

Journal of **Fisheries and Aquatic Science**

ISSN 1816-4927

Journal of Fisheries and Aquatic Science 9 (1): 33-39, 2014 ISSN 1816-4927 / DOI: 10.3923/jfas.2014.33.39 © 2014 Academic Journals Inc.

Specific Primers of *Oryzias javanicus*, *O. dancena*, *O. minutillus* and *O. woworae* and Molecular Phylogeny Using Partial Mitochondrial DNA Sequences

Arin Ngamniyom and Naphat Phowan

Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, Bangkok, 10110, Thailand

Corresponding Author: Arin Ngamniyom, Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, Bangkok, 10110, Thailand

ABSTRACT

Fish of the genus Oryzias (Teleost) are one of the experimental animals used in various studies of biological vertebrates. These fish mostly inhabit the fresh and brackish waters of East and Southeast Asia. In the present study, specific primer pairs were used to identify the four species of Oryzias (O. javanicus, O. dancena, O. minutillus and O. woworae) using PCR (polymerase chain reaction) analysis. Moreover, the phylogenetic relationship of O. woworae within the eleven Oryzias species was assessed based on the complete nucleotide sequence of tDNA-Val and the partial sequences 12S ribosomal DNA (rDNA) and 16S rDNA. The PCR results showed individual amplification by the specific primers in the four species. The phylogenetic data, which clustered into three groups, confirmed the hypothesis that the Oryzias taxa referred to those sequences. These data give a set of molecular tools and a source of nucleotide data for Oryzias that might increase the knowledge distribution of molecular genetics in the Adrianichthyidae.

Key words: Specific DNA markers, Oryzias, molecular phylogeny, partial mitochondrial DNA

INTRODUCTION

Oryzias spp. (also called ricefish or medaka in Japanese) belong to the family Adrianichthyidae and are a model organism used in the fields of embryology, genetics and toxicology (Matsuda et al., 2002; Zhang et al., 2008; Ngamniyom et al., 2009). These fish are broadly distributed throughout East, South and Southeast Asia and the Indo-Malay-Philippines Archipelago. There are twenty-two recognised species in this genus (Parenti, 2008). Takehana et al. (2005) reported that the zoogeographical distribution is associated with the phylogenetic relationship of the Oryzias taxa inferred from mitochondrial DNA.

In Southeast Asia, O. javanicus (Java-medaka) and O. dancena predominantly inhabit the brackish waters South of Thailand and Malaysia, exhibiting seawater adaptability and serving as a fish model for osmoregulation (Inoue and Takei, 2002; Yang et al., 2013). O. minutillus (dwarf medaka or Thai medaka) is the smallest fish in the genus Oryzias and widely distributed in Thailand (Ngamniyom and Panyarachun, 2012a). This species is a sensitive bioindicator of xenoestrogenic activity in the natural environment and laboratory (Ngamniyom et al., 2011; Ngamniyom and Panyarachun, 2012b). In Indonesia, O. woworae (Daisy's ricefish), which is

remarkably colourful, is a native fish in a freshwater habitat on the main island of Sulawesi (Parenti and Hadiaty, 2010). This species might serve as an alternative Teleost to use as experimental model with many advantageous characters.

DNA genetic markers are an important tool for fish identification, especially in an aqua-cultural population and community (Liu and Cordes, 2004). Termvidchakorn and Magtoon (2008) described the criteria of species identification in the developmental stages of *Oryzias* larvae from Thailand. However, accurate identification using molecular genetics still needs to be developed.

In this study, specific primers were chosen based on partial mitochondria DNA sequences (the complete tDNA-Val (transfer RNA-valine) sequence and partial 12S ribosomal DNA (rDNA) and 16S rDNA sequences) for the identified O. javanicus, O. dancena, O. minutillus and O. woworae. Furthermore, the phylogenetic relationship of O. woworae within the Oryzias species was evaluated using these nucleotide sequences.

MATERIALS AND METHODS

Fish collection: O. javanicus and O. dancena (Fig. 1a, b) were collected from the brackish waters of mangrove from the Satun Province, South of Thailand (6°37'26"N 100°04'01"E). O. minutillus (Fig. 1c) were collected from the fresh water of the Nakhon Nayok Province, Centre of Thailand (14°12'44"N 101°12'06"E). O. woworae were purchased from a commercial source in Bangkok, Thailand (Fig. 1d). These fish were immediately preserved in 100% ethanol and stored at -20°C.

Genomic DNA extraction and PCR analysis: The genomic DNA of each specimen was extracted using a DNeasy Tissue kit (Qiagen, Germany) according to the manufacturer's protocol. In O. woworae, mitochondrial DNA was amplified by Taq DNA polymerase (Takara, Tokyo, Japan) and contained the complete tDNA-Val sequence and partial 12S rDNA and 16S rDNA sequences. The primer pairs used in this study are shown in Table 1. The PCR conditions were the following: An initial denaturation at 95°C for 3 min, followed by 30 cycles of denaturation at 94°C for 30 sec, annealing at 52°C for 30 sec and extension at 72°C for 1 min. A final extension was performed at 72°C for 10 min. The PCR products were electrophoresed on a 1.5% agarose gel that was ethidium bromide stained and visualised under a UV transilluminator. The amplified PCR products were

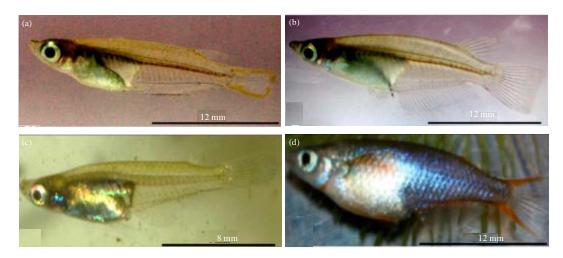


Fig. 1(a-d): Four fresh samples of Southeast Asian Oryzias: (a) O. javanicus, (b) O. dancena, (c) O. minutillus and (d) O. woworae

Table 1: Primer pairs used in PCR and sequencing reaction of four Oryzias

Species	Primer names	Primers	For using in	Product (bp.)
O. javanicus	Ojsfforward	(fwd): 5'-GCCCCTTCTATCAAAAGCCGC-3'	Specific primer	1371
	Jsrreward	(rev):5'-GGATTGCGCTGTTATCCCTGG-3'		
O. dancena	Odsf	fwd: 5'-CCAGCCGAATGTAACCGCTAAC-3'	Specific primer	600
	$_{ m Jsr}$	rev:5'-GGATTGCGCTGTTATCCCTGG-3'		
O. minutillus	Omsf	fwd:5'-AGCACAAGTGTAAGTCGGAGTGAAC-3'	Specific primer	664
	Omsr	rev:5'-CCCCCTTTTTATGGACTGTCTGAGG-3'		
O. woworae	Oj1	fwd:5'-AGAGAGTCCTGCTGAAACTGGCCCTA-3'	Sequencing	1729
	Oj2	rev: 5'-AGAAACTGACCTGGATTACTCCGGTC-3'		
	Oj3	ffwd:5'-GCACTATAGTCTGGACCCCCG-3'	Sequencing	746
	Oj4	rrev: 5'-CGGCCGTTAAACGTTAGAGTC-3'		
	Owsf	fwd:5'-GCACAACTGAGTTGTTAGACACC-3'	Specific primer	958
	$_{ m Jsr}$	rev:5'-GGATTGCGCTGTTATCCCTGG-3'		

Table 2: GenBank accession number of fish species for phylogenetic

Analysis

Species	Accession No.	References
Ingroup		
Oryzias sarasinorum	AB370891	Setiamarga et al. (2008)
O. celebensis	AB498070S	Etiamarga et al. (2009)
O. marmoratus	AP005981	Setiamarga et al. (2009)
O. latipes	AP008942	Hirayama et al. (2010)
O. latipes shanghai	AP008948	Hirayama <i>et al.</i> (2010)
O. sinensis	GU013788	Yoon et $al.$ (2011)
O. luzonensis	AB498064	Setiamarga et al. (2009)
O. dancena	AB498069	Setiamarga et al. (2009)
O. javanicus	AB498067	Setiamarga et al. (2009)
O. minutillus	AB498068S	Etiamarga et al. (2009)
O. woworae	KC517074	In this study
Outgruop		
Cypselurus hiraii	AB182653	Nagase <i>et al.</i> (2005)
Gambusia affinis	AP004422	Miya et al. (2003)

purified using the QIAquick Gel Extraction Kit (Qiagen, Germany). Nucleotide sequencing was performed by the Macrogen DNA Sequencing Service, Korea. The partial mitochondrial DNA sequence of *O. woworae* has been deposited in the GenBank database (http://www.ncbi.nlm.nih.gov) (accession number KC517074).

Phylogenetic analysis: The DNA sequences of the four *Oryzias* species (accession number in Table 2) were aligned using the ClustalW2 program (http://www.ebi.ac.uk/Tools/msa/clustalw2/) to identify regions of local differences for designing specific primers. The PCR cycle conditions for the specific marker test followed the above conditions. For a phylogenetic evaluation within the *Oryzias* species (Table 2), an analysis of the neighbour-joining with Kimura's 2-parameter correction was carried out using the Molecular Evolutionary Genetics Analysis (MEGA) version 5.10 software package (Tamura *et al.*, 2011). Finally, the sequences from each amplified band were confirmed using the online program Basic Local Alignment Search Tool (BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.egi).

RESULTS

DNA specific marker test: In O. javanicus, the amplification band of the PCR product was thick and identified by the specific markers from Ojsf and Jsr (Fig. 2a). There were no amplification bands in O. dancena, O. minutillus and O. woworae. The primer pairs from Odsf and Jsr amplified the sequences of O. dancena but did not amplify those of O. javanicus, O. minutillus and O. woworae (Fig. 2b). The genomic DNA of O. minutillus was amplified using primers from Omsf and Omsr (Fig. 2c). In contrast, amplified bands were absent in O. javanicus, O. dancena and O. woworae using these primers. In O. woworae, an individual band of a DNA fragment was shown following amplification by the Owsf and Jsr primers, whereas no evidence of DNA amplification was observed in O. javanicus, O. dancena and O. minutillus (Fig. 2d).

Phylogenetic tree: The phylogenetic relationship of eleven *Oryzias* and two outgroup species was analysed based on the complete tDNA-Val sequence and partial 12S rDNA and 16S rDNA sequences. The results showed a common pattern of cladistics in the *Oryzias* species and the clades

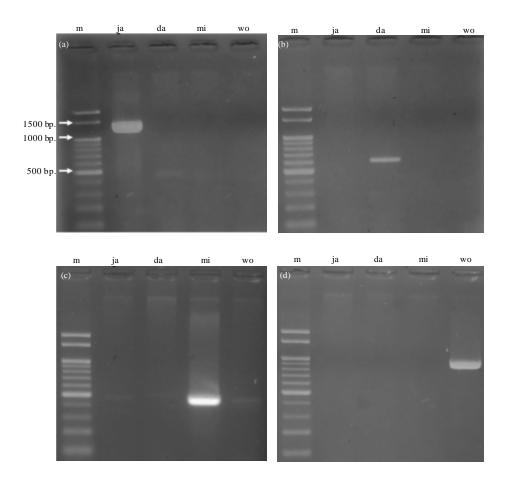


Fig. 2(a-d): PCR analysis with results gel electrophoresis using the specific primers. The primer of Ojsf and Jsr for O. javanicus (ja) (a), Odsf and Jsr for O. dancena (da) (b), Omsf and Omsr for O. minutillus (c), Owsf and Jsr for O. woworae and (d) 1 kb of molecular marker (m)

J. Fish. Aquat. Sci., 9 (1): 33-39, 2014

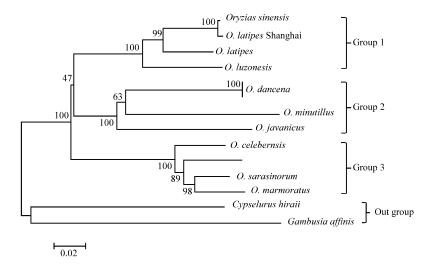


Fig. 3: Neighbour-joining tree with bootstrap test of 1000 replicates among the relationship of 11 *Oryzias* fish. Number on the branch tree was percentage of bootstrap. Bar indicates a corresponding of a length to 0.02 nucleotide substitution pers site

were far from the outgroups, Cypselurus hiraii and Gambusia affinis (Fig. 3). In this phylogeny, the Oryzias species were separated into three monophylogenetic groups. Group 1 consisted of O. sinensis, O. latipes, O. latipes (Shanghai stain) and O. luzonesis, group 2 consisted of O. dancena, O. minutillus and O. javanicus and group 3 consisted of O. celebensis, O. woworae, O. sarasinorum and O. marmoratus.

DISCUSSION

The primer pairs designed in this study were able to specifically amplify the partial mitochondrial sequences of two closely related species, O. javanicus and O. dancena (Yusof et al., 2012) and were not associated with cross-amplification in O. minutillus and O. woworae. The embryo, fry and juvenile are hard to distinguish by species; however, Termvidchakorn and Magtoon (2008) provided a method for identifying Oryzias larvae by developmental morphology. These results demonstrated a molecular biology tool that can be used for the precise identification of four Oryzias species. Genetic marker development has been applied in fisheries and aquaculture studies; examples of these markers include mitochondrial DNA, microsatellites, Single-nucleotide Polymorphisms (SNPs) and Random Amplification of Polymorphic DNA (RAPD) (Chauhan and Rajiv, 2010). This study reported one potential use of the specific primer sets: Identifying O. javanicus, O. dancena, O. minutillus and O. woworae.

Based on the partial mitochondrial sequence data, the phylogenetic analysis showed three clusters of *Oryzias*. O. woworae was monophyletic in the O. celebensis group taxa. This result corresponds to the previous study of Herder et al. (2012), which showed that O. woworae was part of the Oryzias celebensis group in a Bayesian phylogeny based on 16S rDNA sequences. In this study, O. sinensis, O. latipes, O. latipes Shanghai and O. luzonesis formed the Japanese medaka group. O. dancena, O. minutillus and O. javanicus formed the Java medaka group. This taxon data supported the study of Takehana et al. (2005), which hypothesised the relationships of fifteen medaka species in the latipes, Celebensis and Javanicus species groups using nuclear and mitochondrial sequences.

Based on the present knowledge, a set of molecular tools and a source of partial mitochondrial nucleotide sequences were provided. The specific primer set was used to precisely identify the four species of Southeast Asian *Oryzias*, although the accurate identification for other species of *Oryzias* remains to study.

REFERENCES

- Chauhan, T. and K. Rajiv, 2010. Molecular markers and their applications in fisheries and aquaculture. Adv. Biosci. Biotechnol., 1: 281-291.
- Herder, F., R.K. Hadiaty and A.W. Nolte, 2012. Pelvic-fin brooding in a new species of riverine ricefish (Atherinomorpha: Beloniformes: Adrianichthyidae) from Tana Toraja, Central Sulawesi, Indonesia. Raffles Bull. Zool., 60: 467-476.
- Hirayama, M., T. Mukai, M. Miya, Y. Murata and Y. Sekiya *et al.*, 2010. Intraspecific variation in the mitochondrial genome among local populations of Medaka *Oryzias latipes*. Gene, 457: 13-24.
- Inoue, K. and Y. Takei, 2002. Diverse adaptability in *Oryzias* species to high environmental salinity. Zool. Sci., 19: 727-734.
- Liu, Z.J. and F.J. Cordes, 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238: 1-37.
- Matsuda, M., Y. Nagahama, A. Shinomiya, T. Sato and C. Matsuda *et al.*, 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 417: 559-563.
- Miya, M., H. Takeshima, H. Endo, N.B. Ishiguro and J.G. Inoue *et al.*, 2003. Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenet. Evol., 26: 121-138.
- Nagase, M., T. Aimi, K. Suginaka, Y. Kitamoto and T. Morinaga, 2005. Complete mitochondrial DNA sequence of the Japanese flying fish *Cypselurus hiraii*. Fish. Sci., 71: 914-923.
- Ngamniyom, A. and B. Panyarachun, 2012a. Effects of the herbicide pendimethalin on hormone receptor expressions and dorsal fin biometrics in Thai Medaka, *Oryzias minutillus* (Actinopterygii: Beloniformes: Adrianichthyidae). Acta Ichthyologica Et Piscatoria, 42: 239-246.
- Ngamniyom, A. and B. Panyarachun, 2012b. Morphometry and hormone receptor expressions in dorsal and anal fins of Thai Medaka, *Oryzias minutillus*, between breeding and non-breeding seasons. J. Fish Aquat. Sci., 7: 39-48.
- Ngamniyom, A., W. Magtoon, Y. Nagahama and Y. Sasayama, 2009. Expression levels of hormone receptors and bone morphogenic protein in fins of medaka. Zool. Sci., 26: 74-79.
- Ngamniyom, A., W. Magtoon, Y. Nagahama and Y. Sasayama, 2011. Expression levels of bone morphogenetic protein 2b in fins of adult japanese medaka (*Oryzias latipes*) exposed to sex steroid hormones. J. Fish. Aquat. Sci., 6: 119-129.
- Parenti, L.R., 2008. A phylogenetic analysis and taxonomic revision of ricefishes, *Oryzias* and relatives (Beloniformes, Adrianichthyidae). Zool. J. Linn. Soc., 154: 494-610.
- Parenti, L.R. and R.K. Hadiaty, 2010. A new, remarkably colorful, small ricefish of the genus *Oryzias* (Beloniformes, Adrianichthyidae) from Sulawesi, Indonesia. Copeia, 2010: 268-273.
- Setiamarga, D.H.E., M. Miya, Y. Yamanoue, K. Mabuchi, T.P. Satoh, J.G. Inoue and M. Nishida, 2008. Interrelationships of Atherinomorpha (medakas, flyingfishes, killifishes, silversides and their relatives): The first evidence based on whole mitogenome sequences. Mol. Phylogenet. Evol., 49: 598-605.

- Setiamarga, D.H.E., M. Miya, Y. Yamanoue, Y. Azuma and J.G. Inoue *et al.*, 2009. Divergence time of the two regional medaka populations in Japan as a new time scale for comparative genomics of vertebrates. Biol. Lett., 5: 812-816.
- Takehana, Y., K. Naruse and M. Sakaizumi, 2005. Molecular phylogeny of the medaka fishes genus *Oryzias* (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol. Phylogenet. Evol., 36: 417-428.
- Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739.
- Termvidchakorn, A. and W. Magtoon, 2008. Development and identification of the ricefish *Oryzias* in Thailand. Sci. Asia, 34: 416-423.
- Yang, W.K., C.K. Kang, C.H. Chang, A.D. Hsu, T.H. Lee and P.P. Hwang, 2013. Expression profiles of branchial FXYD proteins in the brackish medaka *Oryzias dancena*: A potential saltwater fish model for studies of osmoregulation. PLoS ONE, Vol. 8. 10.1371/journal.pone.0055470
- Yoon, M., K.Y. Kim, I.C. Bang, Y.K. Nam and D.S. Kim, 2011. Complete mitogenome sequence of the Chinese medaka *Oryzias sinensis* (Teleostei: Beloniformes) and its phylogenetic analysis. Genes Genomics, 33: 307-312.
- Yusof, S., A. Ismail, T. Koito, M. Kinoshita and K. Inoue, 2012. Occurrence of two closely related ricefishes, Javanese medaka (*Oryzias javanicus*) and Indian medaka (*O. dancena*) at sites with different salinity in Peninsular Malaysia. Environ. Biol. Fishes, 93: 43-49.
- Zhang, Z.B., J.Y. Hu, S.X. Sai, Y.B. Zhao, C. Huang and X.J. Tian, 2008. Gene cloning, sequence analysis and tissue expression of estrogen-related receptor alpha (Erralpha) in Japanese medaka and its transcriptional responses after differential EDCs exposure. Huan. Jing. Ke. Xue., 29: 3153-3158.