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Abstract: The anti-nociceptive effect of melatonin on visceral pain evoked by i.p. acetic acid
injection in mice was investigated Melatonin (1-8 mg kg™, s.¢.) caused a dose-dependent
inhibition of the acetic acid-induced writhes (by 84 to 98.6%). The inhibition of writhing
response by melatonin {4 mg kg™) was not reduced by co-administration of thew-2
adrenoceptor antagonist yohimbine (4 mg kg™, i.p.). In contrast, the ¢-1 adrenoceptor
antagonist doxazocin {16 mg kg™', s.c.) reduced the anti-writhing effect of melatonin,
whereas the o l-adrenoceptor antagonist prazosin (2 mg kg™', ip.) was without
effect. The effect of melatonin was slightly reduced by beta-adrenoceptor blockade
with propranolol (2 mg kg™', ip.) or adrenergic neuron blockade with guanethidine
(8 or 16 mg kg™, ip.). The muscarinic receptor antagonist atropine (2 mg kg™ ip.),
the potassium chamnel blocker glibenclamide (53 mg kg™, ip.), the opioid antagonist
naloxone {3 mg kg™, i.p.) or the non-selective adenosine receptor antagonist, theophylline
(10 mg kg~i.p.), failed to reduce the anti-writhing effect of melatonin. The antinociceptive
effect of melatonin was slightly reduced by co-administration of the central dopamine D2
receptor antagonist sulpiride (15 mg kg™, i.p.) (though not by haloperidol, 2 mg kg™, i.p.)
and to more extent by the dopamine D2 receptor agonist bromocryptine (1.5 mg kg™, i.p.),
whereas metoclopramide (3 mg kg™, i.p.), chlorpromazine (3 mg kg™', i.p.), domperidone
(10 mg kg™, i.p.) or blockade of dopamine D1 receptors by clozapine (5 mg kg™, i.p.) had
no effect. In conclusion, melatonin exerts potent anti-nociceptive effects on visceral pain in
mice. The antinociception caused by melatonin is subject to modulation by noradrenergic and
dopaminergic neural pathways.
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Introduction

Melatomin (N-acetyl-5-methoxytryptamine) is a product of the pineal gland as well as other
organs such as the gut (Reiter, 1995, Messner er of., 2001). Melatonin and its oxidation
products are direct free radical scavengers and potent indirect antioxidants (Rodriguez er af., 2004;
Allegra et al., 2003; Silva et al., 2004). In experimental models, melatonin exhibited marked
anti-inflammatory and analgesic properties and poteniated those of non-steroidal anti-inflammatory
drugs (Cuzzocrea et af., 1999; El-Shenawy ef af., 2002). Visceral pain is a common form of pain but
is poorly understood. The polymodal peripheral receptors initiate unpleasant sensations that can be
modulated in the dorsal horn and the anterior columns of the spinal cord before reaching the
cerebral cortex (Al-Chaer and Traub, 2002). The complexity of pain perception reflects the presence
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of both nociceptive and antinociceptive systems that modulate nociceptive input at many levels of the
neuraxis. Descending brainstem systems influence nociceptive stimuli spinally while other systems
modulate nociceptive input supraspinally (Pasternak, 1998).

There is evidence to suggest that melatomn-induced antinociception is mediated through
melatonin receptors within the central nervous system. Intraperitoneal administration of either
1.25, 2.5, 5.0 or 10.0 mg kg™ melatonin induced a dose-dependent inhibition of spinal wind-up
activity, probably through hyperpolarization of dorsal horn neurons subsequent to melatonin binding
to membrane receptors and/or via intracellular interference with a NMDA receptor-dependent nitric
oxide generating pathway (Laurido ef af., 2002). It has been suggested that melatonin interferes with
the NMDA-mediated glutamatergic component of pain transmission in rat spinal cord by acting on
MT?2 receptors (Noseda ef af., 2004). The aim of this study thus was to investigate the effect of
melatonin in the model of wvisceral pain induced by acetic acid injection in mice and to
pharmacologically characterize and investigate the possible neural pathways involved.

Materials and Methods

Animals

Swiss male albino mice weighing 20-22 g were used in all experiments. Ammals were acclimatized
to the laboratory for at least 1h before testing and were used once during the experiments. Procedures
were in accordance with the Tnstitutional Animal Care Committee and followed guidelines on ethical
standards for investigations of experimental pain in conscious animals (Zimmermann, 1983).

Acetic Acid-induced Writhing

Separate groups of 6 mice each were administered vehicle and/or melatonin (1, 2, 4 or 8 mg kg™,
s.c.). After the appropriate pretreatment interval, an i.p.injection of 0.6% acetic acid was administered
(0.2 mL/mice) (Koster, 1959). Each mouse wasthen placed in an individual clear plastic observational
chamber and the total number of writhes made by cach mouse was counted for 30 min afier acetic acid
administration. In addition, the effect of melatonin at 4 mg kg~'was compared to that of equimolar dose
of indomethacin (5.16 mg kg™, s.c.).

In an attempt to elucidate the mechamsms by which melatonin exerts its anti-nociceptive effect,
the use of selective antagonists of receptors or drugs that interfere with second messengers andion
channels were employed. The dose of 4 mg kg~ of melatonin was selected as the standard dose of
melatonin for studies on effects of noradrenergic, cholinergic, dopaminergic drug or other drugs.

The effects of the following agents on melatonin-induced anti-writhing were examined,
¢-1 adrenoceptor antagonist prazosin (2 mg kg™', i.p.), -2 adrenoceptor antagonist yohimbine
(4 mg kg™, ip.), the adrenergic blocker guanethidine (8 mg kg™ or 16 mg kg™, i.p.), the beta
adrenoceptor antagonist, propranolol (2 mg kg™, ip.), the muscarinic acetylcholine receptor
antagonist atropine (2 mg kg~! ip.), the non-selective opioid receptor amtagonist naloxone
(5 mg kg~ 1.p.), the non-selective adenosine receptor antagonists theophylline (10 mg kg='i.p.), the
potassium charmel blocker glibenclamide (5 mg kg™, i.p.), the dopamine D2 receptor antagonists
sulpiride (15 mg kg™, i.p.). haloperidol (2 mg kg™, i.p.) and domperidone (10 mg kg™, i.p),
metoclopramide (3 mg kg™, ip.) and chlorpromazine (3 mg kg™', ip.), the dopamine D2
receptor agonist bromocryptine (1.5 mg kg™', ip.) or the dopamine D1 receptor antagonist
clozapine (5 mg kg=', ip.). The doses of different antagenists and agonists used are those
reported in other studies {(Glesson and Atrens, 1982; Ohkubo ef &l., 1991; Ghelardini ef of., 2000,
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Takeshita and Yamaguchi, 1997, Kowaluk ez al., 2000). All drugs except guanethidine were
administered together with melatonin 30 min prior to the injection of acetic acid. Guanethidine was
administered 1 h prior to the abdominal constriction assay.

Drugs and Chemicals

Melatonmin (Sigma, St. Louis, USA), indomethacin {(Kahira Pharm and Chem. IND Co., Cairo,
A.RE)), atropine sulfate, yohimbine hydrochloride, propranolol hydrochloride, naloxonehydrochloride
(Sigma, St. Louis, USA) were used. Analytical-grade glacial acetic acid (Sigma, St. Louis, USA) was
diluted with pyrogen-free saline to provide a 0.6% solution for i.p. injection. All drugs were dissolved
in isotonic {0.9% NaCl) saline solution immediately before use, except indomethacin which was
dissolved in a 5% solution of sodium bicarbonate.

Statistical Analyses

Data are expressed as mean+SE. Data were analyzed by one way analysis of variance, followed
by a Tukev's Multiple Range Test for post hoc comparison of group means. When there were only
two groups a two-tailed Student's t-test was used. For all tests, effects with a probability of p<0.05
were considered to be significant.

Results

The intraperitoneal injection in mice of 0.1 mL/10 g body weight of a 0.6% (v/v) solution
of acetic acid induced a writhing response with 0 and 30 min. Melatonin (1-8 mg kg~ injected s.c.
30 min before acetic acid significantly inhibited the nociceptive response in a dose-dependent manner
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Fig. 1: Effect of different doses of melatonin administered as 30 min pretreatment on the number of
writhes in the abdominal constriction assay. Six mice were used per cach group. Asterisks
indicate significant change from the control group. The plus (+) sign indicates significant change
from the 1 mg kg™! treated group
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Fig. 2: Effect of equimolar doses of indomethacin and melatonin administered as 30 min pretreatment
on the number of writhes in the abdorminal constriction assay. Six mice were used per each
group. * p<0.05 compared to control and between indomethacin and melatonin treated groups
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Fig. 3: Effect of yohimbine (4 mg kg', i.p.). prazosin (2 mg kg~ !, i.p.), naloxone (Smg kg~ Lip),
atropine (2 mg kg, i.p.), propranolol (2 mg kg™!, i.p.) and glibenclamide (Smg kg™, i.p.) on
anti-nociception induced by melatonin (4 mg kg™', s.¢.) in the abdominal constriction assay. Six
mice were used per each group. Asterisks indicate significant change from the control group.
The plus (+) sign indicates significant change from the propranolol treated group. The # sign
indicates significant change from the yohimbine treated group
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Fig. 4: Effect of doxazosin on melatonin (4 mg kg™, s.¢.)-induced anti-nociception in the abdominal
constriction assay. Six mice were used per each group. Asterisks indicate significant change
from the control group. The plus (+) sign indicates significant change from the melatonin treated

group.

by 84 to 98.6%. Significant inhibition of the writhing response by 2, 4 or 8 mg kg™ melatonin was
observed compared to 1 mg kg~'treated group (Fig. 13. On a molar basis, melatonin was more potent
than indomethacin, a dose of 4 mg kg™ inhibiting the writhing response by 96% compared to 74.7%
inhibition by indomethacin at equimelar dose of 5.16 mg kg~' (Fig. 2).

Figure 3 shows that treatment with the «-2 adrenoceptor antagonist yohimbine or the e-1
adrenoceptor antagomist prazosin did not significantly change the antinociceptive effect caused by
melatonin in the abdominal constriction assay. The non-specific opioid receptor antagonist
naloxone, the muscarimic acetylcholine receptor antagonist atropine and the K, p-channel
blocker glibenclamide were also without effect. The melatonin-induced anti-writhing effect,
however, was reduced by the beta adrenoceptor antagonist, propranolol. Furthermore, mice
treated with propranolol exhibited significanfly more writhes than yohimbine, prazosin,
naloxone, atropine or glibenclamide-treated mice. Meanwhile, mice treated with yohimbine
showed significantly more abdominal constrictions than prazosin, naloxone or glibenclamide-
treated mice (Fig. 3).

The anti-writhing effect of melatonin was, in addition, reduced in the presense of doxazosin,
another ¢-1 adrenoceptor antagonist. Treatment of mice with doxazosin or doxazosin plus melatonin
resulted in significantly more writhes than the melatonin-treated group (Fig. 4). Furthermore, depletion
of endogenous catecholamines with guanethidine (8 or 16 mg kg™ slightly reduced the melatonin-
induced anti-writhing (Fig. 5 and 6), although a combination of guanethidine (16 mg kg™, i.p.) and
propranolol (2 mg ke, 1.p.) failed to alter antinociception by melatonin (Fig. 6). Guanethidine itself
resultedin 16.1% (p<0.05) reduction in the number of abdominal constrictions compared with
the control group (Fig. 5).
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Fig. 5: Effect of guanethidine (8 mg kg, s.¢.) on melatonin {4 mg kg™, s.¢.)-induced anti-nociception
in the abdominal constriction assay. Six mice were used per each group. Asterisks indicate
significant change from the control group. The plus (+) sign indicates significant change from
the melatonin treated group
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Fig. 6: Effect of guanethidine (16 mg kg™, i.p.) or guanethidine (16 mg kg™', i.p.) combined with
propranolol (2 mg kg™, i.p.) on anti-nociception induced by melatonin (4 mg kg™, s.¢.) in the
abdominal constriction assay. Six mice were used per each group. Asterisks indicate significant
change from the control group. The plus (+) sign indicates significant change from the
guanethidine treated group
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Fig. 7: Effect of theophylline {10 mg kg™', i.p) on anti-nociception induced by melatonin
{4 mg kg™', s.¢.) in the abdominal constriction assay. Six mice were used per each group.
Asterisks indicate significant change from the control group. The plus (+) sign indicates
significant change from the control or theophylline treated groups
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Fig. 8: Effect of different doparmine receptor agonists and antagonists on melatonin (4 mg kg™', s.¢.)-
induced anti-nociception in the abdominal constriction assay. Six mice were used per each
group. Asterisks indicate significant change from the control group. The plus (+) sign indicates
significant change from the bromocryptine treated group. The # sign indicates significant
change from the sulpiride treated group
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Figure 7 shows that the non-selective adenosine receptor antagonists theophylline failed to reduce
the anti-nociceptive effect of melatonin. Figure 8 shows that the dopamine D1 receptor antagonist
clozapine and the non-selective dopamine receptor antagonist chlorpromazine had no effect on the anti-
writhing effect of melatomin, whereas blockade of central dopamine D2 receptors by sulpiride (though
not haloperidol, metoclopramide or the peripherally acting dopamine antagonist, domperidone) or
treatment with the dopamine D2 receptor agonist bromocryptine reduced the antinociceptive effect
of melatomin. Mice treated with bromocryptine exhibited sigmficantly more abdominal constrictions
than those treated with melatonin, sulpiride, haloperidol, domperidone, metoclopramide,
chlorpromazing or clozapine. Meanwhile, treatement with sulpiride was associated with significantly
more abdominal constrictions than after treatment with domperidone or chlorpromazine.

Discussion

Chemical stimuli applied topically have been employed in studies of visceral pain. A standard
pharmaceutical screening tool, the writhing test consists of i.p. injection of dilute (0.6%) acetic acid
followed by subsequent counting of "writhes" characteristic contraction of abdominal muscles
accompanied by a hind limb extensor motion (Koster, 1959). In the present study we examined the
effect of melatonin on visceral nociception evoked in mice by 1.p. administration of acetic acid. Results
indicate that melatonin potently inhibits visceral nociception. In further steps, we analyzed the
possible neural pathways involved in the anti-nociceptive action of melatonin.

Certain pain conditions involve the sympathetic nervous system, e.g., visceral pain due to
abdominal and pelvic cancers, ischaemic pain from peripheral vascular disease, arterial spasm or
frostbite and others. Sympathetcomy or intravenous regional sympathetic block with guanethidine can
be carried out to reduce pain (Serpell, 2005). In the present study, we evaulated the anti-nociceptive
effect of melatonin in mice treated with the non-selective p-adrenoceptor blocker propranolol or the
adrenergic neurone blocking drug guanethidine. The latter is taken up into adrenergic neurons, where
it binds to the storage vesicles and prevent release of neurotransmitter in response to a neuronal
impulse, which results in generalized decrease in sympathetic tone. The administration of guanethidine
alone resulted in around 16% reduction in the writhing response. In addition, the anti-writhing effect
of melatomn was found to be partially reduced in mice treated with propranolol or guancthidine. The
results suggest that the analgesic action of melatomin is at least in part due to the enhancement of
sympathetic neurotransmission.

The administration of ¢-2 adrenoceptor agonists produce anti-nociception in rodents by inhibiting
synpatic transmission in the spinal cord dorsal horn and there is an evidence of descending
noradrenergic system, the stimulation of which, results in the activation of spinal «-2 adrenergic
receptors and anti-nociception (Gutierrez ef ai., 2003; Tanabe ef al., 2005). However, the participation
of ¢-2 adrenoceptor involvement in the observed melatonin anti-nociception is unlikely, since
yohimbine treatment failed to block the antinociceptive effect of melatonin. The anti-nociception
caused by melatonin was reduced by «-1 adrenoceptor antagonism with doxazosin, which might
suggest the involvement of «-1 adrenoceptor mechanism (s). Prazosin, another selective ¢-1
adrenoceptor antagonist, however, failed to reduce the melatonin effect. In another study, the
antinociception induced by melatonin {120 mg kg, ip.) in thermally-induced pain in rats was
unaffected by intracerebroventricularly admimstered prazosin, but inhibited by the selective MT2
melatonin receptor antagonist luzindole administered via thec same route (Yu ef al., 2000).

266



J. Pharmacol. Toxicol., 1 {3): 259-269, 2006

The spinal cholinergic system and muscarinic receptors are important for regulation of
nociception. Activation of spinal muscarinic receptors produces analgesia and inhibits dorsal horn
neurons through inhibition of the glutamatergic synaptic input (Li e# /., 2002) and potentiation of
synaptic GABA release in the spinal cord (Zhang ef af., 2005). The involvement of opioidergic
mechanisms or spinal cholinergic system and muscarinic receptors in the anti-nociceptive action of
melatonin are ruled out in view of naloxone and atropine-insenstive anti-writhing effect of melatonin.
Adenosine is an inhibitory neuromodulator that can increase nociceptive thresholds in response to
noxious stimulation (Sawynok, 1998, Dunwiddie and Masino, 2001) and blockade of
adenosine receptors by theophylline, a nonselective adenosine receptor antagonists at A, and
A, (Bruns et al., 1983) is known to induce hyperalgesia (Paalzow, 1994). In the present study, data,
however, do not suggest that an adenosine receptor mechanism (s) is involved in the mediation of
antinociception induced by melatonin, since theophylline failed to influence the melatonin effect on
visceral pain.

Voltage-gated potassium channels, can also contribute to the sensitization of primary afferents
observed in gastrointestinal pain states (Cervero and Laird, 2003). The possible involvement
of K-chamnels in the mediation of antinociception induced by melatonin is ruled out, in view
of the inability of glibenclamide an ATP-sensitive potassium (K, channels blocker to reduce
the melatonin effect.

The antinociceptive response of melatonin was also studied in combination with sclective
dopamine receptor agonists and antagonists. Dopamine D-2 receptors are involved in nociception and
analgesic mechanisms and dopamine D2-receptor antagonists e.g., sulpiride caused antinociception in
different pain models (Ben-Sreti ef af., 1983; Rooney and Sewell, 1989; Michael-Titus ef al., 1990,
Frussa-Filho ef al., 1996; Forman, 1999). In the present study, the analgesic response to melatonin was
also partially reduced by administration of the dopamine D2 receptor antagonist, sulpiride and the
dopamine D2 receptor agonist bromocryptine, suggesting an interaction at the level of dopamine D2
receptors. Thus it appears that antinociception induced by melatomin results, at least in part, from
activation of stimulation of D2 subtypes of the dopamine receptor.

In summary, visceral nociception evoked by i.p. injection acetic acid in mice was markedly
inhibited by the administration of melatonin. The antinociception caused by melatonin is subject to
modulation by noradrenergic and dopaminergic neural pathways.
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