

# Journal of **Fisheries and Aquatic Science**

ISSN 1816-4927



ISSN 1816-4927 DOI: 10.3923/jfas.2016.418.424



# **Research Article**

# Preliminary Study on the Morphology and Biology of Coexist Nemipterus furcosus and Nemipterus tambuloides from Terengganu Waters, Peninsular Malaysia

<sup>1,2,4</sup>Ying Giat Seah, <sup>1</sup>Muhammad Nabilsyafiq and <sup>3,4</sup>Abd Ghaffar Mazlan

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

# **Abstract**

Background and Objective: Ichthyological study in Malaysia are still lacking and generally bycatch are received little attention. The study describes the differences between two coexist commercially important dominant species Nemipterus furcosus and Nemipterus tambuloides for morphological characteristics, length-weight relationship and some biological aspects. Materials and Methods: The specimen were collected from Pulau Kambing fish landing port, Terengganu during October, 2013. Fishes were examined for their systematic account differences. Length-weight relationships were calculated using the allometric regression analysis ( $W = aL^b$ ). Trophic levels were assessed by relative length of gut (RLG) and reproductive information obtained by gonadosomatic index (GSI) and hepatosomatic index (HSI). Results: Nemipterus furcosus and N. tambuloides were easily distinguished in fresh condition, but displayed almost similar appearances in faint or preservation condition. Through detailed examination on morphological parameters both species had high similarities in meristic counts and morphometric measurements. There were however, three parameters, that significantly differentiated the two species: length of dorsal fin base, predorsal length and length of pectoral fin. In similar unit of standard length, N. furcosus had greater body weight compare to N. tambuloides. The population growth pattern indicated both N. furcosus  $(2.71\pm0.17)$  and N. tambuloides  $(2.54\pm0.16)$  experience negative allometric growth, i.e., both species became more slender as their lengths increased. The estimated mean RLG for N. furcosus and N. tambuloides were > 1 (1.28  $\pm$  0.18 and 1.17  $\pm$  0.09, respectively), which indicated that both species were omnivorous fish. However, a negative relationship between RLG and total length was also found suggesting that both species tended towards a carnivorous diet as they grew bigger, especially for N. tambuloides. The gut lengths and RLG values for N. furcosus were greater than N. tambuloides. Gonad and liver weights for both species increased with body weight and the rate of increase in gonad weight was greater than liver weight. However, the GSI and HSI values almost remain constant for both species, revealing all samples were in the same state of gonad maturation in present study. **Conclusion:** The *N. furcosus* having shorter predorsal and pectoral fin length but longer dorsal fin base compare to N. tambuloides. Both species have newly discovered as omnivorous fish but tended towards a carnivorous diet during growth. These coexist species share similar pattern on population growth and reproductive biology.

Key words: Morphological characteristic, length-weight relationship, relative length of gut, gonadosomatic index, hepatosomatic index

Received: June 16, 2016 Accepted: August 05, 2016 Published: October 15, 2016

Citation: Ying Giat Seah, Muhammad Nabilsyafiq and Abd Ghaffar Mazlan, 2016. Preliminary study on the morphology and biology of coexist *Nemipterus furcosus* and *Nemipterus tambuloides* from Terengganu waters, Peninsular Malaysia. J. Fish. Aquat. Sci., 11: 418-424.

Corresponding Author: Ying Giat Seah, School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

Copyright: © 2016 Ying Giat Seah *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

<sup>&</sup>lt;sup>1</sup>School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

<sup>&</sup>lt;sup>2</sup>Fish Division, South China Sea Repository and Reference Center, Institute of Oceanography and Environment,

<sup>&</sup>lt;sup>3</sup>Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

<sup>&</sup>lt;sup>4</sup>Marine Ecosystem Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

# **INTRODUCTION**

Trawling, as one of the most widely used fishing techniques of the Malaysian fisheries industry<sup>1</sup>, often produce large amounts of non-target and unwanted fish also known as 'Bycatch'. In Malaysia, bycatch of threadfin bream, croaker, bigeye fish, lizard fish and goatfish have recently been considered as an important resource for the surimi industry<sup>2</sup>. This has increased the market profitability of bycatch, generating extra income for fishermen as well as helping to reduce the wastage from trawling<sup>3</sup>.

In the past, little attention has been spared for ichthyological study of bycatch resources in Malaysia, especially with regards to detailed accounting of their systematic description and biological information<sup>4</sup>. The nemipterids (family Nemipteridae) also known as threadfin bream or "Ikan kerisi" in malay language are common bycatch fish from trawling activities and are now considered one of the most important economic groups of marine fishes in the tropical Indo-West Pacific region. They are however, also one of the most taxonomically challenging fish families to deal with. Nemipterids are bottom-living fishes widely distributed across the Indo-Pacific region<sup>5</sup>. Although each genus are found in distinct habitats and distributions, most species found in shallower to offshore shelf waters at depth ranges to about 300 m with muddy and sandy bottoms (i.e., prime trawling areas) belong to the genus Nemipterus<sup>6</sup>. Nemipterids can occur either solitarily or in aggregations but do not appear as territorial. Their spawning seasons also vary widely among the nemipterid species and localities<sup>5</sup>.

Nemipterus are remarkably uniform in external anatomy, careful observation of minute morphological differences on fresh specimen is usually required for reliable species-level identification. As thread fin bream is an economically important in Malaysia, this study aims to examine the morphological characteristics, population growth condition and some biological information of two Nemipterus species dominantly landed from Terengganu waters, Peninsular Malaysia.

# **MATERIALS AND METHODS**

**Field sampling and morphological examination:** Sampling was carried out in the fish landing port of Fisheries Development Authority of Malaysia (LKIM) at Pulau Kambing, Kuala Terengganu during October, 2013. The dominant trawl species bycatch were *Nemipterus furcosus* and *Nemipterus tambuloides*. All catches were sorted in accordance to the

standard protocol listed by Sparre and Venema<sup>7</sup>. The procedure of fixation, photograph and preservation for the specimen are followed Seah *et al.*<sup>3</sup>. Methods of counting and measuring are generally followed Hubbs and Lagler<sup>8</sup> and terminology of morphological features and descriptions are modified from Seah *et al.*<sup>4</sup>. Species identifications were made following Russell<sup>5</sup>, Nakabo<sup>9</sup> and Matsunuma *et al.*<sup>6</sup>. Measurement was made with an absolute vernier caliper (Mitutoyo, Japan) to the nearest 0.1 cm and the weight was obtained to the nearest 0.1 g using triple-beam digital balance. Length-weight relationships were calculated using the allometric regression analysis ( $W = aL^b$ )<sup>10</sup>.

# Biological information [Relative length of gut (RLG), gonadosomatic index (GSI) and hepatosomatic index (HSI)]:

The gut sacs (esophagus, stomach and intestine) were extracted from each species. The feeding habits of the fish was determined by using the relationship of relative length of the gut (RLG), where RLG>1 represents herbivore, RLG<1 represents carnivore and intermediate RLG value represents omnivore<sup>11</sup>. The RLG was calculated by the equation, RLG = length of the gut/total body length. Identification of gut contents was not possible due to severe rigor mortis for the fishes examined in this study. In order to obtain the GSI and HSI for each species, cleaned body weight (gut extracted) was measured to the nearest 0.1 g, while gonad and liver weight to the nearest 0.0001 g. The GSI and HSI were calculated by the equations<sup>12</sup>:

$$GSI = \frac{Gonad\ weight}{Fish\ cleaned\ body\ weight} \times 100$$

and:

$$HSI = \frac{Liver weight}{Fish cleaned body weight} \times 100$$

## **RESULTS**

Morphological characteristics, meristic counts and morphometric measurements: In the present study, a total number of 119 Nemipterus furcosus and 103 Nemipterus tambuloides were sampled from the fish landing port of Chendering, Terengganu (Fig. 1). Species identification were made based on the external morphological characteristics and coloration of fresh specimens. Nemipterus fursocus sampled ranged from 14.1-21.5 cm in standard length and





Fig. 1(a-b): Photographs of (a) *N. fursosus* and (b) *N. tambuloides* from Terengganu waters

70.0-292.4 g in total body weight whilst samples of N. tambuloides ranged from 14.0-21.4 cm in standard length and 84.7-264.3 g in total body weight. The meristic counts and morphometric measurements of N. furcosus and *N. tambuloides* were obtained from 10 selected good condition samples, respectively given in range, mean value and standard deviation (Table 1). Morphometric measurements were expressed in relative percentage to standard length. Specimen were selected to determine the similarity and dissimilarity of morphological characteristics. Both species shared high similarities in both meristic counts and morphometric measurements. There were however, three distinct morphometric parameters that can used to significantly differentiate the *N. furcosus* and *N. tambuloides* (p<0.01), except length of dorsal fin base for N. furcosus (p<0.05) namely length of dorsal fin base, predorsal length and length of pectoral fin. Nemipterus furcosus has a longer dorsal fin base but shorter predorsal length and pectoral fin compared to N. tambuloides (Fig. 2).

**Length-weight relationship:** *Nemipterus furcosus* was estimated to have greater body weight compared to *N. tambuloides* in similar unit of standard length (Fig. 3). However, both had almost similar body weight at standard lengths below 16 cm. The intercept a and coefficient of determination (r²) for *N. fuscosus* were 0.07 and 0.64 and

Table 1: Meristic counts and morphometric measurements of *N. furcosus* and *N. tambuloides* 

| Parameters                 | N. furcosus (n = 10)         | N. tambuloides (n = 10) |
|----------------------------|------------------------------|-------------------------|
| TL (cm)                    | 20-28 (25.0)                 | 19-24.9 (21.3)          |
| FL (cm)                    | 20-28 (23.0)<br>17-24 (20.7) | 16.5-21.9 (18.7)        |
| ` '                        | ` '                          | , ,                     |
| SL (cm)                    | 15-21 (19.0)                 | 15.1-19.8 (17.0)        |
| Counts                     |                              |                         |
| Dorsal fin rays            | IX-X, 9-10                   | X, 9-10                 |
| Anal fin rays              | II-III, 7-8                  | II-III, 7-8             |
| Pectoral fin rays          | 12-15                        | 13-15                   |
| Pelvic fin rays            | I, 5                         | I, 5                    |
| Lateral line scales        | 42-48 (44.6)                 | 39-44 (42.2)            |
| Scales above lateral line  | 2-4 (2.9)                    | 2-4 (2.7)               |
| Scales below lateral line  | 7-12 (9.1)                   | 7-8 (7.8)               |
| Measurements as percentage | of standard length           |                         |
| Body depth                 | 29-39 (32.7±2.5)             | 31-32 (31.8±0.4)        |
| Eye diameter               | $6-9 (8.2\pm0.8)$            | 7-8 $(7.8\pm0.2)$       |
| Head length                | 22-33 (29.4±3.3)             | 27-30 (29.4±0.9)        |
| Head depth                 | 23-27 (25.1±1.2)             | $21-26 (24.3 \pm 1.6)$  |
| Head width                 | 10-15 (13.0±1.3)             | $12-13 (13.3\pm0.6)$    |
| Length of caudal peduncle  | $1-3 (2.9\pm0.6)$            | $1-3 (2.1\pm0.4)$       |
| Depth of caudal peduncle   | $8-10 (9.0\pm0.6)$           | 8-10 (9.9±0.5)          |
| Length of upper jaw        | $8-10 (9.9\pm0.8)$           | 9-10 (10.1±0.3)         |
| Length of lower jaw        | 7-9 (8.6 $\pm$ 0.8)          | 7-9 $(8.6\pm0.6)$       |
| Length of dorsal fin       | 67-78 (71.7±3.5)             | 63-70 (67.2±3.3)        |
| Length of pectoral fin     | 23-29 (24.6±2.1)             | 25-29 (27.5 ± 1.5)      |
| Length of pelvic fin       | 18-25 (22.1±1.8)             | 20-26 (23.4±2.3)        |
| Length of anal fin         | 16-32 (28.6±5.1)             | 29-32 (30.9±1.4)        |
| Length of caudal fin       | 28-39 (34.4±3.1)             | 27-34 (31.1±2.9)        |
| Length of dorsal fin base  | 50-61 (56.4±3.6)             | 48-52 (50.1 ± 1.3)      |
| Pre dorsal length          | 28-33 (29.6±1.9)             | 31-33 (32.4±0.6)        |
| Pre pectoral length        | 29-34 (31.6±1.6)             | 30-33 (32.2±1.0)        |
| Pre pelvic length          | 31-37 (34.6±2.1)             | 33-34 (33.9±0.4)        |
| Pre anal length            | 60-72 (66.2±3.4)             | 64-65 (64.8±0.5)        |

Figures in parentheses indicate mean value and standard deviation

*N. tambuloides* were 0.11 and 0.90. The values of the slope or regression coefficient b for *N. furcosus* was  $2.71\pm0.17$  and *N. tambuloides* was  $2.54\pm0.16$ . Both were significantly (p<0.01) lower than 3, indicating a negative allometric population growth pattern. Therefore, the weight for both species increased slower than their lengths.

**Relative length of gut (RLG):** A total of 10 individual random samples were analyzed for RLG determination. The gut lengths for *N. furcosus* were ranged from 24.0-43.3 cm (TL: 20.0-28.3 cm) and *N. tambuloides* were 23.2-32.5 cm (TL: 19.0-27.3 cm). Through the linear regression, both species have proportional gut length greater than total length. Linear regression showed that the gut lengths for both species significantly increased with the increases in total length (Fig. 4a), *N. furcosus* (r = 0.70, p < 0.05) and *N. tambuloides* (r = 0.85, p < 0.01). However, the linear regression of RLG values against total length was not significant for *N. furcosus* but significant for *N. tambuloides* (p < 0.05) (Fig. 4b). The RLG values for *N. tambuloides* decreased with fish size (r = -0.62) (Fig. 4b), while RLG values for *N. furcosus* increased with fish

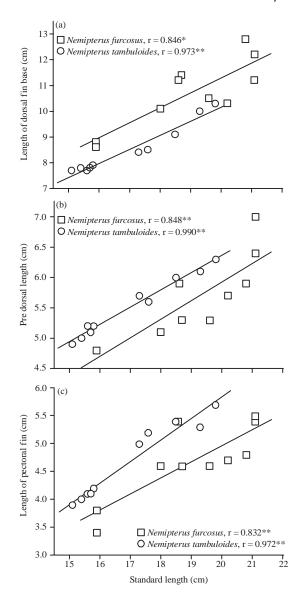



Fig. 2(a-c): Differences of morphometric parameters in standard length between *N. fursosus* and *N. tambuloides*, (a) Length of dorsal fin base, (b) Predorsal length and (c) Length of pectoral fin. The line represents the linear fit; \*p<0.05, \*\*p<0.01

size (r=0.30). The range and mean value of RLG for *N. furcosus* were 1.08-1.53 and 1.28 $\pm$ 0.18, while *N. tambuloides* were 1.07-1.36 and 1.17 $\pm$ 0.09. The results showed that the gut length and RLG values for *N. furcosus* were greater than *N. tambuloides*.

**Gonadosomatic index (GSI) and hepatosomatic index:** A total of 20 individual random samples were used to analysis the relationship of GSI and HSI. There was a significant positive relationship between gonad and liver weights with fish body

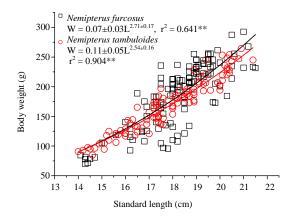



Fig. 3: Length-weight relationships of *N. furcosus* and *N. tambuloides.* The line represents the non-linear curve fit

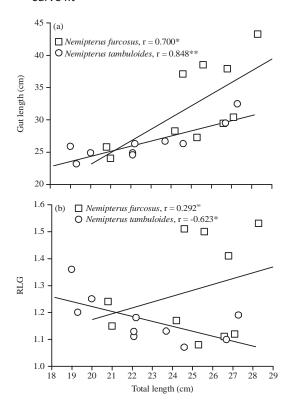



Fig. 4(a-b): Relationships between total length (a) Gut length and (b) Relative length of gut (RLG) of *N. fursosus* and *N. tambuloides.* The line represents the linear fit; \*p<0.05, \*\*p<0.01 and ns: Not significant

weight (p<0.01) (Fig. 5). However, the increment rate of gonad weight was greater than liver weight for both species N. furcosus, r = 0.94 (GW) vs. 0.84 (LW), N. tambuloides, r = 0.83 (GW) vs 0.73 (LW). Both species also had gonad

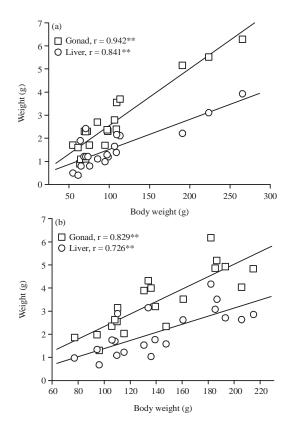



Fig. 5(a-b): Relationships between gonad and liver weight against body weight for (a) *N. furcosus* and (b) *N. tambuloides.* The line represents the linear fit

weights which are higher than liver weights, which became more apparent with increasing fish sizes. Although the gonad and liver weights increased with body weight, both GSI and HSI values remained unchanged for both species (Fig. 6). From the perspective of body weight, the GSI increased but HSI decreased for *N. furcosus*: r = 0.01 (GSI) vs -0.12 (HSI) while the GSI and HSI both increased for *N. tambuloides*: r = 0.20 (GSI) vs 0.17 (HSI). However, the relationship of GSI and HSI against body weight were not significant. The mean of GSI and HSI were  $2.55\pm0.01$  and  $1.51\pm0.01$  for *N. furcosus* and  $2.41\pm0.01$  and  $1.47\pm0.01$  for *N. tambuloides*.

### **DISCUSSION**

In the present study, *N. furcosus* and *N. tambuloides* were found to be distinguishable in fresh condition. The *N. furcosus* have 9 indistinct reddish saddle bars on dorsolateral but normally the reddish saddle bars on predorsal are distinct, posterior upper lobe of caudal fin is red and lower margin of caudal fin is white. These characteristics are not present in other species of *Nemipterus*<sup>13</sup>. The *N. tambuloides* have 5 distinct yellow stripes running

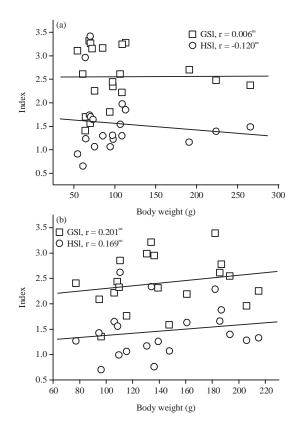



Fig. 6(a-b): Relationships between gonadosomatic index (GSI) and hepatosomatic index (HIS) against body weight for (a) *N. furcosus* and (b) *N. tambuloides*. The line represents the linear fit

horizontally along the body. It also has a yellow mark on the end of the upper caudal fin which, although present in other species is not significantly longer than the lower caudal fin<sup>6</sup>. In preservation condition, both species looked almost identical. However, there are a few important morphometric differences distinguishing the two species. In general, each species have its own remarkable morphometric characteristics but otherwise share almost the same meristic characteristics<sup>4,14</sup>. The differences in the average percentage of standard length can be an indicator to determine the differences between similar species<sup>15</sup>. In addition, linear regression analyses do assist in differentiate the species statistically. Both species were significantly dissimilarity in dorsal fin base length, predorsal length and pectoral fin length. Although technological advances have allowed scientists to determine the species of an organism using DNA technology but determination using morphological parameters (conventional approach) are still cheaper and much more convenient in situ<sup>16,17</sup>.

Through the current study, we have determined that *N. furcosus* and *N. tambuloides* displayed similar

allometrically negative population growth patterns, which is the fishes collected from Terengganu waters are become more slender as their lengths increases4. The length-weight relationships of both species have not been previously recorded in Terengganu waters. The estimated regression coefficient b (N. furcosus. 2.71 and N. tambuloides. 2.54) fell in the expected range (2-4) for these fishes. The high value of coefficient of determination for *N. tambuloides* had showing the high degree of allometric relationship between length and weight. While, there were 36% of the total variation in body weight remain unexplained for N. furcosus. Based on results, the graph have not included enough data of smaller size fishes probably due to size-selective fishing gears from the sampling site. This can influence the accuracy for the length-weight relationship estimation<sup>18</sup>. The regression coefficient b can be used to investigate the body shape (anteroposterior, dorsoventral or lateral) of the species<sup>4</sup>. Through observation in the same population, *N. furcosus* have robust and fleshy body shape compare to *N. tambuloides*, strongly supported by the b values (2.71 vs 2.54). There are various factors may be had direct impact to alter the b value seasonally due to the changes in physiological growth condition (condition factors) such as sex, gonad development, food availability, habitat, environmental changes and preservation techniques for the particular population<sup>4,19,20</sup>.

In this study, it is showed that N. furcosus and N. tambuloides had RLG just slightly above one. As such, they can be considered as an omnivorous fishes. According to Mohammadizadeh et al.21, a fish with a RLG of under 1 is considered a carnivorous fish as protein ingested requires less processing in the gut in order for it to be absorbed by the fish. Omnivorous fish have an RLG near to 1, while herbivorous fish tend to have higher values of RLG. However, Russell<sup>5</sup> and Matsunuma et al.6 stated that thread fin breams feed mostly on small fishes, crustaceans, cephalopods and polychaetes they are carnivorous fishes. In this study, both species showed high RLG values for smaller size fish. But the RLG values were significantly reduced as the fish grow bigger for N. tambuloides. This showed the species have changes in gastrointestinal system, which inclined toward a carnivorous diet and may suggested that its diet is become more specific. However, N. furcosus was contrary with N. tambuloides, RLG values was increased as the fish grow bigger but insignificant through linear regression analyses. Details examination for the diet composition is needed to strongly evaluate the relationship between diet and RLG for Nemipteridae<sup>4</sup>.

According to Ghaffari *et al.*<sup>12</sup>, there should be a correlation between GSI and HSI and higher GSI values coinciding with lowered values of HSI. The value of HSI can be considered a

rough proxy for stored energy in a fish's body. As the female gonad matures it draws energy from the liver causing the value of HSI to decrease. These results showed no differences between GSI and HSI for all specimens of both species, which suggest that all samples analysed were in the same state of gonad maturation. A year-long study of the GSI and HSI of *N. furcosus* and *N. tambuloides* should be done in order to determine specific relationship between GSI and HSI for these species.

# **CONCLUSION**

In conclusion, the present study revealed N. furcosus and N. tambuloides had high similarities of morphological characteristics in faint condition but showing three distinct parameters to differentiate the two species. There were length of dorsal fin base, predorsal length and length of pectoral fin. We observed that both species collected from Terengganu waters exhibited similar negative allometric population growth patterns by the regression coefficient b values derived from length-weight relationship. The estimated mean relative length of gut demonstrates that both species were omnivorous fish but tended towards a carnivorous diet as they grew bigger by changing the gastrointestinal system. The estimated gonadosomatic index and hepatosomatic index revealed all samples of both species were in the same state of gonad maturation. Further studies are needed to obtain more information about the fish diet and reproductive biology of this two dominant food fish from Terengganu waters. As no detail information provided on the morphology and biology aspects of these two fishes in Malaysian waters, the study findings will be used as a references for future study.

# **ACKNOWLEDGMENTS**

This study was supported by the Malaysia government through grants TPM/68006/2011/5 (UMT). The authors would like to thank Dr. Jani Tanzil for her valuable suggestions on this manuscript. Heartiest thanks to Fisheries Development Authority of Malaysia (LKIM) for their assistances. Thanks to the laboratory assistants of School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu for technical supports.

### **REFERENCES**

1. Musa, C.U.C. and A.A. Nuruddin, 2005. Trash fish production and national fish feed requirement in Malaysia. Proceedings of the Regional Workshop on Low Value and Trash Fish, June 7-9, 2005, Hanoi, Viet Nam, pp: 1-7.

- Pangsorn, S., P. Laong-manee and S. Siriraksophon, 2009.
  Trend of Surimi raw materials in Southeast Asia. TD/RES 119, SEAFDEC Training Department, Thailand.
- 3. Seah, Y.G., A.G. Mazlan, S. Abdullah, C.C. Zaidi, G. Usup and C.A.R. Mohamed, 2011. Feeding guild of the dominant trawl species in the southeastern waters of Peninsular Malaysia. J. Biol. Sci., 11: 221-225.
- 4. Seah, Y.G., S. Abdullah, C.C. Zaidi and A.G. Mazlan, 2009. Systematic accounts and some aspects of feeding and reproductive biology of ponyfishes (Perciformes: Leiognathidae). Sains Malaysiana, 38: 47-56.
- Russell, B.C., 2001. Nemipteridae. In: The Living Marine Resources of the Western Central Pacific, Volume 5: Bony Fishes Part 3 (Menidae to Pomacentridae), Carpenter, K.E. and V.H. Niem (Eds.). Food and Agriculture Organization, Rome, Italy, ISBN-13: 9789251045879, pp: 3051-3089.
- Matsunuma, M., H. Motomura, K. Matsuura, N.A.M. Shazali and M.A. Ambak, 2011. Fishes of Terengganu: East Coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Malaysia, ISBN-13: 9784878030369, Pages: 251.
- Sparre, P. and S.C. Venema, 1998. Introduction to Tropical Fish Stock Assessment, Part 1: Manual (FAO Fisheries Technical Paper No. 306/1 Rev. 2). FAO, Rome, Italy, ISBN-13: 9789251039960, Pages: 422.
- 8. Hubbs, C.L. and K.C. Lagler, 1964. Fishes of the Great Lakes Region. University Michigian Press, Ann Arbor, pp: 213.
- 9. Nakabo, T., 2002. Fishes of Japan with Pictorial Keys to the Species. Tokai University Press, Tokyo, Japan, Pages: 1749.
- 10. Froese, R., 2006. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. J. Applied Ichthyol., 22: 241-253.
- Jimmy, A., A. Arshad, S.B. Japar and Z. Mutuharah, 2003. The Stomach Content Analysis on Several Fish Species from Seagrass Beds of Sungai Pulai, Johore. In: Aquatic Resources and Environmental Studies of the Straits of Malacca: Managing the Straits through Science and Technology, Japar, S.B., A. Aziz and Z. Mutuharah, (Eds.). MASDEC, UPM, pp: 125-131.
- Ghaffari, H., A.A. Ardalan, H.H. Sahafi, M.M. Babaei and R. Abdollahi, 2011. Annual changes in Gonadosomatic Index (GSI), Hepatosomatic Index (HSI) and condition factor (K) of Largescale tonguesole *Cynoglossus arel* in the coastal waters of Bandar Abbas, Persian Gulf. Aust. J. Basic Applied Sci., 5: 1640-1646.

- 13. Ambak, M.A., M.M. Isa, M.Z. Zakaria and A.G. Mazlan, 2010. Fishes of Malaysia. Penerbit Universiti Malaysia Terengganu, Malaysia, Pages: 334.
- 14. Mazlan, A.G. and Y.G. Seah, 2006. Meristic and length-weight relationship of ponyfishes (Leiognathidae) in the coastal water of Pulau Sibu-Tinggi, Johor, Malaysia. Malaysian Applied Biol., 35: 27-35.
- Costa, J.L., P.R. de Almeida and M.J. Costa, 2003.
  A morphometric and meristic investigation of Lusitanian toadfish *Halobatrachus didactylus* (Bloch and Schneider, 1801): Evidence of population fragmentation on Portuguese coast. Scientia Marina, 67: 219-231.
- 16. Seah, Y.G., A.G. Mazlan and G. Usup, 2008. Phylogeny of ponyfishes from coastal waters of the South China Sea. J. Applied Biol. Sci., 2: 125-132.
- 17. Seah, Y.G., G. Usup, C.A.R. Mohamed, A. Arshad and A.G. Mazlan, 2012. Phylogeny and morphological delineation of leiognathids in the waters of Peninsular Malaysia. Coastal Mar. Sci., 35: 91-95.
- Simon, K.D., Y. Bakar, A. Samat, C.C. Zaidi, A. Aziz and A.G. Mazlan, 2009. Population growth, trophic level and reproductive biology of two congeneric archer fishes (*Toxotes chatareus*, Hamilton 1822 and *Toxotes jaculatrix*, Pallas 1767) inhabiting Malaysian Coastal waters. J. Zhejiang Univ. Sci. B, 10: 902-911.
- 19. Bagenal, T.B., 1978. Methods for Assessment of Fish Production in Freshwaters. 3rd Edn., Blackwell Scientific Publication, Oxford, UK., Pages: 365.
- Schneider, J.C., P.W. Laarman and H. Gowing, 2000. Length-Weight Relationships. In: Manual of Fisheries Survey Methods II: With Periodic Updates (Fisheries Special Report 25), Schneider, J.C. (Ed.). Chapter 17, Michigan Department of Natural Resources, Ann Arbor, MI., USA., pp: 1-18.
- Mohammadizadeh, F., T. Valinassab, S. Jamili, A. Matinfar, A.H. Bahri-Shabanipour and M. Mohammadizadeh, 2010. A study on diet composition and feeding habitats of Sawtooth Barracuda (*Sphyraena putnamae*) in Bandar-Abbas (North of Persian Gulf). J. Fish. Aquat. Sci., 5: 179-190.