

Journal of **Plant Sciences**

ISSN 1816-4951

ISSN 1816-4951 DOI: 10.3923/jps.2024.1.17

Research Article Identification and Characterization of Rot-Causing Fungi Affecting Yam Tubers During Storage in Calabar, Nigeria

¹Effiom Eyo Ita, ²Ekeng Ita Okon, ¹Julius Oyohosuho Phillip, ¹Bassey Oyo Inameti, ¹Chinasa Ugwoke, ^{1,3}Valentine Otang Ntui, ¹Edak Aniedi Uyoh and ¹Ene-Obong Efiom Ene-Obong

Abstract

Background and Objective: Post-harvest deterioration of yam by microorganisms is a major constraint militating against yam production and marketing in many yam-producing countries. This study aimed to identify the fungal pathogens causing rots and their impact during the storage of yam tubers in Calabar. **Materials and Methods:** Twenty yam tubers were collected from a warehouse at Akim Market in Calabar and kept to rot. Eighteen of the tubers developed different symptoms of dry, wet and soft rots during storage from which 15 fungal pathogens were isolated. The pathogens were isolated and characterized based on identified morphological characteristics, in addition to molecular data. **Results:** The main fungi isolated were *Aspergillus* spp., *Lasiodiplodia* spp. and *Rhizopus* spp. Nucleotide sequence identities ranging from 60.0 to 97.6% were obtained among the isolates indicating various degrees of affinity. Pathogenicity test on *Dioscorea rotundata* and *Dioscorea alata* showed that all the isolates displayed typical symptoms of different yam rots as were observed in the original rotted yams from which the pathogens were isolated among the fungi isolates. *Rhizopus* spp., was the most invasive causing up to 100% rot of the tubers. **Conclusion:** Based on the present study data, it is recommended that in addition to employing improved methods of handling and storing yam tubers, developing resistant varieties will effectively cut down on postharvest losses caused by biological agents.

Key words: Dioscorea spp., fungal disease, phylogeny, rots, yam

Citation: Ita, E.E., E.I. Okon, J.O. Phillip, B.O. Inameti and C. Ugwoke *et al.*, 2024. Identification and characterization of rot-causing fungi affecting yam tubers during storage in Calabar, Nigeria. J. Plant Sci., 19: 1-17.

Corresponding Author: Effiom Eyo Ita, Department of Genetics and Biotechnology, University of Calabar, P.M.B. 1115, Calabar, Nigeria Tel: +234 80120022105

Copyright: © 2024 Effiom Eyo Ita *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Genetics and Biotechnology, University of Calabar, P.M.B. 1115, Calabar, Nigeria

²Department of Plant and Ecological Studies, University of Calabar, P.M.B. 1115, Calabar, Nigeria

³International Institute of Tropical Agriculture, Nairobi, Kenya

INTRODUCTION

Yam (Dioscorea spp.) is grown mainly in tropical and subtropical climates and it is a major staple for millions in West Africa¹⁻⁴. The yam belt region of West Africa, which includes Nigeria, Benin, Togo, Ghana and Côte d'Ivoire, accounts for about 95% of the 72.6 million tons of global yam production; with Nigeria as the lead producer contributing over 65% of the global production⁴. As far as production is concerned, yam ranks second as the world's most important tuber crop after cassava⁴. There are well over 600 species of yams⁵, but only a few, including *D. rotundata* Poir. (white yam), D. alata L. (water yam), D. cayenensis L. (yellow or Guinea yam), D. dumetorum (trifoliate or sweet yam), D. bulbifera Lam. (aerial yam), D. japonica (Japanese yam), D. nummularia (Pacific/spiny yam), D. oppositifolia (Chinese yam; China), D. pentaphylla (five-leaved yam), D. trifida (aja, aje, cush-cush, yampi) and *D. esculenta* (Asiatic yam) are cultivated as food sources^{1,5,6}.

Yam is seen as a religious, social and cultural crop in some communities in Nigeria and it is one of the favorite foods in social functions such as marriages, burials, as well as other traditional ceremonies and rituals. This perception explains why these communities celebrate annual 'New Yam Festivals'4,7. The supply for yam, therefore, hardly meets its demand and this is partly because its production is severely constrained by the cost and unavailability of clean planting material⁸. Pests and pathogens have been identified as key factors hindering the productivity of this staple both in farms and storage units⁴. Bacteria, fungi, viruses and nematodes are responsible for rots in yams at different stages of growth and storage9-11. These pathogens reduce the growth, quantity and quality of yam^{10,12}. In Nigeria alone, rots initiated by these pathogens account for over 50% of losses in yam tubers in storage^{13,14}. Depending on the pathogen, infected yam tubers may display dry rot, soft rot and wet or watery rot¹⁵. Fungi species belonging to diverse genera such as Aspergillus, Botryodiplodia, Fusarium, Penicillium, Trichoderma, Rhizopus, Colletotrichum, Cladosporium, Cylindrocapus, Gliocladium, Geotrichum, Gliomatrixcon, Macrophomina, Mucor and Rhizoctonia have been implicated in yam tuber rot, causing annual yield decline in storage barns 10,16-19. Proper diagnosis of the disease and identification of the causing agent(s) are critical in designing appropriate mitigation measures to curb the menace to ensure the availability of tubers to consumers throughout the year. This research was aimed at identifying the fungal pathogens associated with post-harvest yam tuber rots and their impact on stored yam tubers in Calabar. Aspergillus spp., Lasiodiplodia spp. and Rhizopus spp., were identified as the fungal pathogens causing rots of yams in

storage in Calabar and environs, with *Rhizopus* having the greatest impact on the stored yams.

MATERIALS AND METHODS

Study area: This study was carried out in Calabar, Cross River State from April, 2022 to February, 2023. The yam samples were collected from Akim Market in Calabar and the laboratory analyses were carried out in the Molecular Biology Laboratory of the Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Collection of yam tubers from sampling location and categorization of rots: Twenty tubers of *D. rotundata* having no physical damage, were collected from a warehouse at Akim Market in Calabar, Cross River State, Nigeria. The *D. rotundata* is the most cultivated and consumed yam species in Cross River State. The yam tubers were transported to the laboratory in labelled, sterile polythene bags. The tubers were removed from the bags and placed on open shelves in the laboratory at room temperature where they were observed daily for two weeks.

Decayed yams were distinguished by visual examination, as being withered in appearance and/or delicate to touch. Where there was uncertainty, the peeling off of the skin at the infected location usually uncovered brown decayed tissue for confirmation. The scheme of Amusa *et al.*¹⁵ was used to categorize the rots as follows: Dry rot: Infected tissues got hard and dry with different discolorations depending on the causative agent; Soft rot: Infected tissues got delicate and ramified by the fungal mycelium; Wet rot: This was exemplified by the exudation of whitish liquid from the infected yam tissue when squeezed between the fingers. All decayed tubers were removed from the shelves and kept independently for identification of fungal pathogens.

Isolation of fungal pathogens: Yam tubers with decaying indications were washed with running tap water to remove residual soil particles. Each tuber was surface decontaminated in 5% sodium hypochlorite for 5 min and rinsed a couple of times with sterile distilled water. After that, 3-4 mm yam pieces were picked from the decaying edge with sterilized forceps and inoculated in potato dextrose agar (PDA) medium supplemented with chloramphenicol (1000 mg/L). The plates were incubated at $28\pm2^{\circ}\text{C}$ and checked every day for seven days for fungal growth. To get pure cultures, any observed fungal growth was sub-cultured on a new PDA plate. The pure cultures were stored on PDA slant in the refrigerator until needed.

Identification of fungal isolates using morphological features: Morphological characteristics of mycelia mounted in lactophenol were observed with a compound Olympus microscope. Identification of fungal isolates was based on the following culture characteristics on PDA: Mycelial growth rate (measured daily with a meter rule in cm from the center of the plate to the edge (radius)), mycelial colour and branching pattern; spore colour, type, size and shape; aggregation and arrangement of sporangiophore, conidiophore, conidia and sporulating structures as described by researchers²⁰⁻²⁶. The measurements and observations were made on three culture plates for each isolate.

The structures of the isolates were compared with the standard reference atlas of imperfect fungi by Barnet and Hunter²² and with literature on the identification of yam storage fungi by Visagie *et al.*²⁷. Isolates were subsequently subjected to a pathogenicity test.

Molecular characterization of fungal isolates

Extraction of fungal genomic DNA: As 100 mg of seven day old fungal cultures were freeze-dried in liquid nitrogen, pulverized with mortar and pestle and then transferred into 2 mL Eppendorf tubes. Approximately 500 µL of Cetyltrimethylammonium Bromide (CTAB) extraction buffer and 10 μ L of β -mercaptoethanol were added to the tube before incubation for 1 hr at 60°C. As 1000 µL of Phenol:Chloroform:Iso-amyl alcohol in the ratio 25:24:1 was added and vortexed for 5 min, then allowed to stand for 5 min. The samples were centrifuged at 12,000 rpm for 10 min after which the supernatants were transferred to new tubes and 1000 µL of Chloroform:lso-amyl alcohol (24:1) was added and centrifuged at 12,000 rpm for 5 min. The supernatants were transferred to a new tube and 500 µL of ice-cooled isopropanol was added and incubated at -20°C for 15 min to precipitate DNA. The DNA was recovered by centrifuging at 12,000 rpm for 5 min. The pellets were washed with 70% ethanol, air-dried and re-suspended in 20 µL Tris-EDTA (TE) buffer.

Amplification of fungal genomic DNA by PCR: Polymerase chain reaction was performed using New England BioLabs Taq DNA polymerase kit in a 50 μ L reaction volume containing 1 μ L DNA, 5 μ L of Taq polymerase enzyme with standard buffer, 5 μ L of Magnesium Chloride (MgCl₂), 1 μ L of dNTP, 1 μ L of 10 μ M each of forward and reverse primer and 36 μ L nuclease-free water. The PCR amplification conditions were performed as follows: Initial denaturation step at 94°C for 3 sec, followed by 35 cycles of denaturation at 94°C for 20 sec,

annealing at 58°C for 60 sec, extension at 68°C for 1 min; final extension at 68°C for 5 min and holding at 4°C. The primers used are shown in Table S1. The amplified products were separated in 1% agarose gel stained with ethicium bromide for 15 min and visualized under a UV transilluminator.

Sequencing of the PCR products: The PCR products obtained above were purified by ultrafiltration using Centricon®-100 columns (PN N930-2119) following instructions in the user manual. The purified products were used to constitute a PCR sequencing reaction as follows: 13.5 μ L nuclease-free water, 2.5 μ L PCR product, 2 μ L sequencing buffer (5X), 1 μ L of Big Dye Terminator ready reaction premix and 1 μ L of 10 mM of either forward or reverse primer for each of the primer pair (LT347-F&R, ASP_GEN_MTSSU-F&R and RRF1-F&R).

A thermal cycler was used for the PCR amplification with initial denaturation step at 96°C for 1 min followed by 40 cycles of denaturation at 96°C for 10 sec, annealing at 50°C for 5 sec, extension at 60°C for 4 min, final extension at 72°C for 4 min. The sequencing product was purified by adding the following: $50~\mu\text{L}$ ethanol (100%), $2~\mu\text{L}$ sodium acetic acid (3~M) and $2~\mu\text{L}$ of EDTA (125~mM), mixed by inverting 4 times and incubated for 15~min at room temperature. Following the incubation period, the mixture was centrifuged at $1400\times g$ for 45~min at 20°C .

The mixture was centrifuged at 1400×g for 45 min at 20°C. As 70% ethanol was used to clean the pellets, then left to dry in the hood for 20 min. The samples were re-suspended in an injection buffer and then sequenced using ABI Prism 3700 DNA analyzer (Applied Biosystems, California, USA). The SnapGene® software version 7. 0.2 (Dotmatics, Boston, USA) was used to assemble, edit and analyze the sequences. For each isolate, 2 replicates each for forward and reverse primers were sequenced.

Phylogenetic analyses: To identify the most similar sequences available in the database, the nucleotide sequences for each isolate were used in BLASTn searches against the GenBank database.

Sequences in the GenBank with >60% similarity to the isolates were selected for alignment. Sequence alignment was done using the CLUSTALW alignment²⁸. The CLUSTALW alignments were used for inferring phylogenetic trees using the UPGMA method²⁹. To determine the confidence values for the grouping within a tree, a bootstrap analysis was performed using 1000 resampling's of the data. Phylogenetic and molecular evolutionary analyses were done using MEGA version 7³⁰.

Pathogenicity test: To ascertain the virulence of the isolated fungi, a pathogenicity test was performed by axenic inoculation of fresh and healthy yam tubers (D. rotundata and D. alata) according to the method described by Okafor³¹. Healthy yam tubers (20 D. rotundata and 20 D. alata) free from bruises, cuts, rots or any visible defects were collected from Akim Market in Calabar, washed in running tap water for 10 min, surface sterilized by immersion in 5% sodium hypochlorite solution for four minutes, rinsed in four successive changes of sterile distilled water (SDW) and blotted-dry. A disc of five days old culture of the fungal isolates obtained from rotted yam tubers grown on PDA was the source of inoculum for the pathogenicity test. A 5 mm diameter cork borer was used to remove 5 mm tissue from the healthy yam tuber surfaces aseptically. A sterile 5 mm diameter cork borer was used to cut mycelia plugs from the edge of five days old cultures of each isolate. These fungal plugs were put in the holes created in the yam tubers. The mouths of the wells were wiped with 95% ethanol and the wells occluded with yam disk before sealing inoculation points with petroleum jelly²². The same procedure was used for the control except that disks of un-inoculated PDA were placed in the holes created in the tubers. There were three replicate tests of each isolate and the control. The tubers were partitioned into equal sizes (7 cm per partition) such that the 15 fungal isolates were randomized on three tubers, while a separate tuber was used for control³¹. The inoculated yam tubers were placed at room temperature in a completely randomized design for five weeks at 28±2°C under sterile condition.

At the end of the study, the tubers were cut longitudinally through the inoculation points and the symptoms of rot recorded and compared with those observed in the original infected tubers from where the isolates were gotten. To establish the patho-system and fulfill the Koch's postulate³²,

the rot-causing organisms were re-isolated and identified from inoculated yam tubers and compared to the original isolates. An isolate was confirmed to be pathogenic in the case were it caused rot comparable to that observed on the infected tubers from where it was isolated.

Estimation of percentage rot: To estimate the extent of rot on tubers caused by each pathogen, *D. rotundata* and *D. alata* tubers were cut open longitudinally at five weeks and the surface area of both rotted and entire yam was calculated as length multiplied by breadth using vernier caliper. Percentage rot was determined by dividing the surface area of rotted yam by the surface area of the entire yam tuber and multiplied by 100.

Statistical analysis: A completely randomized experimental design was used. Data collected were subjected to an Analysis of Variance (ANOVA) test using GenStat Discovery Edition 12. Significant means at 5% (p<0.05) were separated using the least significant difference (LSD) test.

RESULTS

Identification and characterization of rots and the associated fungal isolates: Twenty days after storage, 90% of the yam tubers showed various symptoms of rots and were accordingly classified as dry (Fig. 1a), soft rots (Fig. 1b) and wet (Fig. 1c), with 15 different fungal isolates (Table 1). The fifteen fungal isolates obtained (YSF1-15) (Fig. 2) were described based on the cultural and morphological characteristics (Table 2). Mycelia growth ranged from slow (isolates YSF1-YSF4 and YSF15), covering up to 4 cm from the center of the Petri dish in 48 hrs, to fast (isolates YSF5-YSF14), covering the entire Petri dish in 48 hrs (Table 2). Mycelia colour

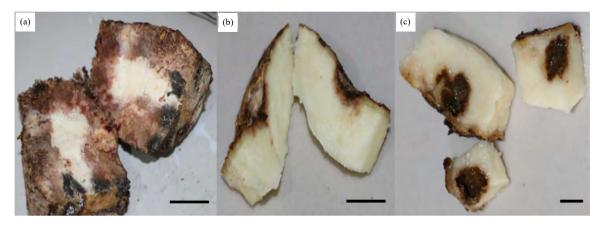


Fig. 1(a-c): Rotted yam tubers, (a) Dry rot, (b) Soft rot and (c) Wet rot Scale bar: 20 mm

J. Plant Sci., 19 (1): 1-17, 2024

Table 1: Identification and characterization of rots and the associated fungal isolates from rotted yams in storage

Type of rot in stored tubers	Occurrence of rot in stored tubers (%)	Number of fungal isolates	Physical appearance
Dry	60	4	Dry and woody tubers with dark-brown to black colour
Soft	10	9	Tissues appear foamy and soft with colour ranging from light brown to dark-brown
Wet	20	2	Tissues appear marshy and moist, yellowish and sometimes creamy in colour
No rot	10	-	-

Table 2. Cultural Characterization of the unferent fundarisolates	Table 2: Cultural	characterization of the	different fungal isolates
---	-------------------	-------------------------	---------------------------

	Mycelia growth	Colour		Spore conc.	
Isolate	rate at 48 hrs (cm)	of mycelia	Morphology of mycelia	(×10 ⁴)	Sporulating structures
YSF 1	2	White	Cottony mycelia with yellowish centric pigment,	112	Brownish sand-like spore
			elevation raised, margin undulate and wrinkled		
			on the reverse. Alternate, branched, non-septate		
			hyphae with smooth and round conidiophore		
YSF 2	2	White	Cottony mycelia with entire margin and	163	Brownish sand-like spore
			partitions elevation flat. Non-septate hyphae,		
			highly branched towards the tip, sporangiophore		
			rough with numerous sticky spore		
YSF3	1.2	White	Cottony mycelia with lobed margin.	253	Brownish-black spores
			Thread-like, branched, hyaline, septate		·
			and colourless hyphae, dark rough conidia		
YSF4	4.2	Yellow	Short hair-like mycelia with flat surface and	254	Black spores
			entire margin. Thread-like, non-branched		· · · · · · · · · · · · · · · · · · ·
			and non-septate hyphae with sporangia		
YSF5	Covered the entire Petri dish	Black	Woolly/filamentous mycelia with crateriform	8	Brown spores
1313	covered the entire real dish	Didek	elevation, margin entire. Short branched and hyaline	Ü	brown spores
			mycelia, sporangia globose to somewhat cylindrical		
YSF6	Covered the entire Petri dish	Transparent	Rhizoid form with raised elevation, filiform margin	16	Brown spores
1310	Covered the entire retirdish	Halispaleilt	translucent and glistering surface. Branched	10	biowii spoies
			mycelia, non-septate stolon, sporangia globose		
YSF7	Covered the entire Petri dish	Transparent	Filamentous in form, convex elevation, filiform margin,	19	Black spores
1367	Covered the entire Feth dish	Hansparent		19	black spores
			smooth surface. Branched mycelia with non-septate		
VCEO	Carraged the a serting Datoi diale	T	hyphae, smooth round sporangiophore	22	Dua
YSF8	Covered the entire Petri dish	Transparent	Rhizoid form with umbonate elevation, entire margin,	23	Brown spores
			wrinkled surface. Short multi-branched non-septate		
VCEO	Commentation and Detail dist	T	hyaline mycelia, sporangia present	9	D
YSF9	Covered the entire Petri dish	Transparent	Irregular form, convex elevation, undulate margin	9	Brown spores
			and rough surface. Thread-like non-septate mycelia,		
			long and smooth hyaline conidia with dark apex		
YSF10	Covered the entire Petri dish	Transparent	Rhizoid form, raised elevation, filiform margin with	22	Greyish black spores
			glistering surface. Short multi-branched mycelia		
			with non-septate hyphae, sporangia globose		
YSF11	Covered the entire Petri dish	Transparent	Circular convex elevation, entire margin, smooth	5	Brown spores
			surface. Branched mycelia, non-septate hyphae		
			with oval and globose sporangia		
YSF12	Covered the entire Petri dish	Translucent	Circular umbonate elevation, entire margin, with	40	Brown spores
			wrinkled surface. Simple branched non-septate mycelia,		
			sporangia attached to stolon connecting the rhizoid		
YSF13	Covered the entire Petri dish	Opaque	Irregular form, raised elevation, undulate margin and	12	Black spores
			wrinkled surface. Simple short branched mycelia,		
			coarsely uncoloured conidiophore with vesicles		
YSF14	Covered the entire Petri dish	Transparent	Irregular form, flat elevation, undulate margin with	29	Brown spores
			rough surface. Simple short branched mycelia,		•
			coarsely uncoloured conidiophore with vesicles		
YSF15	0.5	Opaque	Filamentous convex elevation with filiform margin,	601	Green spores
		- 1:1	smooth surface. Highly branched mycelia,		₋

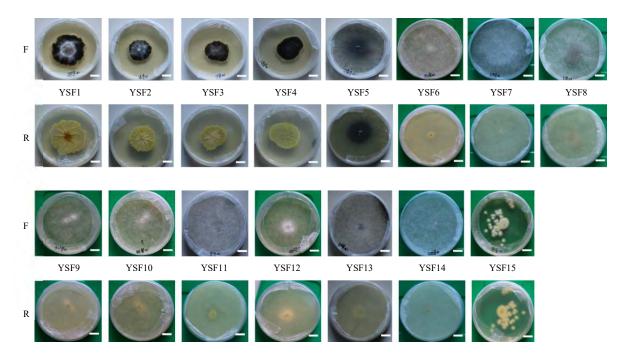


Fig. 2: Morphological variability of 15 fungal isolates obtained from the rotten yam tubers Top row (F): Upper side of the colony, Bottom row (R): Reverse side of the colony and Scale bar: 20 mm

was white in isolate YSF1-3, yellow in isolate YSF4, black in YSF5, transparent in isolates YSF6-YSF11, translucent in YSF12 and opaque in YSF13-YSF15. Spores were observed to be brownish, black and green across the different isolates. The morphology of the mycelia varied greatly across the isolates with different characteristic features. The mycelia were cottony as observed in isolates YSF1, YSF2 and YSF3; rhizoid in isolates YSF6, YSF8 and YSF10; filamentous in isolates YSF7, YSF8 and YSF15 and irregular in isolates YSF9, YSF13 and YSF14. The hyphae were observed to be mostly branched and non-septate as seen in isolates YSF1, YSF2, YSF4, YSF6, YSF7, YSF10 and YSF11; while the fruiting bodies were globose in isolates YSF5, YSF6, YSF10 and YSF11; smooth as in isolates YSF1, YSF7 and YSF9 and rough in isolates YSF2 and YSF3 (Table 2, Fig. 2-4).

PCR amplification: Initially, 7 pairs of primers targeting specific genes were screened in the genera *Lasiodiplodia*, *Aspergillus*, *Penicillium*, *Rhizopus* and *Alternaria*. Of these, only 3 pairs showed amplification and these were selected for further analysis. The 3 pairs are: For ITS1 gene, Primer LT347-F&R for *Lasiodiplodia* spp.³³, for 18S rRNA gene, primer RRF1-F&R for *Rhizopus* spp.³⁴ and mtDNA_SSU rRNA gene, primer ASP_GEN_MTSSU-F&R for *Aspergillus* spp.³⁵. When the 15 isolates were subjected to PCR analysis using these three

primers, only nine isolates were amplified. Primer LT347-F&R amplified one isolate (isolate YSF5) (Fig. 5a), primer RRF1-F&R amplified seven isolates (YSF6, YSF7, YSF11, YSF12, YSF13, YSF14 and YSF15) (Fig. 5b), while primer ASP_GEN_MTSSU-F&R amplified isolate YSF3 (Fig. 5c), with PCR fragments of 347, 631 and 480 base pairs, respectively. This result indicates that the isolated fungi are *Lasiodiplodia* spp., *Aspergillus* spp. and *Rhizopus* spp. and are the organisms responsible for the manifestation of rots in the yam tubers in storage.

Sequence analysis: The PCR products obtained using primers LT347-F&R, RRF1-F&R and ASP_GEN_MTSSU-F&R were purified and sequenced. The nucleotide sequences of each isolate are presented in Table S2. The EMBOSS matcher-Pairwise Sequence Alignment was used to determine whether the isolates were different. Alignment of the nucleotide sequences of the isolates revealed nucleotide sequence identities ranging from 60.0 to 97.6% among the isolates (Table 3). The five *Rhizopus* spp., isolates share >89% nucleotide identity (Table 3) indicating that the isolates are closely related.

The nucleotide sequences were then compared with those of published ITS, 18S rRNA and mtDNA_SSU RNA sequences of several *Lasiodiplodia*, *Rhizopus* and *Aspergillus*, respectively.

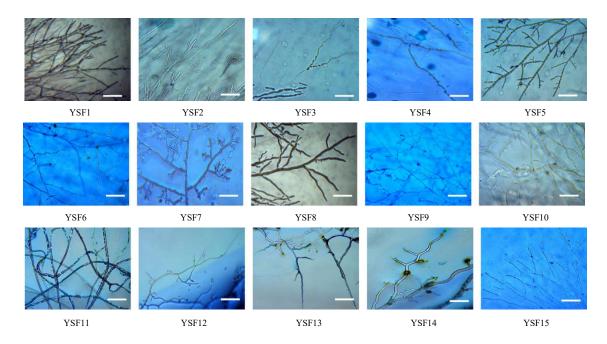


Fig. 3: Photomicrographs of day-old cultures showing growth and branching pattern of the hyphae of the 15 fungal isolates Scale bar: 100 nm

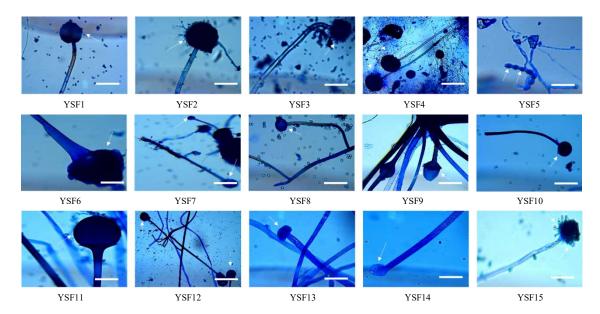


Fig. 4: Photomicrograph showing fruiting body (sporangiophore) of the 15 fungal isolates Scale bar: 100 nm

Table 3: Percentage nucleotide similarity among fungal isolates from yam

-usic sir ciccinage	nucleotide similarity	arriorig rarrigar isolati	.s e y a				
Isolate/strain	YSF3	YSF5	YSF6	YSF7	YSF11	YSF12	YSF13
YSF3	100	78.6	62.57	62.5	62.5	62.1	62.5
YSF5		100	60.0	71.4	71.4	65.2	63.6
YSF6			100	93.2	97.6	90.2	90.1
YSF7				100	94.6	89.9	91.7
YSF11					100	91.7	92.5
YSF12						100	89.1
YSF13							100

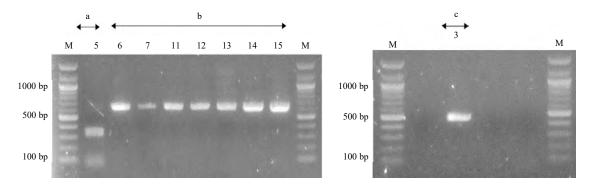


Fig. 5: PCR amplification of ITS1, 18S rRNA and mtDNA SSU rRNA gene from the fungal isolates, (a) PCR analysis of ITS1 gene using Primer LT347-F&R (*Lasiodiplodia* spp.) as previously reported³³, 5 is fungal isolate, (b) PCR analysis of 18s rRNA gene using primer RRF1-F&R (*Rhizopus* spp.) as previously reported³³, 6, 7, 11, 12, 13, 14, 15, are fungal isolates and (c) PCR analysis of mtDNA SSU rRNA gene using ASP_GEN_MTSSU-F&R (*Aspergillus* spp.)³⁵
3 is fungal isolate and M: 100 bp DNA marker

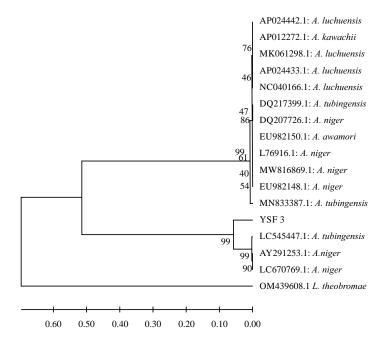


Fig. 6: Phylogenetic tree showing relationships of closely related accessions with our isolates using Maximum Likelihood Method and based on the mtDNA SSU rRNA gene sequences

YSF3 isolate was obtained from this study

To infer the evolutionary history, the UPGMA method was used, while the Maximum Composite Likelihood method was used to compute the evolutionary distances which were in the units of the number of base substitutions per site. This analysis involved 30 nucleotide sequences for trees built with sequence data of 18S region and 17 nucleotide sequence data each for trees of ITS and mtDNA sequences.

Nucleotide sequences of YSF3 clustered together with *A. niger* (AY291253.1 and LC670769.1) and *A. tubingensis*

(LC545447.1), while others clustered together (Fig. 6). Isolate YSF5 was distinguishable from the database sequences (Fig. 7). Isolates YSF6, YSF7, YSF11, YSF12 and YSF13, shared >90% nucleotide identity based on sequence alignment (Fig. S1). All the *Rhizopus* spp., except *Rhizopus lyococcus* (KJ408542.1), were placed in one cluster with a percentage nucleotide identity >90%, while isolates YSF6, YSF7, YSF11, YSF12, YSF13 and *R. lyococcus* (KJ408542.1) formed separate clusters (Fig. 8).

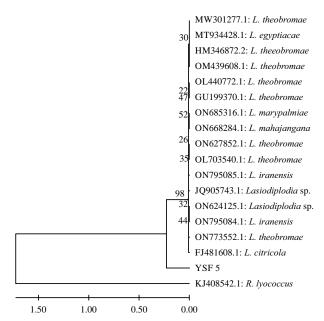


Fig. 7: Phylogenetic tree showing relationships of closely related accessions with our isolates using Maximum Likelihood method and based on the ITS1 gene sequences

YSF5 isolate was obtained from this study

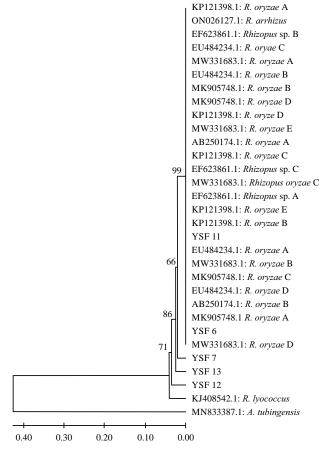


Fig. 8: Phylogenetic tree showing relationships of closely related accessions with our isolates using Maximum Likelihood Method and based on the 18S rRNA gene sequences

YSF6, 7, 11, 12 and 13 isolates were obtained from this study

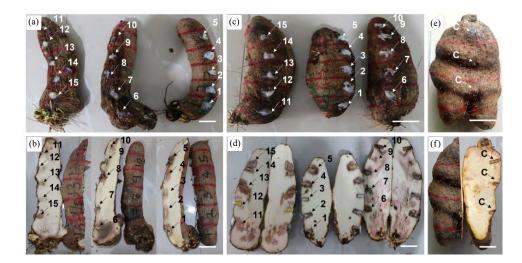


Fig. 9(a-f): Pathogenicity test, (a) Inoculated yam tubers of *D. rotundata* showing points of inoculation of the 15 fungal isolates covered with petroleum jelly, 1-15 represent the 15 fungal isolates YSF1-YSF15, (b) Longitudinal section of tubers of *D. rotundata* 14 days after inoculation with the 15 fungal isolates (YSF1-YSF15), (c) Inoculated yam tubers of *D. alata* showing points of inoculation of the 15 fungal isolates covered with petroleum jelly, 1-15 represent the 15 fungal isolates YSF1-YSF15, (d) Longitudinal section of tubers of *D. alata* 14 days after inoculation with the 15 fungal isolates (YSF1-YSF15), (e) Negative control showing points of inoculation of sterile growth media (PDA) covered with petroleum jelly, the Cs represent control group and (f) Longitudinal section of tuber used as negative control 14 days after inoculation with sterile PDA

Scale bar: 20 mm

Pathogenicity test (Koch's Postulate): The 15 isolates were subjected to a pathogenicity test using white yam (*D. rotundata*) and water yam (*D. alata*). After one week of inoculation, tubers were cut open to examine the different types of rot in the laboratory. All 15 isolates displayed typical symptoms of different yam rots as were observed in the original rotted yams from which the pathogens were isolated (Fig. 9a-d). No symptoms were observed in the negative control which was inoculated with sterile PDA (Fig. 9e-f). Isolate YSF1-3 caused dry rot, isolate YSF5 caused wet rot and isolate YSF6-15 caused soft rot (Table 1). Morphological characterization of re-isolated micro-organism were similar to those used for the inoculation. Symptoms of rots were not observed on the negative control yam tubers.

Estimation of percentage rot: The percentage rot on tubers of *D. rotundata* and *D. alata* infected with the fifteen different fungi isolates were evaluated at five weeks post-inoculation and the results are shown in Fig. 9. The analysis of variance showed a highly significant difference (p<0.001) in the rotting effect of the 15 fungal isolates and the control on both *D. rotundata* and *D. alata* (Table S3). Results obtained for *D. rotundata* showed that YSF 6 and 11 had the highest rot at 100%, while the least was recorded for both YSF7 (0.56%) and YSF8 (0.84%). For *D. alata*, the highest percentage of rot was

found in isolates YSF7, YSF12 and YSF13 with 100% rot, while the least was recorded in YSF2 and YSF3 with 0.60 and 0.88%, respectively. On the other hand, the control for both *D. rotundata* and *D. alata* showed no symptoms of rot (Fig. S2, Table S3).

DISCUSSION

Fungal pathogens are the main causative agents of rot in stored yam tubers in yam-producing areas, reducing the yield and productivity of yam per annum.

The pathogens enter through wounds within the tubers and infect the internal tissues. Such wounds are more often than not caused by insects, nematodes and Improper handling of the tubers before, during and after harvest¹⁵.

In the present study, the fungal pathogens identified as the cause of yam tuber rot in storage are members of the genera *Aspergillus*, *Rhizopus* and *Lasiodiplodia*. *Aspergillus* spp., were isolated from yam tissues showing symptoms of dry rot while *Rhizopus* and *Lasiodiplodia* spp., were isolated, respectively from tissues showing symptoms of soft rot and wet rot. These pathogens had previously been implicated with post-harvest yam tuber rot in different locations in Nigeria^{10,36-39}.

Members of the genus Aspergillus are reported as the most common and frequent fungi causing rot in yams⁴⁰. These reports however are not supported by the present findings which show Aspergillus spp., with a percentage rot of less than 20% in both *D. rotundata* and *D. alata* with a single isolate compared to Rhizopus spp., which had seven isolates from the original infected tissues. Tissues infected with Aspergillus spp., showed characteristic symptoms of dry rot as they became hard and dry and subsequently turned brownish-black in colour. The progress of the infection on yam tissues as well as the growth rate of the isolate on culture media was relatively slow. The characteristic white cottony mycelia with septate hyphae of the isolate in culture suggested that it is a member of the genus Aspergillus⁴¹. Based on nucleotide similarity, the Aspergillus spp., isolated in this study is highly similar to A. niger which is known to produce aflatoxins B1 and B2⁴². This is of great concern given the associated serious health risks due to aflatoxins produced by this fungus, as aflatoxins are known carcinogenic and hepatotoxic agents⁴³. Some effects of mycotoxins in humans when consumed, even at low dosages, include delayed growth and development, immune system malfunction and altered DNA processes^{44,45}.

Generally, mycotoxins can withstand high temperatures experienced during food processing, for example frying, roasting and baking. Consequently, they can survive in the finished food products that in the long run reach the customers. Hence, individuals can be exposed to mycotoxins by eating plant and animal products produced with contaminated raw materials.

Other fungi including *Rosellinia bunodes, Lasiodiplodia* theobromae, *Penicillium oxalicum, Penicillium cyclopium,* Fusarium oxysporum, Fusarium moniliforme and Fusarium solani, as well as the nematode Scutellonema bradys have been reported to cause dry rot of yam tubers in storage showing various symptoms of dry rot¹⁵.

Five isolates (YSF6, YSF7, YSF11, YSF12 and YSF13) were confirmed to be members of the genus *Rhizopus* based on macromorphological features and molecular characterization. *Rhizopus spp.* reported in this study was the major cause of rot with severe impact on the yam tubers. They had the highest frequency of occurrence (10 isolates) and were highly invasive, causing a high level of deterioration in infected tissues (up to 100%). Tissues infected with these isolates became ramified by the fungal mycelia, turned brown and became soft and at times wet due to a rapid collapse of the cell walls. The mycelial growth pattern of the isolates on culture was rapid, covering the culture plate within 48 hrs. Other cultural features included multi-branched and transparent mycelia with non-septate hypha, globose sporangia and the production of brownish-black spores. These

macromorphological features have previously been used to identify members of the genus *Rhizopus* implicated with the rotting of yam tissues³⁸. Rhizopus oryzae has been reported as an agent of spoilage, causing soft rot disease in yam and other root tubers in storage⁴⁶. They do so through pectinolytic enzyme activities which often lead to cell separation, maceration and tissue disintegration⁴⁷. Wounds arising from mechanical injuries predispose the roots of these tubers to opportunistic *Rhizopus* spp., that cause rots in storage⁴⁸. Other fungi found to be associated with soft rot in yams include Mucor circinelloides, Sclerotium rolfsii, Rhizoctonia solani and Armillariella mellea^{15,49}. Also, the identification of Rhizopus spp., a ubiquitous member of the Mucorales, poses a serious health concern as Mucorales are linked to mucormycosis with a high death rate⁴⁵. Mucormycosis is an invasive mycosis mostly contracted when an individual ingests foods contaminated with the pathogens^{45,50}.

Lasiodiplodia sp., was isolated from tissues with wet rot, typified by exudates of whitish to creamy fluid from infected yam tissues when pressed. Only one isolate was identified as a member of the genus Lasiodiplodia, showing a low occurrence of wet rot on yam-infected tissues examined. The cultural and morphological features of the isolate, particularly the uniseptate nature of the mature spores, brown walled with longitudinal striations on the conidial walls, helped in the identification of the isolate as belonging to the genus Lasiodiplodia⁵¹⁻⁵³. In the present study, Lasiodiplodia sp., is seen to cause moderate rotting as also reported by Ramirez and Martinez²⁴ and Gwa and Ekefan³⁸. In the same manner, the mycelia growth pattern of the fungus on the culture plate was relatively slow. These physiological characteristics have been reported in yam tubers infected with the same pathogens²⁹. In contrast, Lasiodiplodia spp., has been reported to be a major cause of the decay of yams in West Africa^{16,31,54}. Also, Ogundana et al.⁵⁵ generally considered the fungus as the most common biological-deteriorating agent and most severe rotter of stored yams. Okigbo et al.10, reported Lasiodiplodia theobromae as the most virulent microorganism when compared to Sclerotia rolfsii, Fusarium oxysporum and Aspergillus niger isolated from rotten white yam tubers. Their report also revealed that Aspergillus niger was a secondary pathogen to the rotten white yam with the possibility of multiple infections resulting in severe rotting. Another organism often associated with wet rot is the bacterium Erwinia carotovora pv carotovora 15. This bacterium was not isolated in this study as our focus was only on fungal pathogens. Wet rot has also been associated with the progression of soft rot as it causes the infected tissues to become soft, ramified by the fungal mycelium and turn brown⁵⁶.

Although morphological features such as conidial measurements are invaluable in discriminating among fungal species, the strategy ought to be complemented with molecular methods^{25,51,57}. In addition to the morphological identification of the fungal isolates obtained from infected yam tubers in this study, analysis of the nucleotide sequences of a few phylogenetically informative genes was carried out.

The nucleotide sequences of the 18S, ITS1 and mtDNA regions, were obtained from the isolates in this study and compared to those of species reported worldwide, using a BLAST search. It was observed that isolate YSF3 obtained from this study could be a strain of A. niger as its nucleotide identity matches that of A. niger, GenBank accession number AY291253.1; LC670769.1 with percentage nucleotide identity >88%. Isolate YSF5 was in a separate cluster from species/strains of Lasiodiplodia obtained from the GenBank, even though its nucleotide sequence matched those from the GenBank with a percentage nucleotide identity of 99%, suggesting the isolate is an independent strain. On the other hand, YSF6, YSF7, YSF11, YSF12 and YSF13, shared >90% nucleotide identity indicating that they are closely related. However, the phylogenetic analysis placed all the Rhizopus spp., except R. lyococcus (KJ408542.1), from the GenBank in one cluster with percentage nucleotide identity >90%, while isolates YSF6, YSF7, YSF11, YSF12, YSF13 and KJ408542.1 formed separate clusters, indicating that they are independent and distinguished from other Rhizopus species.

This was comparable to the report by Abe *et al.*⁵⁸, who in an endeavor to set up the molecular phylogeny of the genus *Rhizopus*, analyzed three molecules of the ribosomal RNA-coding DNA (rDNA), 18S, ITS and 28S D1/D2 from all the species of the genus. The phylogenetic tree revealed three major clusters corresponding to the three groups within the current morphological scientific classification, microspores-group, stolonifer-group and *Rhizopus oryzae*. *Rhizopus stolonifer* var. lycoccus clustered separately from the major clusters.

When the different fungal isolates were inoculated into healthy *D. rotundata* and *D. alata* tubers, they were able to colonize and induce rot symptoms on the inoculated yam tubers. This was expected because yam tissues are good growth media for various microorganisms owing to their high nutrient and relative water content⁵⁹. The pathogenicity test revealed that *Rhizopus* spp., were the most virulent fungi causing rot in the healthy white and water yam tubers compared to the less virulent *Lasiodiplodia* sp. and *Aspergillus* sp., obtained in this study. Similarly, *Rhizopus* spp., caused high levels of deterioration, up to 100%, in both inoculated tubers of *D. rotundata* and *D. alata*,

compared to *Lasiodiplodia* spp. and *Aspergillus* spp., which showed lower levels of deterioration. This is in line with the report of Amusa *et al.*¹⁵ on the deterioration effect of yam and other tubers by members of the genus *Rhizopus*. The findings of this study suggest that *Rhizopus* spp., could be the leading cause of postharvest decay of yam tubers in various parts of Calabar where the rotted yam tubers were collected. Yam varieties cultivated in different climes vary among themselves arising from their inherent properties. The combined effect of these properties and other environmental factors determine to a greater extent, the type of microorganisms that cause spoilage in these yam varieties as well as the level of deterioration⁶⁰. However, in this study, *Rhizopus* spp., *Lasiodiplodia* sp. and *Aspergillus* sp., were observed to have similar effects in tissues of both *D. rotundata* and *D. alata*.

CONCLUSION

In this study, members of the genera *Aspergillus*, *Rhizopus* and *Lasiodiplodia* were identified as the major fungal pathogens causing yam tuber rot in stored yam tubers in Calabar, Cross River state. *Rhizopus* spp., had the highest frequency of occurrence and was highly invasive, causing high levels of deterioration in infected tissues. The findings of this study give an insight into the level of post-harvest losses incurred by yam farmers and traders on a daily basis. Adopting improved methods of handling, transporting and storing of yam tubers will, to an extent, ensure the elongation of the shelf life and quality of the tubers. However, developing resistant varieties will effectively cut down on postharvest losses caused by biological agents and consequently ensure food security and safety.

SIGNIFICANCE STATEMENT

Several fungi species have been implicated in yam tuber rot, leading to annual yield decline. Proper diagnosis of the disease and identification of the causing agent(s) are important steps in designing appropriate mitigation measures. This study has identified members of the genera-Aspergillus, Lasiodiplodia and Rhizopus as the major fungal pathogens causing tuber rots in yams in storage within Calabar metropolis. Rhizopus spp., were the most invasive, causing high levels of deterioration in infected tissues. The Rhizopus spp., Lasiodiplodia sp. and Aspergillus sp., obtained in this study had similar effects on tissues of both Dioscorea rotundata and D. alata contrary to the expected difference stemming from their inherent properties and other environmental factors.

ACKNOWLEDGMENTS

The authors wish to thank Nkese Okon and Mfon Akpan for their technical support.

REFERENCES

- 1. Ntui, V.O., E.A. Uyoh, E.E. Ita, A.A.A. Markson and J.N. Tripathi *et al.*, 2021. Strategies to combat the problem of yam anthracnose disease: Status and prospects. Mol. Plant Pathol., 22: 1302-1314.
- Eni, A.O., J.A. Hughes, R. Asiedu and M.E.C. Rey, 2013. Incidence and diversity of mixed viruses lower in yam tubers and tuber sprouts compared with field leaf samples: Implications for virus-free planting material control strategy. Afr. J. Agric. Res., 8: 3060-3067.
- Tamiru, M., S. Natsume, H. Takagi, B. White and H. Yaegashi *et al.*, 2017. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biol., Vol. 15. 10.1186/s12915-017-0419-x.
- Ita, E.E., E.A. Uyoh, I. Nakamura and V.O. Ntui, 2020. Efficient elimination of *Yam mosaic virus* (YMV) from white yam (*Dioscorea rotundata* Poir.) by cryotherapy of axillary buds. South Afr. J. Bot., 130: 123-129.
- 5. Akoroda, M.O., 1993. Yams: *Dioscorea* spp. In: Genetic Improvement of Vegetable Crops, Kalloo, G. and B.O. Bergh (Eds.), Pergamon, Bergama, Turkey, ISBN: 9780080408262, pp: 717-733.
- Verter, N. and V. Bečvářová, 2015. An analysis of yam production in Nigeria. Acta Univ. Agric. Silviculturae Mendelianae Brunensis, 63: 659-665.
- 7. Obidiegwu, J.E. and E.M. Akpabio, 2017. The geography of yam cultivation in Southern Nigeria: Exploring its social meanings and cultural functions. J. Ethnic Foods, 4: 28-35.
- 8. Uyoh, E.A., E.E. Ita and V.O. Ntui, 2022. Strategies for the Production of Disease-Free Yam Planting Materials. In: Agricultural Biotechnology, Biodiversity and Bioresources Conservation and Utilization, Obembe, O.O., E.O. Ekundayo, A.S. Okoli, A. Gidado, C.O. Adetunji, A.B. Ibrahim and B.E. Ubi (Eds.), CRC Press, Boca Raton, Florida, ISBN: 9781003178880, pp: 101-126.
- Okigbo, R.N., C.A. Agbata and C.E. Echezona, 2010. Effects of leaf extracts of *Azadirachta indica* and *Chromolaena odorata* on post harvest spoilage fungi of yams in storage. Curr. Res. J. Biol. Sci., 2: 9-12.
- Raphael, O.N., E.C. Ebere, A.C. Kingsley, I.R. Chidiebere and O.B. Chidi et al., 2015. Control of white yam (*Dioscorea rotundata*) rot pathogen using peel extract of water yam (*Dioscorea alata*). Adv. Appl. Sci. Res., 6: 7-13.

- 11. Gwa, V.I. and A.O. Nwankiti, 2017. Efficacy of some plant extracts in *in vitro* control of *Colletotrichum* species, causal agent of yam (*Dioscorea rotundata* Poir) tuber rot. Asian J. Plant Sci. Res., 7: 8-16.
- 12. Okigbo, R.N., R. Putheti and C.T. Achusi, 2009. Post-harvest deterioration of cassava and its control using extracts of *Azadirachta indica* and *Aframomum melegueta*. J. Chem., 6: 1274-1280.
- 13. Okigbo, R.N., C.L. Annagasi and J.E. Amadi, 2009. Advances in selected medicinal and aromatic plants indigenous to Africa. J. Med. Plants Res., 3: 86-95.
- 14. Amaeze, N.J., P.A. Ezeh and A.S. Dan-Kishiya, 2013. Evaluation of garlic (*Allium sativum*) and uziza (*Piper guineense*) on the control of tuber rot fungi of potato and carrot. Am. J. Res. Commun., 1: 167-174.
- 15. Amusa, N.A., A.A. Adegbite, S. Muhammed and R.A. Baiyewu, 2003. Yam diseases and its management in Nigeria. Afr. J. Biotechnol., 2: 497-502.
- 16. Adeniji, M.O., 1969. Fungi associated with storage decay of yam in Nigeria. Phytopathology, 60: 590-592.
- 17. Nyadanu, D., H. Dabah and A.D. Agyekum, 2014. Resistance to post-harvest microbial rot in yam: Integration of genotype and storage methods. Afr. Crop Sci. J., 22: 89-95.
- Sameza, M.L., L.C.N. Mabou, S.N. Tchameni, M.A.B. Bedine, F. Tchoumbougnang, P.M.J. Dongmo and F.B. Fekam, 2016. Evaluation of clove essential oil as a mycobiocide against *Rhizopus stolonifer* and *Fusarium solani*, tuber rot causing fungi in yam (*Dioscorea rotundata* Poir.). J. Phytopathol., 164: 433-440.
- 19. Patrice, A.K., K. Séka, Y.K. Francis, A.S. Théophile, F. Fatoumata and H.A. Diallo, 2017. Effects of three aqueous plant extracts in the control of fungi associated with post-harvest rot of yam (*Dioscorea alata*). Int. J. Agron. Agric. Res., 11: 77-87.
- 20. Alasoadura, S.O., 1970. Culture studies on *Botryodiplodia theobromae* pat. Mycopathologia Mycologia Appl., 42: 153-160.
- 21. Booth, C., 1971. The Genus *Fusarium*. Commenwealth Mycological Institute, Kew, Surrey, England, ISBN: 9780851980461, Pages: 237.
- 22. Barnet, H.L. and B.B. Hunter, 1972. Illustrated Genera of Imperfect Fungi. 3rd Edn., Burges Publishing Company, Minneapolis, Minnesota, ISBN: 9780808702665, Pages: 241.
- 23. Uduebo, A.E., 1974. Effect of high temperature on the growth, sporulation, and pigment production of *Botryodiplodia theobromae*. Can. J. Bot., 52: 2631-2634.
- 24. Ramirez, C. and A.T. Martinez, 1982. Manual and Atlas of the Penicillia. Elsevier Biomedical Press, Amsterdam, Netherlands, ISBN: 9780444803696, Pages: 874.
- Samson, R.A. and E.S. van Reenen-Hoakstra, 1988. Introduction to Food-borne Fungi. 3rd Edn., Centraalbureau Voor Schimmelcultures, Utrecht, Netherlands, ISBN: 9789070351168, Pages: 299.

- Okon, N.I., A.A.A. Markson, E.I. Okon, E.E. Ita, E.A. Uyoh, E.O.E. Ene-Obong and V.O. Ntui, 2022. Characterization of some fungal pathogens causing anthracnose disease on yam in Cross River State, Nigeria. PLoS ONE, Vol. 17. 10.1371/journal.pone.0270601.
- 27. Visagie, C.M., J. Houbraken, J.C. Frisvad, S.B. Hong and C.H.W. Klaassen *et al.*, 2014. Identification and nomenclature of the genus *Penicillium*. Stud. Mycol., 78: 343-371.
- Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
- 29. Sneath, P.H.A. and R.R. Sokal, 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H. Freeman, San Francisco, California, ISBN-13: 9780716706977, Pages: 573.
- 30. Kumar, S., G. Stecher and K. Tamura, 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33: 1870-1874.
- 31. Okafor, N., 1966. Microbial rotting of stored yams (*Dioscorea* spp.) in Nigeria. Exp. Agric., 2: 179-182.
- 32. Agrios, G.N., 2005. Plant Pathology. 5th Edn., Elsevier, Cambridge, Massachusetts, ISBN-13: 9780080473789, Pages: 952.
- 33. Xu, C.N., H.J. Zhang, F.M. Chi, Z.R. Ji, Q.L. Dong, K.Q. Cao and Z.S. Zhou, 2016. Species-specific PCR-based assays for identification and detection of Botryosphaeriaceae species causing stem blight on blueberry in China. J. Integr. Agric., 15: 573-579.
- 34. Vanittanakom, N., P. Vanittanakom and R.J. Hay, 2002. Rapid Identification of *Penicillium marneffei* by PCR-based detection of specific sequences on the rRNA gene. J. Clin. Microbiol., 40: 1739-1742.
- 35. Midorikawa, G.E.O., M. de Lourdes M. de Sousa, O.F. Silva, J. do Socorro A Dias and L.I.B. Kanzaki et al., 2014. Characterization of Aspergillus species on Brazil nut from the Brazilian Amazonian region and development of a PCR assay for identification at the genus level. BMC Microbiol., Vol. 14. 10.1186/1471-2180-14-138.
- 36. Ogaraku, A.O. and H.O. Usman, 2008. Storage rot of some yams (*Dioscorea* spp) in Keffi and Environs, Nasarawa State, Nigeria. Prod. Agric. Technol., 4: 22-27.
- 37. Ogunleye, A.O. and O.T. Ayansola, 2014. Studies of some isolated rot-causing mycoflora of yams (*Dioscorea* spp.). Am. J. Microbiol. Biotechnol., 1: 9-20.
- 38. Gwa, V.I. and E.J. Ekefan, 2017. Fungal organisms isolated from rotted white yam (*Dioscorea rotundata*) tubers and antagonistic potential of *Trichoderma harzianum* against *Colletotrichum* species. Agric. Res. Technol.: Open Access J., Vol. 10. 10.19080/ARTOAJ.2017.10.555787.

- 39. Anwadike, B.C., 2018. Fungal rot of yam (*Dioscorea alata* Lin.) sold at Nsukka Markets in Nigeria. Annu. Res. Rev. Biol., Vol. 28. 10.9734/ARRB/2018/37583.
- 40. Fatimoh, A.O., A.A. Moses, O.B. Adekunle and O.E. Dare, 2018. Isolation and identification of rot fungi on post-harvest of pepper (*Capsicum annuum* L.) fruits. AASCIT J. Biol., 3: 24-29.
- 41. Adeniji, A., A. Taiga and M.S. Ayodele, 2020. Comparative studies on the susceptibility of three tubers of *Dioscorea* species to dry rot in Anyigba, Kogi State. Int. Ann. Sci., 8:70-74.
- 42. Al-Abdalall, A.H.A., 2009. Production of aflatoxins by *Aspergillus flavus* and *Aspergillus niger* strains isolated from seeds of pulses. J. Food Agric. Environ., 7: 33-39.
- 43. Wild, C.P. and Y.Y. Gong, 2010. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis, 31: 71-82.
- 44. Bryden, W.L., 2007. Mycotoxins in the food chain: Human health implications. Asia Pac. J. Clin. Nutr., 16: 95-101.
- 45. Hyde, K.D., R.H. Nilsson, S.A. Alias, H.A. Ariyawansa and J.E. Blair *et al.*, 2014. One stop shop: Backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity, 67: 21-125.
- 46. Onyeke, C.C., G.C. Ajuziogu and C.V. Okafor, 2018. Mycoflora of postharvest rots of bitter yam *Dioscorea dumentorum* Pax in Nsukka agro ecological zone, Nigeria. Bio-Research, 16: 1017-1024.
- 47. Ray, R.C., R.S. Misra and P.K. Ghosh, 1997. Spoilage of sweet potato tubers in tropics. III. Soft rot by *Rhizopus oryzae* L. Adv. Hortic. Sci., 11: 103-107.
- 48. Chesson, A., 1980. A review: Maceration in relation to the post harvest handling and processing of plant material. J. Appl. Bacteriol., 48: 1-45.
- Oladoye, C.O., I.F. Connerton, R.M.O. Kayode, P.F. Omojasola and I.B. Kayode, 2016. Biomolecular characterization, identification, enzyme activities of molds and physiological changes in sweet potatoes (*Ipomea batatas*) stored under controlled atmospheric conditions. J. Zhejiang Univ.-Sci. B, 17: 317-332
- Petrikkos, G., A. Skiada, O. Lortholary, E. Roilides, T.J. Walsh and D.P. Kontoyiannis, 2012. Epidemiology and clinical manifestations of mucormycosis. Clin. Infect. Dis., 54: S23-S34.
- 51. Sutton, B.C., 1980. The Coelomycetes: Fungi Imperfecti with Pycnidia Acervuli and Stromata. Commonwealth Mycological Institute, Kew, Australia, ISBN: 9780851984469, Pages: 696.
- 52. Phillips, A.J.L., A. Alves, S.R. Pennycook, P.R. Johnston, A. Ramaley, A. Akulov and P.W. Crous, 2008. Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the *Botryosphaeriaceae*. Persoonia, 21: 29-55.

- 53. Phillips, A.J.L., A. Alves, J. Abdollahzadeh, B. Slippers, M.J. Wingfield, J.Z. Groenewald and P.W. Crous, 2013. The *Botryosphaeriaceae*: Genera and species known from culture. Stud. Mycol., 76: 51-167.
- 54. Noon, R.A. and J. Colhoun, 1979. Market and storage diseases of yams imported into the United Kingdom. J. Phytopathol., 94: 289-302.
- 55. Ogundana, S.K., S.H.Z. Naqvi and J.A. Ekundayo, 1970. Fungi associated with soft rot of yams (*Dioscorea* spp.) in storage in Nigeria. Trans. Br. Mycol. Soc., 54: 445-451.
- 56. Onuh, J.O., D. Shiriki, S.T. Ubwa and T. Shambe, 2015. Isolation of six microorganisms from rotten *Dioscorea alata* (water yam), and antimicrobial sensitivity test with nine plant extracts. Food Nutr. Sci., 6: 1381-1394.
- 57. Rosado, A.W.C., A.R. Machado, F. das Chagas Oliveira Freire and O.L. Pereira, 2016. Phylogeny, identification, and pathogenicity of *Lasiodiplodia* associated with postharvest stem-end rot of coconut in Brazil. Plant Dis., 100: 561-568.
- 58. Abe, A., Y. Oda, K. Asano and T. Sone, 2006. The molecular phylogeny of the genus *Rhizopus* based on rDNA sequences. Biosci. Biotechnol. Biochem., 70: 2387-2393.
- 59. Zagory, D., 1999. Effects of post-processing handling and packaging on microbial populations. Postharvest Biol. Technol., 15: 313-321.
- 60. Frank, C.O. and C.A. Kingsley, 2014. Role of fungal rots in post-harvest storage losses in some Nigerian varieties of *Dioscorea* species. Microbiol. Res. J. Int., 4: 343-350.

SUPPLEMENTARY INFORMATION

Table S1: List of primers synthesized and used for identification of yam storage rot causing fungi

Gene	Primer	Sequence 5'-3'	Amplicon size (base pairs)
ITS1	LT347-F	AACGTACCTCTGTTGCTTTGGC	347
	LT347-R	TACTACGCTTGAGGGCTGAACA	
18S rRNA	RRF1-F	ATCTAAATCCCTTAACGAGGAACA	631
	RRH1-R	CCGTCAATTTCTTTAAGTTTCAGCCTT	
mtDNA SSU rRNA	ASP_GEN_MTSSU_F	GCCATATTACTCTTGAGGTGGAA	480
	ASP_GEN_MTSSU_R	CCGAAAGGCTGAACCAGTAA	

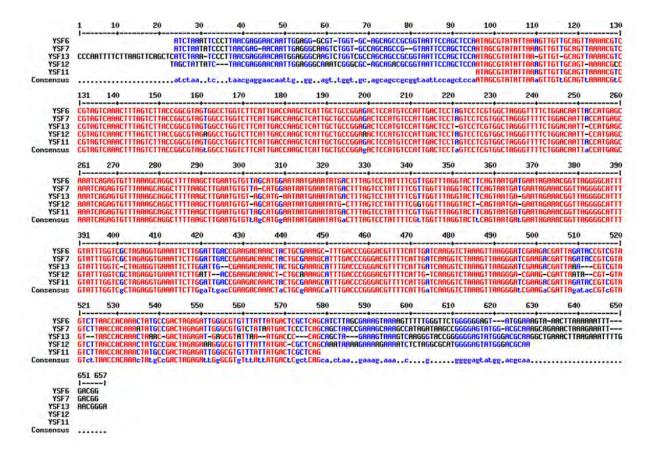


Fig. S1: Sequence alignment for isolates YSF6-YSF13 which were amplified using the same primer (primer RRF1-F&R)

Table S2: Partial nucleotide sequences of the different isolates

Sample ID	Sequences
YSF3	TGCCATATTACTCTTGAGGTGGAATGCTTACAATGGCAGGGATGAATAAATA
	ATCCTTATCGCTACCCGAGCCTTCGTCCCTCAACGTCAGTTTTACATAGAAGGACGCCTTCGCCGTTATCAGTCCTTCTGGTATTTGCGTATTTTATCCCTACTCCAG
	AAGTTCTTCCTTCTCACATAAAACTCTAGAAAAAAAGTACTCATTTAGAGTTTAATTTACCGTCTAGGTACCCTTTAAACCTAATAAAGATGACTAACACTAGTCTT
	CTACGTATCCGAAAAGGCAAGCAAGTAATTTGAACAAGACAAATAAAT
	ACAATCCCAGAATACATTTACATTCTTCCAAGTTACTGGTTAGGCCCTTTCGGA
YSF5	GCTTCCGGGCTTAAAACCACCGGCCGAGGGCATTTGGGCCGCTTCGCCGTGGAGGCCCTGCCCCATTTCCAGCCAAACCTGAGGGTTTTTATTACCCCTGCATGA
	CCATGCCCCGAAATGCCATAAGGAATGTGAATTGTTGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCTTTTGGTATTCCGGGGGGGCATGCCTGTT
	CGAGCGTCATTACAACCCTCAAGCTCTGCTTGGAATTGGGCACCGTCCTCACTGCGGACGCCCTCAAAGACCTCGGCGGTGGCTGTTCAGCCCTCAAGCGTAG
	TAACCAAAACAACCAAGTTTCTTTAAA
YSF6	ATCTAAATTCCCTTAACGAGGAACAATTGGAGGGCGTTGGTGCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAACGTCCG
	TAGTCAAACTTTAGTCTTACCGGCGTAGTGGCCTGGTCTTCATTGACCAAGCTCATTGCTGCCGGAGACTCCATGTCCATTGACTCCTAGTCCTCGTGGCTAGGGT
	TTTCTGGACAATTACCATGAGCAAATCAGAGTGTTTAAAGCAGGCTTTTAAGCTTGAATGTGTTAGCATGGAATAATGAAATATGACTTTAGTCCTATTTTCGTTGG
	TITAGGTACTTCAGTAATGATGAATAGAAACGGTTAGGGGCATTTGTATTTGGTCGCTAGAGGTGAAATTCTTGGATTGACCGAAGACAAACTACTGCGAAAGCT
	TTGACCCGGGACGTTTTCATTGATCAAGGTCTAAAGTTAAGGGATCGAAGACGATTAGATACCGTCGTAGTCTTAACCACAAACTATGCCGACTAGAGATTGGGC
	GTGTTTATTATGACTCGCTCAGCATCTTAGCGAAAGTAAAAGTTTTTGGGTTCTGGGGGGGAGTATGGAAAGTAAACTTAAAAAAATTTGACGG
YSF7	ATCTAATATCCCTTAACGAGAACAATTGAGGGCAAGTCTGGTGCCAGCAGCCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAACGTCCG
	TAGTCAAACTTTAGTCTTACCGGCGTAGTGGCCTGGTCTTCATTGACCAAGCTCATTGCTGCCGGAGACTCCATGTCCATTGACTCCTAGTCCTCGTGGCTAGGGT
	TTTCTGGACAATTACCATGAGCAAATCAGAGTGTTTAAAGCAGGCTTTTAAGCTTGAATGTGTTACATGGAATAATGAAATATGACTTTAGTCCTATTTTCGTTGGT
	TTAGGTACTTCAGTAATGATGAATAGAAACGGTTAGGGGCATTTGTATTTGGTCGCTAGAGGTGAAATTCTTGGATTGACCGAAGACAAACTACTGCGAAAGCAT
	TTGACCCGGGACGTTTTCATTGATCAAGGTCTAAAGTTAAGGGATCGAAGACGATTAGATACCGTCGTAGTCTTAACCACAAAATATGCCGACTAGAGATTGGGC
	GTGTCTATAATGACTCCCTCAGCAGCTAACCGAAAGCAAAGCCATAGATAAGCCGGGGAGTATGGACGCAAAGCAGAAACTAAAGAAATTGACGG
YSF11	ATCTAATATCCCTTAACGAGGAACAATTGGAGGGCAAGTCTGGGGCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAACGT
	CCGTAGTCAAACTTTAGTCTTACCGGCGTAGTGGCCTGGTCTTCATTGACCAAGCTCATTGCTGCCGGAGACTCCATGTCCATTGACTCCTAGTCCTCGTGGCTAG
	GGTTTTCTGGACAATTACCATGAGCAAATCAGAGTGTTTAAAGCAGGCTTTTAAGCTTGAATGTGTTAGCATGGAATAATGAAATATGACTTTAGTCCTATTTTCGT
	TGGTTTAGGTACTTCAGTAATGATGAATAGAAACGGTTAGGGGCATTTGTATTTGGTCGCTAGAGGTGAAATTCTTGGATTGACCGAAGACAACTACTGCGAAA
	GCATTTGACCCGGGACGTTTTCATTGATCAAGGTCTAAAGTTAAGGGATCGAAGACGATTAGATACCGTCGTAGTCTTAACCACAAACTATGCCGACTAGAGATT
	GGGCGTGTTTATTATGACTCGCTCAGCATCTTAGCGAAAGTAAAGTTTTTGGGTTCTGGGGGGGAGTATGGGACCAAGGTGAAACTTAAGAAATGGA
YSF12	TAGCTATTATCTAACGAGGAACAATTGGAGGGCAAATCGGGCGCAGCAGCAGCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTAAAACGCCC
	GTAGTCAAACTTTAGTCTTACCGGCGTAGAGGCCTGGTCTTCATTGACCAAGCTCATTGCTGCCGGAAACTCCATGTCCATTGACTCCTAGTCCTCGTGGCTAGGG
	TTTTCTGGACAATTCCATGAGCAAATCAGAGTGTTTAAAGCAGGCTTTTAAGCTTGAATGTGTAGCATGGAATAATGAAATATGCTTTAGTCCTATTTTCGGTGGTT
	TAGGTACTCAGTAATGAGAATAGAAACGGTTAGGGGCATTTGTATTTGGTCGCTAGAGGTGAAATTCTTGATTACCGAAGACAAACTCTGCAAAAGCATTTGACC
	CGGGACGTTTTCATTGTCAAGGTCTAAAGTTAAGGGACGAAGCGATTAATACGTGTAGTCTTAACCACAAACTATGCCGACTAGAGAAAGGGCGTGTTTATTATG
	ACCGCTCAGCAATAAAAGAAAAGAAAATCTCTAGGCGCATGGGGAGTATGGGACGCAA
YSF13	CCCAATTITCTTAAGTTCAGCTCATCTAAATCCCTTAACGAGGAACAATGGAGGGCAAGTCTGGTCGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATAT
	TAAGTTGTGCAGTTAAAACGTCCGTAGTCAAACTTTAGTCTTACCGGCGTAGTGGCCTGGTCTTCATTGACCAAGCTCATTGCTGCCGGAGACTCCATGTCCATTG
	ACTCCTGTCCTCGTGGCTAGGGTTTTCTGGACAATTCCATGAGCAAATCAGAGTGTTTAAAGCAGGCTTTTAAGCTTGAATGTGTAGCATGAATAATGAAATATGA
	CTTTAGTCCTATTTTCGTTGGTTTAGGTACTTCAGTAATGAGAATAGAAACGGTTAGGGGCATTTGTATTTGGTCCTAGAGGTGAAATTCTTGGATTGCGAAGACA
	AACTACTGCGAAAGCATTTGACCCGGGACGTTTTCATTGATCAAGGTCTAAAGTTAAAGGGATCGAAGACGATTAAACGTCGTAGTTAACCACAAACTAAACGACT
	AGAGATGAGCGTATTAAATGACCCCAGCAGCTAGAAAGTAAAGTCAAGGGTACCGGGGGGGAGTATGGGACGCAAGGCTGAAACTTAAGAAATTTTGAACGGGA

Table S3: Mean percentage rot and the associated pathogen at five weeks of storage

Isolates	Percentage rot in <i>D. rotundata</i> (X±SE)	Percentage rot in <i>D. alata</i> (X±SE)
YSF1	14.040±0.99	2.40±0.23
YSF2	18.716±0.81	0.60 ± 0.11
YSF3	9.60 ± 0.94	0.88 ± 0.05
YSF4	5.75±0.87	6.26±0.83
YSF5	9.12±1.09	4.00 ± 0.11
YSF6	100.00±0.00	44.23±4.00
YSF7	0.56±0.09	100.00±0.00
YSF8	0.84 ± 0.24	10.80 ± 1.33
YSF9	5.92±0.42	1.12±0.47
YSF10	1.44±0.34	8.60±1.01
YSF11	100.00±0.00	14.88 ± 1.17
YSF12	53.40±3.15	100.00 ± 0.00
YSF13	44.00±2.30	100.00±0.00
YSF14	70.55±1.36	8.64 ± 1.08
YSF15	22.07±1.15	1.20±0.23
Control	0.00 ± 0.00	0.00 ± 0.00
LSD (0.05)	3.605	3.532

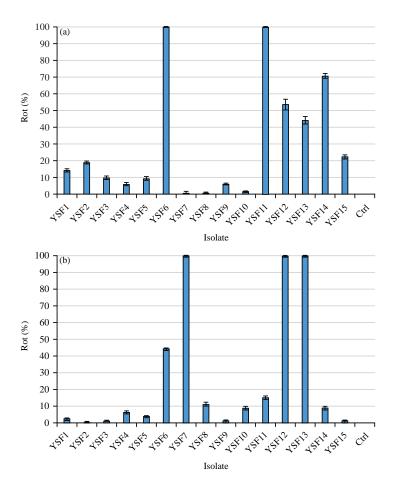


Fig. S2(a-b): Estimated percentage rot and the associated pathogen at five weeks of storage, (a) *D. rotundata* (b) *D. alata*, YSF1-YSF15 are fungal isolates

Ctrl: Control, All the 15 isolates and control were replicated three times. The error bars are standard error of means