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Properties

Chromium, one of the toxic metals is detectable in earth's crust in small quantities associated with
other metals, particularly iron. The atomic weight of chromium is 51.996. It melts at 1,875 °C and
boils at 2,680 °C. The specific gravity of chromium is 7.19 g cm™. It forms a number of salts, which
are characterized by a variety of colors, solubilities and other properties. The name “chromium” is
from the Greek word for color. Most important chromium salts are sodium and potassium chromates
and dichromates and the potassium and ammonium chrome alums.

Oxidation States

Chromium can occur under several oxidation states from Cr (0) to Cr (VI). Trivalent chromium
Cr (IIT) occurs naturally in rocks, soil, plants, amimals and volcanic emissions (Duffs, 2005). This form
is believed by many to play a nutritional or pharmaceutical role in the body, but its exact mechanism
of action is unknown. Cr (11T} is used industrially as a brick lining for high-temperature industrial
furnaces and to make metals, metal alloys and chemical compounds (Barantsevs ef af., 2004).
Hexavalent chromium, Cr{VI), is produced industrially when Cr(III) is heated in the presence of
mineral bases and atmospheric oxygen (for instance, during metal fimishing processes). It is the form
of chromium that has proven to be of the greatest occupational and environmental health concern.
Cr{VT) compounds are emitted into the air, water and soil by a number of different industries. In the
air, chromium compounds are present mainly as fine dust particles that eventually settle over the land
and water.

Entrance info the Environment

Chromium enters environmental waters from anthropogenic sources such as electroplating
factories, leather tannerics, wood preserving, metal processing, chromium plating, alloy preparation,
leather tanning, petroleum refining and mamuifacturing of automobile parts and textile manufacturing
facilities (Panov ef af., 2003; Huang ef al., 2004). Chromium also enters groundwater by leaching from
soil. In aqueous environments, however, Cr mainly exists in two oxidation states: Cr(VI) and Cr(III).
Aqueous Cr(VI) is present in anionic forms whose compounds are generally soluble over a wide pH
range. Hydrolysis of Cr{VI) vields a number of pH-dependent species, that is, H,CrO,, HCrO™,
CrO,~? and Cr, O,7% On the other hand, the main aqueous Cr(IIT) species are Cr™, Cr (OH)*?
Cr(OH)"?, Cr(OH)," and Cr(OH),~, while polymeric species such as Cr, (OH),™, Cr, (OH),”* and
Cr, (OH),*® are insignificant in natural systems. In the pH range encountered in natural waters, most
Cr(1IT) exists in the least insoluble form of Cr (OH), (Smith andGhiassi, 2006).

Industrial Application

It has been estimated that workers in some 80 different professional categories may be exposed
to Cr(VT). Various Cr(VI) compounds are used in leather tanning, the production of textiles, dyes,
pigments and chrome plating (Cristian ef @i, 2005). Other sources of chromium emissions include oil
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and coal combustion, stainless steel welding, steel production, cement plants, industrial paint and
coating manufacture and cooling towers, which use Cr(VI) as a rust inhibitor for their submerged
moving parts (Potgieter ef al., 2003). Occupational exposures to Cr{VI) compounds can be quite acute
(Proctor ef af., 2004).

Marnufacturing of Chromium Salts

Chromium (II) and (I1I) chemicals are also manufactured but in small amounts as compared to
chromium (VI). Chromium dichloride (CrCl,) and chromium sulfate (CrSO,) are examples of the former
and chromium trifluoride (CrF,), chromium trichloride (CrCl,) and chromium nitrate (Cr (NO,), are
examples of the latter. Chromium platers use heated baths of H,Cr, O, to plate chromium onto pieces
of other metals. Under an electric current, the hvdrated dichromate ions move toward the positive
clectrode, which is the metal to be plated. The hydrogen and oxygen gases formed escape the bath
forming aqueous acidic chromate laden mists.

Essentiality and Toxicity

Chromium is present in food and feed plants, but the form is not well characterized
(Cary, 1982; Das et af., 2005). The likely form is soluble chromium (IIT) organic compounds such as
chromium (TIT) oxalate in plants (Smith ez af., 1989). Chromium is an important micronutrient for
ammals and humans (Bahijri and Mufii, 2002). Humans must consume organically bound or chelated
chromium as part of the proper metabolism of Glucose Tolerance Factor {GTF). Although chromium
(VD) can be rapidly absorbed through the intestinal wall, any ingested chromium (VT) is believed to be
quickly reduced in the stomach where the pH is around 1 and numerous organic reducing agents can
be found.

Chromium plays a kev role in the biological life but above critical level it is toxic
(Balamurugan ef al., 2004; Han ef al, 2004;) mutagenic (Gili efal., 2002; Puzon et al.,
2002; Wise ef al., 2005), carcinogenic (Codd ef af., 2003, Reddy et al., 2003; Sato et al., 2003) and
teratogenic (Asmatullah ef af., 1998). Trivalent form of chromium is more common and its compounds
are less soluble and less toxic than hexavalent chromium (Smith andGhiassi, 2006). Trivalent chromium
forms stable complex with legends on DNA, proteins and small molecules such as glutathionein (Adach
and Cielak-Golonka, 2005). Trivalent chromium bounds to the DNA template cause increased DNA
polymerase processivity and decreased DNA replication fidelity. These alterations in DNA function
can result in greatly increased bypass of oxidative DNA lesions, which are promutagenic (Adach and
Cielak-Golonka, 2005).

Toxicity Towards Plants

In chromium contaminated sites not only human, animal and microbial life damage but the effects
on plants are also equally pronounced. Due to chromium accumulation reduction in plant production
along with toxicity in the nutritional contents are also observed (Pandey and Sharma, 2003,
Klumpp et af., 2002). Some plants show tolerance against chromium, but some have acquired the
ability to accumulate chromium (Tripathi and Chandra, 1991). The root and shoot growth rate and leaf
chlorosis could be elicited in hyacinth (Eichornia crassipes) by exposure to chromium and copper for
several weeks (Hafeezand Ramzan, 2002). In Triticum aestivian, hexavalent chromium showed adverse
effect on the growth parameters and also caused accumulation of chromium in the plants (Faisal ef ai.,
2005). The hexavalent chromium salt has more adverse effect on germination and growth of Helianthus
anmues (Faisal and Hasnain, 2005) and Vigna radiata (Hsu and Chou, 1992). The effect of chromium
on the cortical cells of meristematic zone was observed in Pisum sativien 1. (Gabara et af., 1992).
Chromium toxicity on the seed germination and growth of Phaseolus vulgaris was markedly increased
with an increase in its concentration (Zeid, 2001). Plants growing in higher concentration of chromium
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take up more chromium, which accumulate in the plant tissues and via plants enter in the food chain.
At a concentration of >0.2 mM Cr({VT), Citrullus plant showed growth depression with chlorosis and
loss of turgor of middle leaves (Dube ef of., 2003). Growth of mustard (Sorghum bicolor L.) plants
decreased by increasing the concentration of Cr(VI) from 50 to 100 pM (Shanker andPathmanabhan,
2004). Lamina minor accumulated Cr(I1T) in smaller quantities as compared to Cr{VI) which posses
more toxic effects on growth parameters as compared to Cr(1ID). In Brassica juncea Cr(V1) application
caused growth retardation, reduces the number of palisade and spongy parenchyma cells in leaves,
results in clotted depositions in the vascular bundles of stems and roots and increases the number of
vacuoles and electron dense materials along the walls of xylem and phloem vessels (Han et al., 2004).
When Vigna radiata plants were treated with Cr(VI), chlorophyll and protein content decreased while
activity of catalase, peroxidase, glucose-6-phosphate dehydrogenase and superoxide dimutase
increased. Concentration of chlorophyll a and b, soluble protein and grain production decreased
significantly in maize plants exposed to Cr(VI) (Sharma et a/., 2003).

Toxicity Towards Animals

Chromium also shows toxicity towards different amimals (Fatima ez &f., 2005, Geetha ef al., 2005).
Exposure of Rana ridibunda to either Cr or a mixture of Cr and Cd caused a decrzase in liver GST and
P450-MO and renal GST activities (Kostaropoulos ef af., 2005). It was observed that treatment of rats
with chromium (0.8 mg/100 g body weight/day) for a period of 28 days caused significant increase in
chromium content while lowering the body weight along with the organ (kidney, testis, spleen,
cerebrum and cerebellum) weight, (Dey ef al., 2003). Beside this there was a significant decrease in the
DNA and RNA content and in liver, cerebrum and cerebellum significant decreases in total protein
content was also observed (Dey et af., 2003). The application of higher dose of chromium in drinking
water during embryonic development in mice results in reduced fetal weight, retarded fetal development
and higher incidence of dead fetuses (Junaid ef «f., 1995). Animal studies on the carcinogenicity of
various chromium species have generally suggested that water-insoluble species, CaCrQ, in particular
(Levy et al., 1986), are the causative agent of respiratory cancers (Gad, 1989). Studies have showed
the toxicity of chromium picolinate in renal impairment, skin blisters and pustules, anemia, hemolysis,
tissue edema, liver dysfunction; neuronal cell injury, impaired cognitive, perceptual and motor
activity; enhanced production of hydroxyl radicals, chromosomal aberration, depletion of antioxidant
enzymes and DNA damage in mice (Bagchi ef @f., 2002). In mice, potassium dichromate treatment
(20 mgCr kg™, as Cr(VI) compound, significantly elevated the level of lipid peroxidation as compared
with the control group. This was accompanied by significant decreases in nonprotein sulfhydryls
(NPSH) level, superoxide dismutase (SOD) and catalase (CAT) enzyme activities as well as a
significant chromium accumulation (Bosgelmez and Giivendik, 2004).

Toxicity Towards Humans

Certain Cr(VT) compounds have been found to be carcinogenic in humans, but the evidence to date
indicates that the carcinogenicity is site-specific-limited to the lung and sinonasal cavity and dependent
on high exposures, such as might be encountered in an industrial setting (Feng ef af., 2003). Tt has been
reported that trivalent chromium salts are poorly absorbed through the gastrointestinal tract.
Hexavalent chromium compounds are approximately 1000-fold more cytotoxic and mutagenic than
trivalent chromium compounds in cultured diploid human fibroblasts, but both hexavalent and trivalent
chromium compounds induce dose-dependent anchorage independence in human diploid fibroblasts
(Biedermann and Landolph, 1990). Cr (VI) can cause a wide range of other health effects. Inhaling
relatively high concentrations of some forms of Cr{VI) can cause a runny nose, sneezing, itching,
nosebleeds, ulcers and holes in the nasal septum (Banerjee er af., 2003). Short-term high-level
inhalational exposure can cause adverse effects at the contact site, including ulcers, irritation of the
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nasal mucosa and holes in the nasal septum (Stohs ez «f., 2001). Hexavalent chromium compounds
induce dose-dependent cytotoxicity and anchorage independence in cultured human diploid fibroblasts
(Biedermann and Landolph, 1987). Cr(VI}is one of the most highly allergenic metals, second only to
nickel (Bock ef af., 2003).

In fact, imitation of the skina most frequently reported human health effect from exposure
to Cr(VI), taking the form of skin ulceration (dermatosis) and allergic sensitization (dermatitis)
(Hansen et af., 2003). Indeed, dermatosis was the first observed health effect associated with chromium
exposure, although improved industrial hygiene practices have greatly reduced its incidence
(Refive ef al., 2005). Once absorbed into the blood system there are various antioxidants that act as
reducing agents, such as glutathione and ascorbate, which rapidly reduce chromium (VT) to chromium
(TIT). Respiratory cancer is the health effect of most concern and is the basis for the regulation of
chromium (VI) (O’ Brien et af., 2003). There is also some indication that chromium (VI) may cause
cancer of the upper airways and upper gastrointestinal tract, such as the esophagus, larynx, trachea
and stomach (Xie ez &/., 2005). Chromium concentration in the lungs was found to increase with age
for both occupationally and environmentally exposed individuals (34e er al., 2005). The upper lobes
tended to have higher concentrations than lower lobes and cancerous portions of lungs showed the
highest chromium concentrations. However, large doses of chromium into the blood can result in acute
kidney and liver damage (Dey ef af., 2003).Research on the carcinogenicity of chromium (VI) has
focused on the fact that chromate ions quickly pass through cellular and nuclear membranes, while the
trivalent species are many orders of magnitude slower (Pas ef al., 2004). Once in the cytoplasm,
chromate ions can either pass the nuclear membrane and be reduced to chromium (I1I) or be reduced
in the cytoplasm. Because neither Cr(VT) nor Cr(IIT) reacts strongly with DNA, it is thought that the
reduction of Cr(VT) to Cr{III), either in the cytoplasm, nucleus, or the blood, produces free radicals,
which in turn can bind to DNA (Medeiros ef al., 2003). Indeed, the DNA-protein crosslinks induced
by chromate have been used as a biomarker for chromium exposure (Taioli ef al., 1995).

Toxicity Towards Microorganisms

Most microorganisms (protozoa, fungi, algae, bacteria and cyanobacteria) are able to accumulate
chromium { Dursun ez @i, 2003; Pas ef f., 2004; Faisal and Hasnain, 2005). In general, toxicity for most
microorgamsms oceurs in the range of 0.05-5 mg Cr L™ of medium. In Saccharomyces cerevisiae
chromium caused oxidative damage to cellular proteins (Summner ef of.. 2005). Reduced growth of
mycelium in many fungi is due to the toxic effect of hexavalent chromium (Lozovaia ef af., 2004).
Studies of Shewanella oneidensis showed that the growth was much inhibited even at a low
concentration (0.015 mM) of Cr(VI) (Viamajala et el., 2004). Incubation of E. cofi cells with
10 mM of hexavalent chromium and 3 mM hydrogen peroxide caused the degradation of double-strand
DNA in vivo, which was suppressed by the addition of mannitol (Ttoh ef af., 1994). Cr(VT) caused
decrease in cell size, the structure of cell wall, as well as the redox reaction caused by the exudate or
enzyme when the cultures of Chlorelia pyrenoidosa, Synechococeus, Spiruling maxima, Spiruling
platensis, Selenastrum capriornutum and Scenedesmus quadricaudea were grown in chromium solutions
(Chen et ai., 2003).

Remediation Strategies

To minimize the environmental contarmnation, much effort has been made to treat hexavalent
chromium in wastewater. Developing health-based clean up standard and remediation strategies for
chromium-contaminated soils based on the hexavalent forms of this heavy metal is a complex and
controversial task.
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Conventional Meihods

Conventional methods for treatment of contaminated hexavalent chromium include chemical
reduction followed by precipitation, ion exchange and adsorption on coal, activated carbon,
alum, kaolinite and flyash. However, most of these methods require either high energy or large
quantities of chemicals and therefore more practical, cost effective methods are being explored (Ohtake
and Silver, 1994).

Abiotic Reduction

In some natural system conditions exist where oxidation and reduction of chromium can both
occur (Bartlett, 1991). For example, as mentioned above, in aquatic systems chromate ions may be
reduced to Cr*. Manganese dioxide can then oxidize Cr** back to chromate. If the water is well aerated
and sunlight can penstrate to a sufficient depth, the manganese will be reoxidized, allowing more
reduced chromium to be oxidized. Just as manganese can be reoxidized by sunlight and oxygen, iron
(IITy can also be reduced by sunlight to iron (II), which can then reduce chromium (V) to (III). Indeed,
Kaczynski and Kieber (1993) reported a diurnal variation in the ratio chromium (ITD/AVT) in pH neutral
lakes caused by indirect action of sunlight on chromium via iron and manganese. The ratio chromium
(IIN/{VI) may also be affected by the photo disassociation of chromium from organic materials
(Kaczynski and Kieber, 1993).

To remediate toxic hexavalent chromium from the contaminated environment, it is necessary first
to take up this toxic Cr(VI) and then reduced it in to Cr(III).

Cr Phytoremediation

There are conflicting views concerning the uptake and translocation of chromium (VI) in plants
(Citterio ef al., 2003; Han ef al., 2004). Ramachandran ez al. (1980) suggest that CrO,™ is reduced
to chromium (II7) at the surface of root cells. Other studies found chromium (VT) in plants, which
suggest that dissolved chromium (VI), may be taken up by plants without immediate reduction. For
instance, chromate was found in the xylem sap of L. scoparium but not in the soluble plant fraction
(Cary ef al., 1977). Also, it has been shown that chromium (V) enters the plant through the root by
active transport in barley (Hordeum vulgare L.y {(Cary, 1982). Uptake of CrQ,? by intact barley
seedlings was stimulated by Ca'*? but inhibited by SO, ™% and other Group VI anions. Chromate appears
to be reduced during passage from culture solutions to plant leaves (Cary ef af., 1977). Higher
concentrations of chromium have been reported in plants growing in high chromium-containing soils
(e.g., soil near ore deposits or chromium-emitting industries and soil fertilized by sewage sludge)
compared with plants growing in normal soils. However, most of the increased uptake of chromium
results in accumulation in the roots and only a small fraction of the total chromium is translocated to
the above-ground part of edible plants (Gardea-Torresdey ef al., 2004; Faisal and Hasnain, 2005).
Leaves usually contain higher chromium concentrations than grains (Smith e af., 1989). In an attempt
to design crop practices that might increase the chromium in food and feed crops, Faisal er af. (2005)
also found that plants accumulated chromium from nutrient solutions but retained most of this
chromium in the roots. It was found that plant tissues that tend to accumulate iron also accumulate
chromium (Burd ef «f., 1998). Chromium uptake was found to increase with increasing chromate
concentration, and most of the chromium accumulated by the roots was present in a soluble,
non-particulate form in the plant vacuoles. Although chromium is largely retained in the roots of
plants, the oxidation state of chromium, the pH and the presence of humic substances and plant
species affect plant uptake and transport {(Smith ef af., 1989).

Microbial Reduction

Microorganisms have the potential to accumulate chromium (Ozdemir ef @l., 2003) and
reduce chromium (VI) to chromium (III) {(Desjardin ef ef., 2003; Camargo ef of., 2004; Ramirez-
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Ramirez ef af., 2004). Although high levels of chromium (VT) are toxic to microorganisms {Bartlett,
1991). Chromium is important to yeast metabolism (Coleman, 1988) and sorption of Cr{VT) by several
species of yeast has been reported (Rapoport and Muter, 1995, Babyak er «f., 2005). Chromium
accumulation has been shown to occur in bacteria periphytic to a crab (Helice crassa) carapace and in
sewage fungus (Coleman, 1988) and may contribute to the presence of chromium in the food chain.

Bacterial Reduction

Many types of chromium resistant bacteria, which have developed different strategies to
overcome heavy metal stress in the environment are now known (Faisal ef «f., 2005). Bacterial
resistance to chromate can be due to chromosomal borne (Peitzsch ef af.,1998; Juhnke ef af., 2002) or
plasmid mediated (Peitzsch er af., 1998) or both (Peitzsch ef af.,1998; Juhnke ef of., 2002). Some
bacterial strains are able to reduce toxic hexavalent chromium to less toxic trivalent chromium
(Konovalova et al., 2003; Faisal and Hasnain, 2004; Thacker and Madamwar, 2005). Reduction of
hexavalent chromium by microorganisms has been reported under a number of conditions and by a
variety of bacterial species (Faisal and Hasnain, 2004: Faisal ef o/, 2005, Thacker and Madamwar,
2005). Although different genera of bacteria are involved in the reduction of hexavalent chromium to
trivalent chromium but E. eoli, Bacillus sp, Pseudomonas fluorescens LB300, Desulfovibrio vulgaris,
Pseudomonas ambigua G-1 and dlcaligenes eutrophus are most pronounced (Peitzsch et al., 1998).

Cr(VI) is known to be reduced both aerobically and anaerobically in different bacterial systems
(Guha ez al., 2001; Megharaj ez af., 2003; Viera ef ¢/., 2003; Faisal and Hasnain, 2004). In anacrobic
systems, membrane preparations reduce Cr(VI) and Cr(VI) has been shown to serve as a terminal
electron acceptor (Lovley and Phillips, 1994). Aerobic reduction of Cr({VT) has been found to be
associated with soluble proteins (Ishibashi ef /., 1990). Lovley and Phillips (1994) reported that the
sulfate-reducing bacterium Desulfovibric vudlgaris, which was capable of enzymatically reducing
Fe (III) and U (VT), could also act as Cr(VI) reducers in the presence of H, as the electron donor.
Although Fude e al., (1994) also found Cr{VT) reduction by a consortium of sulfate-reducing bacteria
in a medium containing reducing agents such as ascorbic acid and thioglycolate, the interpretation of
the results must be cautioned because those reducing agents might chemically react with Cr{VI),
resulting in conversion of Cr{VT) to Cr(IIT) (Hamilton and Wetterhahn, 1988). Environmental factors,
including pH, temperature and other electron acceptor as well as waste characteristics (metal ions,
imtial Cr(VI) and biomass concentrations) affecting Cr{VI) removal capability were quantified.
With the addition of biological inhibitors such as pemicillin, ¢ycloserine, or chloramphenicol, the loss
of Cr({VT) reduction activity in microbial cells under reducing conditions clearly indicates that
Cr{VD) reduction is an enzymatically catalyzed reaction. Such evidence was found with both growing
cultures (Wang ef al., 1989) and resting cells (Llovera ef af., 1993). Other evidence for enzymatic roles
in microbial Cr(VI) reduction includes: Cr(VI) was reduced faster with higher cell densities (Chen and
Hao, 1996); Cr(VI) reduction occurred only in the presence of cells or cell extracts and electron donors
(Lovley and Phillips, 1994); the Cr{VT) activity was lost when the Cr(VI)-reducing cell extracts were
heated at 100°C (Ohtake and Hardoyo, 1992); Cr(VI) reduction was incomplete with inadequate
acetate concentration (Chen and Hao, 1996); and the highest rates of Cr(VI) reduction all occurred
during the exponential growth phase of three different strain cells (Apel and Turick, 1991). All these
observations strongly suggest that Cr (VI) reduction in biological systems is directly related to
microbial activities. The reduced Cr existed mainly in the medium, forming insoluble Cr as Cr (OH),
(Shen and Wang, 1994; Faisal and Hasnain, 2004).

Factors Affecting Chromate Reduction

Factors affecting chromate reduction are temperature, pH, gases and organic substance and
poisons chemicals. Bacteria can reduce hexavalent chromium under mild conditions. This process may

253



J. Pharmacol. Toxicol., 1 {3): 248-238, 2006

be the best mechanism to assure hexavalent chromium treatment. Commonly used chemical reduction
generally occurs only over narrow range of pH. These methods are not only costly but the productions
of toxic byproducts are also a problem. Bacterial reduction of hexavalent chromium as a means of
bioremediation has several potential advantages.

+  Reduction occurs under neutral pH.

« Tt requires neither chemical additives nor aeration.

+  No toxic byproduct is formed.

«  Anaerobic reduction minimizes excess sludge production in aqueous systems.
+  The activity is reproducible and reusable.

Conclusions

Reduced chromium forms insoluble chromium hydroxide at a neutral pH. These chromium
compounds are very stable and they are unavailable to living organisms. No microbial activity has been
found so for that is able to oxidized reduced chromium. The feasibility of the bioremediation process
has been examined in the laboratories and is now procesding to the developmental stage. So it is
postulated that the use of microbes creates the right methods for environmental pollution control.
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