

Journal of **Fisheries and Aquatic Science**

ISSN 1816-4927

ISSN 1816-4927 DOI: 10.3923/jfas.2018.56.65

Research Article

IGS-Fingerprinting and Virulence Properties of *Vibrio alginolyticus*Isolated from Farmed Fishes in Saudi Coast of Arabian Gulf

^{1,3}E.A. Noureldin, ^{2,3}Mohamed A. Hassan and ³Ghamri H. Al Ramadhan

Abstract

Background and Objective: Vibrio sp. are a crucial constituent of marine ecosystems worldwide. Vibrio alginolyticus is extremely significant and major pathogenic agent facing wild and farmed fishes. The main objective of this study was to record the molecular characterization (IGS-Typing pattern) by single PCR step and virulence genes in V. alginolyticus isolates. Materials and Methods: For this study 360 fishes were collected, including gilt head seabream (Sparus auratus), two bar seabream (Acanthopagrus bifasciatus), black bream (Acanthopagrus latus), red sea seabream (Diplodus noct), brown-spotted grouper (Epinephilus coioides) and rabbitfish (Siganus canaliculatus) between July, 2015-June, 2016. Primary identification of isolates was done conventionally using API 20NE systems (Biomerieux), while confirmation was done by sequencing of 16S rDNA and V. alginolyticus specific gene targets, construction of phylogenetic tree using Molecular Evolutionary Genetics Analysis (MEGA) 6.0 software. IGS-Typing and antibiogram test screening were also carried out for isolates. Results: Two hundred and eighty isolates of V. alginolyticus were recovered from farmed fishes. Clinical signs expressed as general septicaemia, ulcers and corneal opacity. Conventional methods identified isolates as V. alginolyticus (ID% 96-99.9), sequencing and phylogenetic tree confirmed this identification. The PCR results for IGS-Typing were expressed as four typical band patterns ≈ 420, 580, 650 and 820 bp, while those for virulence genes were positive amplification for collagenase, toxR and ompK, while tlh and VPI virulence genes were not recognized. Conclusion: Isolated V. alginolyticus were highly pathogenic to farmed fishes as determined by virulence genes identified. Results of IGS-Typing facilitate further identification of isolates by single PCR step as it records the pattern for V. alginolyticus.

Key words: Virulence genes, Vibrio alginolyticus, antibiogram test, genetics analysis, intergenic spacer (IGS-Fingerprinting), farmed fishes, Arabian gulf

Citation: E.A. Noureldin, Mohamed A. Hassan and Ghamri H. Al Ramadhan, 2018. IGS-Fingerprinting and Virulence Properties of *Vibrio alginolyticus* Isolated from Farmed Fishes in Saudi Coast of Arabian Gulf. J. Fish. Aquat. Sci., 13: 56-65.

Corresponding Author: E.A. Noureldin, Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Egypt Tel: +966543147668, Fax: +966138361890

Copyright: © 2018 E.A. Noureldin *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Egypt

²Faculty of Veterinary Medicine, Bani-Suif University, Egypt

³Fisheries Research Center, Kingdom of Saudi Arabia

INTRODUCTION

Fish aquaculture is a growing industry in Saudi Arabia. However, vibriosis outbreak caused by various pathogenic *Vibrio* sp. is considered a significant problem to the development of farmed fish and shellfish with severe economic losses^{1,2}. Moreover, Many *Vibrio* sp. are serious pathogen in human causing septicemia, gastroenteritis as well as wound infection^{3,}.

Vibrio alginolyticus is Gram-negative halophilic bacterium, ubiquitous in marine and estuarine ecosystems and has been associated with extensive body ulceration of gilthead sea bream (Sparus aurata), silver sea bream (Sparus sarba), sea bass (Dicentrarchus labrax), turbot (Scophthalmus maximus), crimson snapper (Lutjanus erythopterus), sea mullet (Mugilcephalus) and freshwater fish, Nile tilapia (Oreochromis niloticus)2-10. Recently, V. alginolyticus was recorded as a responsible pathogen for *Porites andrewsi* white syndrome in coral reefs and was associated with white spot disease in black tiger shrimp (Penaeus monodon)^{11,12}. Hassan et al.¹ isolated V. vulnificus and V. alginolyticus from cage-cultured marine fish Acanthopagrus bifasciatus and Sparus aurata in Arabian Gulf.

More than 74 distinct *Vibrio* spp. has been identified till now (http://www.vibriobiology.net/) and continuously increases annually. This gave rise to the extreme importance for identification of *Vibrio* sp. based on well-known IGS-regions located between the 16S and 23S rRNA genes on the bacterial chromosomes¹³. This rapid, reliable and efficient IGS-Fingerprinting was able to identify *Vibrio* sp. not only at species level, but also, in some cases, at subspecies level using one primer for one PCR reaction especially if combined with 16S-rRNA gene sequence¹³.

Previous studies reported *V. alginolyticus* as the dominant living species in water and sediments¹⁴. It can maintain virulence properties and pull out from several stressors including nutrient stress⁸. Presence of *V. cholerae* pathogenicity island (VPI) virulence gene and thermolabile haemolysin (tlh) virulence gene of *V. parahemolyticus* in reported by Zhang et al.15 and V. alginolyticus Snoussi et al.16 respectively. OmpK virulence gene of V. alginolyticus believed to play important role in infection and pathogenicity to host and the expression of this gene is controlled by toxR gene¹⁷. Collagenase has been widely utilized as a biomarker of *V. alginolyticus* as well as capable of causing severe pathology and distribution to blood stream¹⁸. Although *V. alginolyticus* has been reported in many cases from Arabian Gulf fish and shellfish 19-21,1. No data available on

the presence of virulence genes especially those derived from *V. cholera* as well as *V. parahaemolyticus*. Similarly, to the best of author's knowledge, no studies till now clarified the most important virulence genes for pathogenicity of *V. alginolyticus*.

The aims of the present study were to clarify the molecular identification of *V. alginolyticus* isolated from Saudi coast in Arabian gulf, by sequencing of targets in the 16S rDNA and *V. alginolyticus* specific gene regions, phylogenetic tree, recording 16S-23S rRNA Intergenic Spacer Regions pattern (IGS-Fingerprinting) and detect presence of *V. cholerae pathogenicity* island (VPI), thermolabile haemolysin (tlh), collagenase, toxR and ompK virulence genes by means of PCR for better understanding how to control or eradicate the disease in an aquaculture setting.

MATERIALS AND METHODS

Fish sampling: About 360 fishes were collected and examined as a part of ongoing monitoring program related to Fisheries Research Center, Ministry of Environment, Water and Agriculture, Saudi Arabia from cage cultured fish owned by private farm in the eastern province. About 6 species of fishes (60 fish/Species) were examined include, gilthead seabream (*Sparus auratus*), two bar seabream (*Acanthopagrus bifasciatus*), sobaity seabream (*Sparidentex hasta*), red sea seabream (*Diplodus noct*), brown-spotted grouper (*Epinephilus coioides*) and rabbitfish (*Siganus canaliculatus*) exhibits septicemic signs such as dermal ulcers and/or external hemorrhage, in addition to 96 water samples were also collected aseptically in sterile bottles and examined, during the period from June, 2015 to May, 2016.

Fishes were transferred alive in a special vessels supplied with oxygen to the Lab. of Fisheries Research Center in Al-Qatif (17025:2005 ISO Certified) where clinical and postmortem examination were carried out according to Noga²². Salinity, DO and water temperature were analyzed for water samples.

Bacterial strains and culturing conditions: Samples were taken from each fish separately from hematogenous organs of each fish (liver, kidney, spleen) in addition to water samples by using sterile bacteriological loop and inoculated in TSB and TSA (Oxoid) supplemented with 2% NaCl, incubated at 28°C for 24 h and further purification in TSA with 2% NaCl according to Austin and Austin²³.

Phenotypic identification: Gram staining and oxidase test were done as a preliminary step of identification. Purification and further phenotypic identification were done with the

Table 1: Selected primer pairs sequence used in the study

Primers	Sequence	Product size (bp)	Targets	References	
16S rDNA	27F AGAGTTTGATC(C/A)TGG CTCAG	1500	(Eu) bacterial 16S rDNA	Polz and Cavanaugh ²⁴	
	1492R TACGG(C/T)TACCTTGTTACGACTT				
Species-specific primer	VA 1198230 F: 5' ACGGCATTGGAAATTGCGACTG	199	Whole genome shotgun sequence	Kim <i>et al.</i> ²⁵	
	VA 1198230 R: 5' TACCCGTCTCACGAGCCCAAG				
16S-23S rRNA (IGS)	16S.6 5'-ACTGGGGTGAAGTCGTAACA-3'	-	Intergenic spacer regions	Hoffmann et al.13	
	12S.1 5'-CTTCATCGCCTCTGACTGC-3'				
<i>tlh</i> virulence gene	Tlh-F: AGCGGATTATGCAGAAGCAC	448	t/h virulence gene	Xie <i>et al.</i> ²⁷	
	<i>Tlh</i> -R: GCTACTTTCTAGCATTTTTGC				
VPI virulence gene	<i>VPF</i> : GCAATTTAGGGGCGCGACGT	680	VPI virulence gene	Sechi <i>et al</i> . ²⁸	
	<i>VPI-R</i> : CCGCTCTTTCTTGATCTGGTAG				
Collagenase virulence gene	VA-F: CGAGTACAGTCACTTGAAAGCC	737	Collagenase virulence gene	Di Pinto et al.30	
	VA-R: CACAACAGAACTCGCGTTACC				
toxR virulence gene	F: GATTAGGAAGCAACGAAAG	658	<i>tox</i> R virulence gene	Xie <i>et al.</i> ²⁷	
	R: GCAATCACTTCCACTGGTAAC				
ompK virulence gene	F: GGCGGTCGCTCTGGTATT	319	<i>omp</i> K virulence gene	Cai <i>et al</i> . ^{10,29}	
	R: TTGCCATCGTAAGTGCTGTA				

Table 2: Cycling conditions for different PCR reactions in the study

Target gene	Initial denaturation	Denaturation	Annealing	Extension	Cycles
16S rDNA	94°C for 3 min	94°C for 1 min	50°C for 1 min	72°C for 2 min	25
Species-specific primer	94°C for 5 min	94°C for 30 sec	60°C for 30 sec	72°C for 30 sec and final extension step 72°C for 10 min	25
16S-23S rRNA (IGS)	95°C for 15 min	95°C for 30 sec	73-64°C (decreasing	72°C for 45 sec	10
			1°C/cycle) for 10 sec		
	Complete amplification	on achieved as follow:			
		95°C for 30 sec	64°C for 10 sec	72°C for 45 min and final extension step 72°C for 1 min	34
	Finalization by single	amplification cycle to re	esolve heteroduplex formatio	n as follow:	
		95°C for 15 min	64°C for 1 min	72°C for 10 min	1
tlh virulence gene	94°C for 3 min	94°C for 1 min	54°C for 1 min	72°C for 1 min and final	35
VDL dada a sana	0406 (2 !	0406 (1	F20C (1	extension step 72°C for 10 min	25
VPI virulence gene	94°C for 3 min	94°C for 1 min	52°C for 1 min	72°C for 1 min and final extension step 72°C for 10 min	35
Collagenase virulence gene	95°C for 5 min	94°C for 30 sec	57°C for 30 sec	72°C for 50 sec	34
<i>tox</i> R virulence gene	94°C for 4 min	94°C for 1 min	54°C for 1 min	72°C for 1 min	35
ompK virulence gene	94°C for 4 min	94°C for 1 min	58.1°C for 1 min	72°C for 1 min	35

mean of Thiosulphate Citrate Bile Salt Sucrose agar (TCBS) as a selective media, growth in presence of vibriostatic agent 0/129 and API 20NE identification system (Biomérieux) using Apiweb™identification software according to manufacturer's instructions. Pooling of strains were done and kept in TSB (15% glycerol) in -80°C.

DNA extraction: Pooled strains (phenotypically identified) were incubated at 28°C in TSB supplemented with 2% NaCl and DNA were extracted using a commercial kit (Qiagen, Germany), DNA quantification were done by mean of Nano Drop Technology (Thermo Scientific NanoDrop 2000 UV-Vis spectrophotometer) and stored in -20°C. Molecular identification, characterization and detection of virulence genes were carried out as follow:

 Sequencing of 16S rDNA gene target: Amplification of a specific target of the 16s rDNA using a pan-bacterial universal primer set (27F and 1492R, Table 1) following the method described by Polz and Cavanaugh²⁴. The reaction was carried out in 25 µL reaction and the cyclic condition explained in (Table 2). PCR product directly sequenced and results were compared with those held in GenBank database (National Center for Biotechnology Information "NCBI", Bethesda, MD, USA) by using Blast program

Using a Species-specific primer set (VA 1198230 F and VA 1198230 R, Table 1) following the method described by Kim *et al.*²⁵. The PCR product directly sequenced and data BLASTed

Phylogenetic tree: A phylogenetic analysis was conducted using the Molecular Evolutionary Genetics Analysis (MEGA) 6.0 software²⁶.

PCR of *V. alginolyticus* **targeting 16S-23S rRNA intergenic spacer regions (IGS-fingerprinting):** PCR of *V. alginolyticus* targeting 16S-23S rRNA Intergenic Spacer Regions (IGS-Fingerprinting) was performed in a 50 μ L reaction following the method described by Hoffmann *et al.*¹³. The cyclic condition includes a second round amplification step to eliminate artifacts as possible as explained in Table 2.

PCR for Detection of *V. alginolyticus* virulence genes were performed in 50 µL reaction following the procedures described by Xie *et al.*²⁷ for tlh and *tox*R virulence genes, Sechi *et al.*²⁸ for VPI virulence gene, Cai *et al.*²⁹ for *Omp*K and Di Pinto *et al.*³⁰ for Collagenase virulence genes. Primer sequence for all reactions were described in Table 1 and detailed cyclic condition in Table 2.

Gel electrophoresis: The PCR products in all reactions were run on 1.5% agarose gel stained with Ethidium bromide (10 mg mL⁻¹) in Tris Acetate EDTA buffer (TAE) using Biorad

PowerPac universal electrophoresis and visualized with UV Transilluminator using Molecular Imager Gel DOC™ with Image Lab™ software (USA).

RESULTS

Clinical signs of examined fishes: Symptoms of septicemic vibriosis are clear with Sluggish movement, nervous manifestation represented by listlessness, loss of body reflexes and Fin erosions (Fig. 1a). Generalized erythematic hemorrhage distributed all over the body surface especially anal fins and operculum, marked ulcers with different sizes especially on grouper fish (Fig. 1b and d), corneal opacity (bilateral Fig. 1c) or (unilateral Fig. 1e), hemorrhagic swollen vent and sometimes dark pigmentation were also observed.

Postmortem examination: Severe congestion in gills, liver, kidney and intestine were observed. Distended gall bladder,

Fig. 1(a-f): (a) Gilthead seabream (*Sparus auratus*) showing fin erosion, (b) Black bream (*Acanthopagrus latus*) showing deep skin ulcer, (c) Brown-spotted grouper (*Epinephilus coioides*) showing bilateral corneal opacity, (d) Brown-Spotted Grouper (*Epinephilus coioides*) showing skin lesion and ulcers with different sizes. (E) Brown-spotted Grouper (*Epinephilus coioides*) showing unilateral corneal opacity and (f) Black bream (*Acanthopagrus latus*) showing bloody ascites

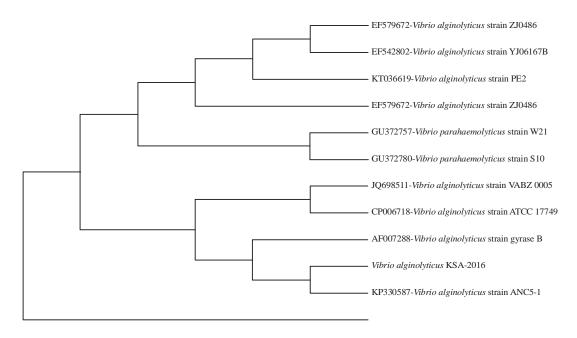


Fig. 2: Phylogenetic tree based on 16S r DNA gene sequence showing the relationships of *V. alginolyticus* with related species. The tree was created using MEGA 6.0 software

Table 3: Nucleotides sequence results for both 16S r DNA and *V. alginolyticus* specific gene targets

Target gene	Sequence results
16S rDNA (1500 bp)	CGAGCGGCAGGCCTACACATGCAAGTCGAGCGGAACGAGTTATCTGAACCTTCGGGGAACGATAACGGCGTCGAGCGGCGGACGGGTGAGTAATG
	CCTAGGAAATTGCCCTGATGTGGGGGATAACCATTGGAAACGATGGCTAATACCGCATGATGCCTACGGGCCAAAGAGGGGGGACCTTCGGGCCTC
	TCGCGTCAGGATATGCCTAGGTGGGATTAGCTAGTTGGTGAGGTAAGGGCTCACCAAGGCGACTATC
V. alginolyticus	CACCTAAGTTACGCACTATCAGAGAAGTTGAGCTAACGATTCATCGTGGTGGCCATATCCATACGCAAACCTACCGCCATGGTGAGCCTCAAGCGCCACTA
specific gene (199 bp)	GCTGTTGTGGGTGATACGGATAAAACCGGTACACAAATTCGTTTCTGGCCAAGTGCCGAAACGTTCTCTAACACTGAGTTCCACTATGACATTCTGG
	CGAAACGCCTGCGTGAACTGTCATTCCTGAACTCTGGTGTGTCGATCAAATTGGTTGATGAACGTGAAGCGGACAAACATGATCACTTCATGTATGA
	AGGTGGTATTCAAGCGTTCGTTGATCACCTAAACACCAACAAAACGCCAATCATCGAAAAAAATCTTCCACTTTAACTCTGAGCGTGAAGACGGCATT
	TCAGTTGAAGTGGCGATGCAATGGAACGATGGTTTCCAAGAGAACATCTTCTGCTTTACCAACAATATCCCACAGCGTGATGGTGGTACTCACCTTG
	CTGGTTTCCGTGCTGCGCTAACACGTACATTGAACAGCTTTATGGATAAGAAGGAGGTTTCTCGAAAAAAAGCGAAAACAGCGACTTCAGGCGACGATG
	CGCGTGAAGGTCTAAC

the abdominal cavity filled with copious exudate (hemorrhagic or ascetic) (Fig. 1f). Inflammation and thickening of swim bladder wall were also recorded.

Phenotypic results: About 280 isolates recovered from examined fishes were Gram-negative, straight or slightly curved (comma shaped) rods, motile, oxidase positive, sensitive to vibriostatic agents 0/129. Small, circular creamy colored colonies on TSA supplemented with 2% NaCl. Large yellow colonies on TCBS agar plates were also recorded.

Biochemical results using API 20NE system: Indicated that all isolates were phenotypically identified as *V. alginolyticus* (ID % 96-99.9) with reference No. 7474644, 7464644, 7456744 and 7456744.

Sequencing results: BLASTing of sequence results from 16S rDNA (1500 bp) and from sequencing of *V. alginolyticus* specific target (199 bp) (Table 3) against those in GenBank "NCBI" resulted in accurate identification of isolates with 99% similarities to reference strains *V. alginolyticus* strain NBRC 15630-16S-rRNA gene (accession No. NR_121709) and *V. alginolyticus* strain ANC5-1 (accession No. KP330587) respectively.

Phylogenetic tree: Construction of phylogenetic tree using sequences output from both 16S rDNA and *V. alginolyticus* specific target accurately put isolates of the present study in *V. alginolyticus* group and indicated its closest proximity to *V. alginolyticus* strain NBRC 15630-16S-rRNA (Fig. 2) and *V. alginolyticus* strains ANC5-1 (Fig. 3) respectively.

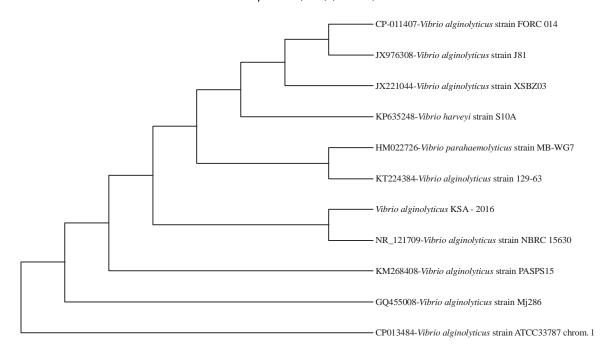


Fig. 3: Phylogenetic tree based on sequencing of targets of *V. alginolyticus* specific gene regions showing the relationships of *V. alginolyticus* with related species. The tree was created using MEGA 6.0 software

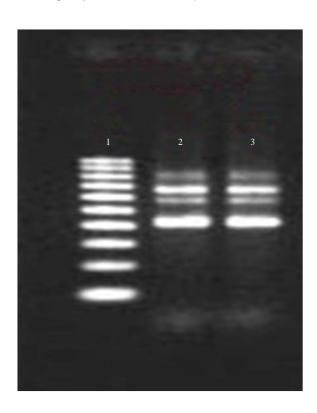


Fig. 4: About 1.5% agarose electrophoretic gel picture showing the 16S-23S intergenic spacer pattern (IGS-Fingerprinting) of *V. alginolyticus* where Lane 1: 100 bp DNA ladder, Lane 2 and 3: 4 bands of *V. alginolyticus* near 420, 580, 650 and 820 bp

Intergenic spacers (IGS) results: A polymerase chain reaction (PCR) targeting 16S-23S rRNA intergenic spacer (IGS) region was conducted with extracted DNA from pooled samples and resulted in amplicons. The latter were analyzed by gel electrophoresis and resulted in 4 typical bands \approx 420, 580, 650 and 820 bp (Fig. 4).

Presence of virulence genes: The extracted DNA from pooled samples in the present study was subjected to virulence genes detection by mean of a conventional PCR and gave similar results. They were positive for the presence of collagenase, *tox*R and *omp*K genes and lacking *tlh* and VPI genes (Fig. 5).

The accurate molecular identification of *V. alginolyticus* isolates in present study revealed that the highest incidence of was in rabbitfish (Siganus infection followed by brown-spotted canaliculatus) (29.64%) grouper (Epinephilus coioides) (27.14%), two bar seabream (Acanthopagrus bifasciatus) (20.36%), red sea seabream (*Diplodus noct*) (8.93%), black bream (*Acanthopagrus latus*) (7.5%) and gilthead seabream (Sparus auratus) (6.43%) as shown in Table 4. As well as the highest incidence of infection was recorded from kidney tissues (46.79%) followed by liver (31.43%) and spleen (21.78%) as shown in Table 5.

The seasonal prevalence of *V. alginolyticus* infection among the total number of examined fishes revealed that, the

Table 4: Total no. of *V. alginolyticus* isolates/fish species

				Sum of isola	tes
Fish sp.	Liver	Kidney	Spleen	No.	%
Gilthead seabream (Sparus auratus)	6	8	4	18	6.43
Twobar seabream (Acanthopagrus bifasciatus)	11	29	17	57	20.36
Black bream (Acanthopagrus latus)	7	8	6	21	7.50
Red sea seabream (<i>Diplodus noct</i>)	9	11	5	25	8.93
Brown-spotted grouper (Epinephilus coioides)	28	36	12	76	27.14
Rabbitfish (Siganus canaliculatus)	27	39	17	83	29.64
Total	280	100			

Table 5: Total No. of *V. alginolyticus* isolates/organs of various fish species

	Liver 		Kidney	Kidney 		Spleen 		Total 	
Organ	No.	%	No.	%	No.	%	No.	%	
No. of <i>V. alginolyticus</i> isolates	88	31.43	131	46.79	61	21.78	280	100	

Table 6: Seasonal prevalence of *V. alginolyticus* in the examined fishes

·	Winter	Vinter Autumn		Summe	Summer		Spring		Total	
Organ	No.	%	No.	%	No.	%	No.	%	No.	%
No. of fishes examined	90	25.00	90	25.00	90	25.00	90	25.00	360	100
No. of <i>V. alginolyticus</i> isolates	22	7.86	32	11.43	173	61.78	53	18.93	280	100

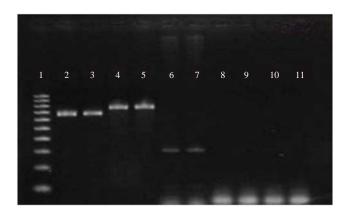


Fig. 5: About 1.5% agarose electrophoretic gel picture showing amplification of *V. alginolyticus* virulence genes under study where Lane 1: 100 bp DNA ladder, Lane 2 and 3: Positive *tox*R-gene amplification, Lane 4 and 5: Positive collagenase-gene amplification, Lane 6 and 7: Positive *omp*K-gene amplification, Lane 8 and 9: Negative *tlh*-gene amplification and Lane 10 and 11: Negative VPI-gene amplification

highest prevalence was in summer season (61.78%) followed by spring (18.93%), Autumn (11.43) and winter (7.86%) as shown in Table 6.

DISCUSSION

Arabian gulf area characterized by higher salt concentration and extreme higher temperature specially

in summer season which favor *Vibrio* sp. Mainly *V. alginolyticus*². Virulence of *V. alginolyticus* strain for fish epizootics outbreaks have been reported in gilthead seabream (*Sparus auratus*) by Paperna³¹ and in two bar seabream (*Acanthopagrus bifasciatus*), black bream (*Acanthopagrus latus*), red sea seabream (*Diplodus noct*), brown-spotted grouper (*Epinephilus coioides*) and rabbitfish (*Siganus canaliculatus*) by Hassan *et al.*¹.

General septicemic picture were obvious on the examined fishes. In some cases, the symptoms were markedly prominent such as ulcers with different sizes and corneal opacity (uni-bilateral) especially in grouper fish. Internally, congestion of internal organs, distension of gall bladder and abdominal cavity with copious exudate (hemorrhagic or ascetic) were also recorded. Similar clinical signs and postmortem lesions stated by Labella et al.32 and Moustafa et al.33, which may came as a result of higher salinity, lack of dissolved oxygen by the rise of water temperature especially in summer season together with the presence of V. alginolyticus virulence factors. Gomathi et al.³⁴ stated that natural disease caused by V. alginolyticus in sea bream includes, septicemia, hemorrhage and skin ulcers in some cases. Internally, fish accumulate fluid in the peritoneal cavity and in some cases have hemorrhagic livers.

Due to plastic nature and higher number of identified vibrios (73 spp.) till now, Phenotypic and conventional methods including culture-based, API 20E and 20NE identification system were unreliable for identification of *Vibrio* sp.^{13,35}. Hence, molecular biological DNA-based

methods have been well established for rapid and accurate identification of *Vibrio* spp.²⁵. It provide privileges than/or sequel to conventional biochemical and culture-based methods³⁶.

Sequencing of 16S rRNA and *V. alginolyticus* specific targets is of quiet importance for accurate identification and classification of isolates in the present study. The 16S rRNA gene sequence alone is less trust worthy in differentiation between species or even subspecies of G. *vibrio*³⁷ due to continuous increases in the number of known *Vibrio* sp., moreover several *Vibrio* sp. Contain almost similar sequence of 16S rRNA gene with fewer differences. Hence, in the present study, 16S rRNA sequence combined with *V. alginolyticus* specific gene sequence for accurate identification. BLASTing of sequence results against those held in GenBank (NCBI, Bethesda, USA) identified these isolates as *V. alginolyticus* with 99% similarity to *V. alginolyticus* strain NBRC 15630-16SrRNA gene and *V. alginolyticus* strain ANC5-1 respectively.

In bacterial chromosome, Intergenic Spacer (IGS) regions situated among 16S and 23S rRNA genes and considered as a fingerprinting to discriminate vibrios not only at species level but also at subspecies level as well¹³. The IGS-Typing pattern of *V. alginolyticus* on agarose gel was recorded in the present study as illustrated in Fig. 3 and represented by 4 typical bands \approx 420, 580, 650 and 820 bp. The differences in the length and sequence of the 16S-23S intergenic spacer regions (IGSs) of rRNA persons were used to develop IGS-Typing system for *Vibrio* species, hence, *Vibrio* species can be distinguished from each other by one PCR reaction¹³.

Concerning the results of virulence genes detection in the present study, *V. alginolyticus* possess positive results for collagenase, *tox*R and *omp*K genes and lacking tlh and VPI virulence genes. These results were supported by Effendy *et al.*⁵, who stated that 67% of tested *V. alginolyticus* strains carry *omp*K, *tox*R and collagenase genes, while, 19% of them carrying both *omp*K and *tox*R genes and supported as well by Xie *et al.*²⁷, who detect the presence of tlh virulence gene which is homologous to those of *V. parahaemolyticus* and presence of VPI gene in 2 strains of *V. alginolyticus*. Hence, it proposed that *V. alginolyticus* act as substantial reservoir of several known virulence genes from other species of genus *Vibrio*.

The pathogenicity mechanism of *V. alginolyticus* might be different from other pathogenic *Vibrio* species or the virulence may be caused by multi virulent factors as reported by Kahla-Nakbi *et al.*⁸ and Xie*et al.*²⁷ when they did not found any correlation between presence or absence or virulence genes in *V. alginolyticus* and its virulent strains.

In present study, the highest incidence of infection was in rabbitfish (*Siganus canaliculatus*) (29.64%) while, the lowest was in gilthead seabream (*Sparus auratus*) (6.43%). Similarly, Al-Sunaiher *et al.*² stated that *Vibrio* species detected in 16.8% of the total examined fish with higher incidence in rabbitfish (50%). On the contrary, Balebona *et al.*³⁸ reported that incidence of infection was (67.8%) intensive cultured gilt-head seabream (*Sparus aurata* L.). This variation in prevalence may be attributed to the differences salinity level, the sample sizes of studies, different climate.

The seasonal prevalence of *V. alginolyticus* infection among the total number of examined fishes revealed that, the highest prevalence was in summer season (61.78%) and these were supported by Giorgetti and Ceschia³⁹, who revealed that the main predisposing factors in all *Vibrios* outbreaks were increased in water temperature and epizootics were always associated with temperature higher than 15 °C.

CONCLUSION

The present study suggested that the isolated *V. alginolyticus* was virulent to fish, shellfish, shrimp and crustacean present in Arabian gulf as it carry virulence genes. Subsequently, it should receive enough attention, may be by vaccination to avoid the resulting mortality and hence economic losses in commercial farms. Accurate identification and characterization of the dominant strain of local bacteria greatly support the epidemiological studies and tracing of diseases outbreaks. Moreover knowing the type of dominant bacteria is very helpful in developing of protection programs against it as well as to discover suitable methods to control the infection transmission to consumers.

SIGNIFICANCE STATEMENT

This study discovered the molecular characterization and virulence properties of *V. alginolyticus* isolated from Saudi coast of Arabian gulf and recorded its IGS-Typing pattern. This study will help the researcher to definitely identify *V. alginolyticus* using one PCR reaction in references to data of this study.

REFERENCES

 Hassan, M.A., W.S. Soliman, M.A. Mahmoud, S.S. Al-Shabeeb and P.M. Imran, 2015. Prevalence of bacterial infections among cage-cultured marine fishes at the Eastern province of Saudi Arabia. Res. J. Pharmaceut. Biol. Chem. Sci., 6: 1112-1126.

- 2. Al-Sunaiher, A.E., A.S.S. Ibrahim and A. Al-Salamah, 2010. Association of *Vibrio* species with disease incidence in some cultured fishes in the Kingdom of Saudi Arabia. World Applied Sci. J., 8: 653-660.
- 3. Sadok, K., S. Mejdi, S. Nourhen and B. Amina, 2013. Phenotypic characterization and RAPD fingerprinting of *Vibrio parahaemolyticus* and *Vibrio alginolyticus* isolated during Tunisian fish farm outbreaks. Folia Microbiol., 58: 17-26.
- 4. Younes, A.Y., M.O. Fares, A.Y. Gaafar and L.A. Mohamed, 2016. Isolation of vibrio alginolyticus and vibrio vulnificus strains from cultured oreochromis niloticus around qarun lake, egypt. Global Veterinaria, 16: 1-5.
- Najwa, M., A. Nor, D.D. Muhd, K.A.M. Amin and A.W.M. Effendy, 2015. Detection of virulence genes in vibrio alginolyticus isolated from green mussel, perna viridis. Jurnal Teknologi, 77: 19-23.
- Abdellrazeq, G.S. and S.A. Khaliel, 2014. Molecular characterization and antimicrobial susceptibility of vibrios isolated from healthy and diseased aquacultured freshwater fishes. Global Vet., 13: 397-407.
- Drake, L.A., M.A. Doblin and F.C. Dobbs, 2007. Potential microbial bioinvasions via ships' ballast water, sediment and biofilm. Marine Pollut. Bull., 55: 333-341.
- 8. Kahla-Nakbi, A.B., A. Besbes, K. Chaieb, M. Rouabhia and A. Bakhrouf, 2007. Survival of *Vibrio alginolyticus* in seawater and retention of virulence of its starved cells. Marine Environ. Res., 64: 469-478.
- Liu, P.C., J.Y. Lin, P.T. Hsiao and K.K. Lee, 2004. Isolation and characterization of pathogenic *Vibrio alginolyticus* from diseased cobia *Rachycentron canadum*. J. Basic Microbiol., 44: 23-28.
- Cai, S.H., Z.H. Wu, J.C. Jian and Y.S. Lu, 2007. Cloning and expression of gene encoding the thermostable direct hemolysin from *Vibrio alginolyticus* strain HY9901, the causative agent of vibriosis of crimson snapper (*Lutjanus erythopterus*). J. Applied Microbiol., 103: 289-296.
- 11. Selvin, J. and A.P. Lipton, 2003. *Vibrio* alginolyticus associated with white spot disease of *Penaeus monodon*. Dis. Aquat. Org., 57: 147-150.
- Zhenyu, X., K. Shaowen, H. Chaoqun, Z. Zhixiong, W. Shifeng and Z. Yongcan, 2013. First characterization of bacterial pathogen, *Vibrio alginolyticus*, for *Porites andrewsi* white syndrome in the South China sea. Plos One, Vol. 8. 10.1371/journal.pone.0075425.
- Hoffmann, M., E.W. Brown, P.C. Feng, C.E. Keys, M. Fischer and S.R. Monday, 2010. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC Microbiol., Vol. 10. 10.1186/1471-2180-10-90.

- 14. Harriague, A.C., M. Di Brino, M. Zampini, G. Albertelli, C. Pruzzo and C. Misic, 2008. Vibrios in association with sedimentary crustaceans in three beaches of the northern Adriatic sea (Italy). Marine Pollut. Bull., 56: 574-579.
- Zhang, D., C. Rajanna, W. Sun and D.K. Karaolis, 2003. Analysis of the vibrio pathogenicity island-encoded mop protein suggests a pleiotropic role in the virulence of epidemic *Vibrio cholera*. FEMS Microbiol. Lett., 225: 311-318.
- 16. Snoussi, M., H. Hajlaoui, E. Noumi, S. Zanetti and A. Bakhrouf, 2008. Phenotypic and genetic diversity of *Vibrio alginolyticus* strains recovered from juveniles and older *Sparus aurata* reared in a *Tunisian marine* farm. Ann. Microbiol., 58: 141-146.
- Abdallah, F.B., R. Lagha, A. Ellafi, A. Namane, J.C. Rousselle, P. Lenormand and H. Kallel, 2012. Identification of outer membrane proteins altered in response to UVC-radiation in *Vibrio parahaemolyticus* and *Vibrio alginolyticus*. Indian J. Microbiol., 52: 660-665.
- 18. Miyoshi, S.I., 2013. Extracellular proteolytic enzymes produced by human pathogenic *Vibrio* species. Frontiers Microbiol., Vol. 4. 10.3389/fmicb.2013.00339.
- 19. Rasheed, V.M., 1989. Diseases of cultured brown-spotted grouper *Epinephelus tauvina* and silvery black porgy *Acanthopagrus cuvieri* in Kuwait. J. Aquat. Anim. Health, 1: 102-107.
- 20. Raissy, M., H. Momtaz, M. Moumeni, M. Ansari and E. Rahimi, 2011. Molecular detection of *Vibrio* spp. in lobster hemolymph. Afr. J. Microbiol. Res., 5: 1697-1700.
- 21. Mirbakhsh, M., A. Akhavansepahy, M. Afsharnasab, A. Khanafari and M.R. Razavi, 2013. Screening and evaluation of indigenous bacteria from the Persian Gulf as a probiotic and biocontrol agent against *Vibrio harveyi* in *Litopenaeus vannamei* post larvae. Iranian J. Fisher. Sci., 12: 873-886.
- 22. Noga, E.J., 2010. Fish Disease: Diagnosis and Treatment. 2nd Edn., Iowa State University Press, Ames, IA., USA.
- 23. Austin, B. and D.A. Austin, 2012. Bacterial Fish Pathogens, Diseases of Farmed and Wild Fish. Springer, New York, London.
- 24. Polz, M.F. and C.M. Cavanaugh, 1998. Bias in template-to-product ratios in multitemplate PCR. Applied Environ. Microbiol., 64: 3724-3730.
- Kim, H.J., J.O. Ryu, S.Y. Lee, E.S. Kim and H.Y. Kim, 2015. Multiplex PCR for detection of the *Vibrio* genus and five pathogenic *Vibrio* species with primer sets designed using comparative genomics. BMC Microbiol., Vol. 15. 10.1186/s12866-015-0577-3.
- 26. Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar, 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30: 2725-2729.

- Xie, Z.Y., C.Q. Hu, C. Chen, L.P. Zhang and C.H. Ren, 2005. Investigation of seven *Vibrio* virulence genes among *Vibrio* alginolyticus and *Vibrio* parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett. Applied Microbiol., 41: 202-207.
- 28. Sechi, L.A., I. Dupre, A. Deriu, G. Fadda and S. Zanetti, 2000. Distribution of *Vibrio cholera* virulence genes among different *Vibrio* species isolated in Sardinia, Italy. J. Applied Microbiol., 88: 475-481.
- 29. Cai, S.H., Y.S. Lu, Z.H. Wu, J.C. Jian and Y.C. Huang, 2009. A novel multiplex PCR method for detecting virulent strains of *Vibrio alginolyticus*. Aquacult. Res., 41: 27-34.
- Di Pinto, A., G. Ciccarese, G. Tantillo, D. Catalano and V.T. Forte, 2005. A collagenase-targeted multiplex PCR assay for identification of *Vibrio alginolyticus*, *Vibrio cholerae* and *Vibrio parahaemolyticus*. J. Food Prot., 68: 150-153.
- 31. Paperna, I., 1984. Review of Diseases Affecting Cultured *Sparusaurata* and *Dicentrarchus labrax*. In: L'Aquaculture du bar et des Sparides, Barnabe, G. and R. Billard (Eds.)., INRA Publisher, Paris, France, pp: 465-482.
- 32. Labella, A., C. Berbel, M. Manchado, D. Castro and J.J. Borrego, 2011. *Photobacterium damselae* subsp. *damselae*, an emerging pathogen affecting new cultured marine sh species in Southern Spain. Recent Adv. Fish Farm, 9: 135-152.

- 33. Moustafa, M., L.A. Mohamed, M.A. Mahmoud, W.S. Soliman and M.Y. El-Gendy, 2010. Bacterial infections affecting marine fishes in Egypt. J. Am. Sci., 6: 603-612.
- 34. Gomathi, R.S., R. Vinothkumar and K. Arunagiri, 2013. Isolation and identification vibrios from marine seafood samples. Int. J. Curr. Microbiol. Applied Sci., 2: 36-43.
- Hassan, M.A., E.A. Noureldin, M.A. Mahmoud and N.A. Fita, 2017. Molecular identification and epizootiology of Aeromonas veronii infection among farmed Oreochromis niloticus in Eastern province, KSA. Egypt. J. Aquat. Res., 43: 161-167.
- Jones, J.L., Y. Hara-Kudo, J.A. Krantz, R.A. Benner, Jr. and A.B. Smith *et al.*, 2012. Comparison of molecular detection methods for *Vibrio parahaemolyticus* and *Vibrio vulnificus*. Food Microbiol., 30: 105-111.
- 37. Thompson, F.L., T. lida and J. Swings, 2004. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev., 68: 403-431.
- 38. Balebona, M.C., M.J. Andreu, M.A. Bordas, I. Zorrilla, M.A. Morinigo and J.J. Borrego, 1998. Pathogenicity of *Vibrio alginolyticus* for cultured gilt-head sea bream (*Sparus aurata*L.). Applied Environ. Microbiol., 64: 4269-4275.
- 39. Giorgetti, G. and G. Ceschia, 1982. Vibriosis in rainbow trout, *Salmo gairdneri Richardson*, in fresh water in North-Eastern Italy. J. Fish Dis., 5: 125-130.