of 505 to 535 nm; hence, the peak could be identified as anthocyanin. This suggests the presence of anthocyanin although at present, the flavonoid content of seagrasses was not specifically examined. Nevertheless, the survey conducted by Robberecht and Caldwell (1978) on 25 species of plants, in which the epidermis attenuated 95 to 99% of ultraviolet radiation, flavonoids and related pigments were reported to account for a large percentage of attenuation. Additionally, the studies of Tevini *et al.* (1981); Lovelock *et al.* (1992) revealed that the primary adaptive

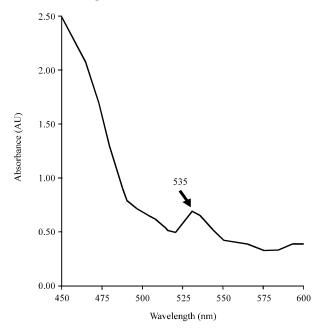


Fig. 2: Absorption spectrum of purple extract from seagrass, purple-tinged-leaved *Halophila* sp. from Merambong shoal

mechanisms employed by plants to cope with increased levels of UV radiation are by the production of UV-absorbing compounds such as UV-blocking pigments and anthocyanins, the accumulation of these compounds occur predominantly in the epidermis, providing a UV screen for underlying tissue. Similarly, Murali and Teramura (1985) reported that plants deficient in phosphorus were sensitive to UV-B irradiation with the accumulation of flavonoids in response to nutrient deficiency and increased plants' tolerance to UV-radiation. In addition, since calcareous, saline soils are particularly prone to phosphorus deficiency and the present sampling site, Merambong shoal comprised substratum characterized by sandy with calcareous fragments of shells (Japar et al., 1996), hence, the purple-tinged-leaved *Halophila* sp. may accumulate UV-blocking pigments in response to their nutrient deficiency status, whereby increasing UV-tolerance and hence increasing their survival when exposed to the sun during low tides.

Phycoerythrin detection: The absorption spectrum for seagrass (e.g., purple-tinged-leaved Halophila sp. from Merambong shoal, Fig. 2) showed almost a linear line instead of peak after 500 nm (Fig. 3), while for seaweed (e.g., Jania sp.), the absorption spectrum (Fig. 4) showed two peaks at 495 and 565 nm. This indicated the absence of phycoerythrin in purple-tinged-leaved Halophila sp. For Jania sp., the two peaks at 495 nm and 565 nm showed the characteristic of phycoerythrin. Dawes (1981) stated phycoerythrin peaks occurred at 496, 540 and 565 nm although the first peak varied slightly from the wavelength as noted by MacColl and Guard-Friar (1987). Additionally, phycoerythrin, a class of phycobilins (Sharma, 1986) is commonly found in seaweeds. Based on our previous reports, Halophila mentioned in this study from Merambong shoal, possessed chlorophyll a, b and carotenoids (Low et al., 2005). Dennison (1990) reported seagrasses do not contain chlorophyll c and d, though epiphytes growing on seagrass leaves may contain the phycobilins. Similarly, several previous studies focused mainly on the chlorophyll a, chlorophyll b, carotenoids of seagrasses and ignored the phycobilins (Drew, 1979;

J. Fish. Aquat. Sci., 8 (2): 388-396, 2013

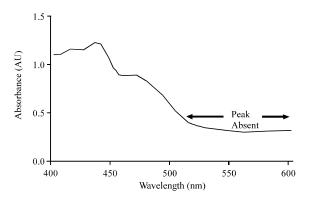


Fig. 3: Absorption spectrum of purple extract from purple-tinged-leaved *Halophila* sp. from Merambong shoal

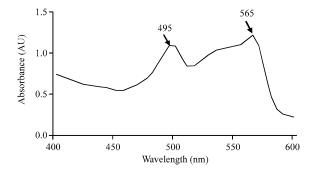


Fig. 4: Absorption spectrum of extract from seaweed, Jania species

Wiginton and McMillan, 1979; Jimenez *et al.*, 1987) may suggest the absence of this particular pigment since phycobilins are the light-harvesting pigments commonly present in seaweeds besides the chlorophylls and carotenoids (Sharma, 1986).

CONCLUSION

The presence of anthocyanins in seagrasses can be detected easily by employing the chemical properties of anthocyanin that changes from red in acids to blue in bases. Beside anthocyanins, phycoerythrin also changes from red in acids to blue in bases. Absorption maxima between 505 to 535 nm for anthocyanins and at 496, 540 and 565 nm for phycoerythrin obtained from absorption spectrum produced after analysis through the spectrophotometer can be used to confirm the two pigments. This present study suggests the purple coloration in purple-leaved seagrasses is attributed to the presence of anthocyanin and not phycoerythrin. The coloration can be distributed in leaves in two forms, tinges and blotches; the former is evenly distributed while the latter may be due to the clustering of pigments in response to high intensities of visible radiation.

REFERENCES

Abal, E.G., N. Loneragan, P. Bowen, C.J. Perry, J.W. Udy and W.C. Dennison, 1994. Physiological and morphological responses of the seagrasses *Zostera capricorni* Aschers, to light intensity. J. Exp. Mar. Biol. Ecol., 178: 113-129.

J. Fish. Aquat. Sci., 8 (2): 388-396, 2013

- Barnes, P.W., S.D. Flint and M.M. Caldwell, 1990. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am. J. Bot., 77: 1354-1360.
- Cline, M.G. and F.B. Salisbury, 1966. Effects of ultraviolet radiation on the leaves of higher plants. Radiat. Bot., 6: 151-163.
- Dawes, C.J., 1981. Physiological Ecology: Concepts and Methods. In: Marine Botany, Dawes, C.J. (Ed.). A Wiley-Interscience Publication, USA., pp: 394-418.
- Den Hartog, C., 1970. Seagrasses of the World. North-Holland Publishing Co., Amsterdam, Netherlands, Pages: 276.
- Dennison, W.C., 1990. Chlorophyll Content. In: Seagrass Research Methods, Phillips, R.C. and C.P. McRoy (Eds.). UNESCO, USA., pp. 83-86.
- Drew, E.A., 1979. Physiological aspects of primary production in seagrasses. Aquat. Bot., 7: 139-150.
- Harbone, J.B., 1984. Phenolic Compounds. In: Phytochemical Methods, Harborne, J.B. (Ed.). Chapman and Hall Publications, New York, pp: 37-68.
- Hillman, K., A.J. McComb and D.I. Walker, 1995. The distribution, biomass and primary production of the seagrasses *Halophila ovalis* in the swan/canning estuary, Western Australia. Aquat. Bot., 51: 1-54.
- Jackson, J.F., 1987. DNA repair in pollen. A review. Mutation Res., 181: 17-29.
- Japar, S.B., A. Arshad, O. Hishamuddin, Z.M. Harah and S. Misni, 1996. Seagrass and Macroalgae communities of Sungai Pulai Estuary, South-West Johore, Peninsular Malaysia. In: Seagrass Biology: Scientific Discussion from an International Workshop, Rottnest Island, Western Australia, Kuo, J., D.I. Walker and H. Kirkman (Eds.). Faculty of Science, The University of Western Australia, Western Australia, Nedlands, pp: 3-12..
- Jimenez, C., N.F. Xavier and P. Algarra, 1987. Photosynthetic adaptation of *Zostera noltii* Hornem. Aquat. Bot., 29: 217-226.
- Lam, S.L., B.J. Sidik, Z.M. Harah and A. Arshad, 2004. Adaptability of *Cymodocea serrulata* (R.Br.) aschers. and magnus to different environment. Sci. Putra., 12: 12-16.
- Lee, D.W. and K.S. Gould, 2002. Anthocyanins in Leaves and other Vegetative Organs: An Introduction. In: Anthocyanins in Leaves, Gould K.S. and D.W. Lee (Eds.). Academic Press, London, pp: 1-16.
- Lovelock, E.C., B.F. Clough and I.E. Woodrow, 1992. Distribution and accumulation of ultraviolet-radiation-absorbing-compounds leaves of tropical mangroves. Planta., 188: 143-154.
- Low, K.L., B. Japar Sidik, K. Misri, Z. Muta Harah and S.L. Lam, 2005. Chlorophylls and carotenoids of seagrass, *Halophila*. Bull. Pure Applied Sci., 24B: 41-50.
- MacColl, R. and D. Guard-Friar, 1987. Phycobiliproteins. CRC Press, Inc., Boca Raton, Florida.
- Murali, N.S. and A.H. Teramura, 1985. Effects of ultraviolet-B on soybeans VI. Influence of phosphorus nutrition on growth and flavonoid content. Physiol. Planta., 63: 413-416.
- Novak, A.B. and F.T. Short, 2010. Leaf reddening in seagrasses. Botanica Marina, 53: 93-97.
- Robberecht, R. and M.M. Caldwell, 1978. Leaf epidermal transmittance and ultraviolet radiation and its implication for plants sensitivity to ultraviolet-radiation induced injury. Oecologia, 32: 277-287.
- Sharma, O.P., 1986. Textbook of Algae. 19th Edn., Tata McGraw-Hill Education Publisher, New Delhi, India, ISBN: 9780074519288, Pages: 360.
- Tevini, M. and A.H. Teramura, 1989. UV-B effects on terrestrial plants. Photochem. Photobiol., 50: 479-487.

J. Fish. Aquat. Sci., 8 (2): 388-396, 2013

- Tevini, M., W. Iwanzik and U. Thoma, 1981. Some effect of enhanced UV-B on the growth and composition of plants. Planta, 153: 388-394.
- Trocine, R.P., J.D. Rice and G.N. Wells, 1981. Inhibition of seagrass photosynthesis by ultraviolet-B radiation. Plant Physiol., 68: 74-81.
- Wiginton, J.R. and C. McMillan, 1979. Chlorophyll composition under controlled light conditions as related to the distribution of seagrasses in Texas and the U.S. Virgin Islands. Aquat. Bot., 6: 171-184.